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ABSTRACT 

 

Hennig, J. Feral horse movement, habitat selection, and effects on pronghorn and greater sage-

grouse habitat. Ph.D., Department of Ecosystem Science and Management, April 2021. 

 

 

Increasing populations of feral horses (Equus ferus caballus) on western North American 

rangelands threaten the provisioning of ecosystem services and the stipulation for public lands to 

be managed for multiple uses. Feral horse grazing can decrease vegetation cover and effect 

species composition, alter soil structure, and negatively influence faunal communities. Partisan 

viewpoints regarding the role of feral equids on public rangelands underscore the need for 

management strategies based on sound science, but information on basic feral horse ecology is 

limited. Increased understanding of vegetation and soil responses to varying levels of horse use 

and site-specific information on movement patterns and habitat use are necessary to implement 

successful management plans. Thus the aim of my dissertation was to increase understanding of 

feral horse ecology in arid shrublands of western North America and to evaluate the potential for 

horses to influence habitat quality for co-occurring wildlife species.  

I present a broad introduction to my research in Chapter 1, with the following four 

chapters formatted for journal-specific requirements. In Chapter 2, I conduct a systematic review 

to record all telemetry-collared wild and feral equids worldwide and evaluate the relative risk of 

collar-related complications for equids compared to commonly collared North American 

ungulates, elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn 

(Antilocapra americana). We found 1,089 collared equids prior to 2017 but while mortality rates 

for equids were lower than for elk, mule deer, and pronghorn, the lack of sufficient information 

prevented a critical assessment of relative collar-related complications. Consequently, we 

encourage explicit reporting of collar-related issues, or lack-thereof, in published literature. This 
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chapter was published in Wildlife Research in 2020 with co-authors J. Scasta, J. Beck, K. 

Schoenecker, and S. King (Hennig et al. 2020. Systematic review of equids and telemetry 

collars: implications for deployment and reporting. Wildlife Research 47, 361-371). 

 Chapter 3 examined the variation in greater sage-grouse (Centrocercus urophasianus) 

habitat quality metrics along a gradient of feral horse use. We found intensity of feral horse use 

to be an informative predictor of mean grass height and the proportion of bare ground, but other 

habitat metrics were better explained by topographic and temporal variation. Bare ground 

linearly increased with increased feral horse use and grass height declined after approximately 

638 horse fecal piles/ha. Our results suggest that reductions in feral horse population sizes may 

limit soil erosion and maintain desired herbaceous structure, but additional management actions 

are likely needed to sustain high-quality greater sage-grouse habitat. This chapter is in revision at 

Journal of Arid Environments with co-authors J. Beck, C. Duchardt, and J. Scasta.  

 The objective of Chapter 4 was to understand how differences in digestive morphology 

and feeding strategy influence the movement syndromes of sympatric ungulates. We found that 

cecal digesting and bulk roughage feeding feral horses exhibited a more sedentary movement 

syndrome than ruminating and concentrate selecting pronghorn. Reliance on predictable 

locations of free-standing water and patches of high vegetation biomass were strong drivers of 

the more sedentary movements of horses corresponding to their cecal digestion strategy.. 

Pronghorn unexpectedly showed little selection for relatively unpredictable patches in vegetation 

green-up, with the lack of need for free-standing water the most likely driver of their relatively 

nomadic movement. This chapter has been formatted for submission to Journal of Animal 

Ecology with co-authors J. Scasta and J. Beck.  
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 Chapter 5 provides a comparison of seasonal resource selection between co-occurring 

populations of feral horses, greater sage-grouse, and pronghorn and predicts the proportion of 

occurrence overlap between the species. Pronghorn have a high proportion of occurrence overlap 

with horses in both summer (0.84) and winter (0.90), while greater sage-grouse have the highest 

amount of overlap in the summer season (0.91). Our results suggest that pronghorn face potential 

competition and habitat alteration from horses year-round, whereas the threat of decreased 

habitat quality is most prevalent for sage-grouse during later brood-rearing. This chapter has 

been formatted for submission to Journal of Wildlife Management with coauthors J. Scasta, A. 

Pratt, C. Powell, and J. Beck.  
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CHAPTER 1. Introduction 

Public rangelands of the western United States provide ecosystem, economic, cultural, and 

recreational services (Havstad et al. 2007). Rangelands under the jurisdiction of the Bureau of 

Land Management (BLM) are managed for multiple uses and to ensure sustainability of such 

services [Federal Land Policy and Management Act 1976 (Public Law 94-579)]. A large quantity 

(14 million acres) of BLM-managed rangelands provide habitat for feral horses (Equus ferus 

caballus) and burros (E. asinus). These equids are protected under the Wild Free-Roaming 

Horses and Burros Act of 1971 (Public Law 92-195), but burgeoning populations raise concerns 

regarding the effects that these introduced herbivores have on western rangeland ecosystems 

(Danvir 2018). Management of feral equids is a complex issue involving competing political, 

social, economic, and ecological interests.  

To fully comprehend this issue, a brief historical overview of horses and burros in the 

U.S. is helpful. Native North American equids went extinct during the Pleistocene Epoch 

roughly 10,000 years ago (Grayson 2006). Following this extinction, North America was devoid 

of equids until introduction of domestic horses by Spanish explorers and pioneers in the late 

1400s (McKnight 1959). Through ranchers turning horses out on range and escapes of otherwise 

domestic stock, feral horse populations eventually proliferated across the western U.S. which 

now lacked predators due to extinction or eradication (McKnight 1959). This large horse 

population (estimates range from 2–5 million; McKnight 1959), was integrated into Native 

American life and became the basis of a successful horse-trading economy until the early 1900s 

with passage of the Taylor Grazing Act (Flores 2008; Public Law 73-482). This legislation 

changed western public lands from a ‘commons’ system into livestock grazing allotments. 

Livestock producers began to view horses as competitors for forage and water and large numbers 
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of horses were killed or removed from public rangelands (Flores 2008). As equid populations 

dwindled, a concerned public became vocal about protecting the horse and burro populations that 

they considered American icons (Godfrey and Lawson 1986). Due in part to letter writing 

campaigns and Hollywood films, the U.S. Congress passed the Wild Free-Roaming Horses and 

Burros Act in 1971 (Public Law 92-195). This act declared any “unclaimed or unbranded” horse 

or burro to be “living symbols of the historic and pioneer spirit of the West.” Under threat of fine 

or imprisonment, the act grants horses and burros protection from “capture, branding, 

harassment, or death.” It also tasks the BLM and U.S. Forest Service (USFS) to manage equid 

populations in concert with a ‘natural ecological balance’ using management actions that do not 

restrict the free-roaming status of horses or burros. The Wild Free-Roaming Horses and Burros 

Act was so successful in restoring horse and burro populations that legislative action was 

required to deal with overpopulation issues that compromised federal agencies’ mandate to 

manage public land for multiple use. The Public Rangelands Improvement Act of 1978 (PRIA; 

Public Law 95-514) allows for humane removal and adoption of equids in areas where they are 

above an appropriate management level (AML). However, due to legislative impediments 

(Scasta et al. 2018) and limited funding (Garrott and Oli 2013), horse and burro populations 

continue to increase.  

Approximately 80,000 horses and 15,000 burros currently roam nearly 14 million ha of 

BLM-administered public land (BLM 2021). Population estimates are over three times the 

nationwide maximum AML, while an additional 53,000 equids exist in “off-range” holding 

facilities, awaiting adoption (BLM 2021). Adoption demand has waned in recent years, 

confining the animals to spend the remainder of their lives at these facilities as euthanasia or 

slaughter is not within current BLM policy (NRC 2013). The BLM’s Wild Horse and Burro 
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Program covers the care-taking bill of these animals, spending approximately $50 million 

annually, two-thirds of the program’s budget (BLM 2021). Cumulative costs of providing for 

these animals in captivity is projected to surpass $1 billion by 2030 (Garrott and Oli 2013).   

Viewpoints on the management of feral horses and burros are extremely partisan, 

rendering management activities difficult (Wagman and McCurdy 2011, Notzke 2013, Scasta et 

al. 2018). Management strategies are heavily influenced by public opinion, eliciting a clear need 

for strategies based on sound science (Nimmo and Miller 2007). Robust quantification of equid 

movements and resource selection are entirely absent but are needed to understand how these 

populations interact with their environment. Due to the relatively unrestricted grazing of horses 

and burros, these introduced equids pose threats to western ecosystems (Nimmo and Miller 

2007). Horse grazing can decrease vegetative cover, alter soil structure, and negatively influence 

co-occurring faunal communities (e.g., Beever et al. 2008, Davies et al. 2014, Hall et al. 2016, 

Boyd et al. 2017); however, there is little understanding of vegetation and soil responses to 

varying levels of use, and lack site-specific information on movement patterns and habitat use 

imperative to successful management strategies.  

The purpose of my research is to enhance understanding of feral horse ecology and 

evaluate potential impacts they may have on shrubland ecosystems. In my second chapter, I 

present a systematic review of telemetry collar use on wild equids and quantify reporting rate of 

collar complications. The next chapter explores how greater sage-grouse (Centrocercus 

urophasianus) habitat quality metrics vary along a gradient of horse use (Chapter 3). In my 

fourth chapter, I use sympatric feral horse and pronghorn (Antilocapra americana) populations 

to understand how differences in ungulate digestion morphology and feeding strategies mediate 

sedentary versus nomadic movement syndromes. My dissertation concludes with examination of 
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resource selection among feral horses, greater sage-grouse and pronghorn within cold-arid-

steppe and quantifies overlap in predicted occurrence between the species across seasons.   
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CHAPTER 2. Systematic review of equids and telemetry collars: implications for 

deployment and reporting 

 

Citation: Hennig, J.D., J.D. Scasta, J.L. Beck, K.A. Schoenecker, S.R.B. King. (2020). 

Systematic review of equids and telemetry collars: implications for deployment and reporting. 

Wildlife Research 47, 361-371. 

 

ABSTRACT 

Data from animals equipped with global positioning system (GPS) collars have advanced our 

understanding of vertebrates, but this technology has rarely been employed to study feral equids. 

Hesitation to equip feral equids with telemetry collars in the United States is often due to safety 

concerns which stem from injuries sustained to feral horses (Equus ferus caballus) equipped with 

radio collars in one study from the 1980s. Advancements in collar design over the ensuing 

quarter-century may have decreased risk of collar-related complications; however, telemetry-

based studies on feral equids continue to be limited. We systematically reviewed studies from 

wild and feral equids worldwide to better understand the mortality and injury risk in application 

of telemetry collars to equids. Our goals were to: A) report the number of individual equids fitted 

with telemetry collars (1979–2017), and B) document the number of individual equids that 

reportedly died or suffered injuries from collars or other sources. We also conducted a 

comparative review of elk (Cervus canadensis), mule deer (Odocoileus hemionus), and 

pronghorn (Antilocapra americana) to evaluate the relative risk of collar-related complications 

between equids and routinely collared North American ungulates. We identified 1,089 wild and 

feral telemetered equids across 48 studies. Of these, 87 (8.0%) were reported to have died, with 
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only 1 (0.09%) mortality attributable to a collar. Comparatively, we found 23.0% (1,095) of 

4,761 elk, mule deer, and pronghorn fitted with telemetry collars to have died in the same 

number of studies, though no mortalities were reported to be related to the collar. While wild and 

feral equids did not experience increased natural mortality compared to the other ungulates, 

studies have not provided sufficient information to assess relative risk of collar-related 

complications. We recommend explicit reporting and discussion of telemetry collar impacts in 

future publications of all animal species, especially equids, to improve understanding of how 

telemetry collars may affect study individuals. 

 

INTRODUCTION 

In modern wild animal research, global positioning system (GPS) technology is routinely 

implemented to collect spatiotemporally robust data that can be used to answer questions that 

could not easily be addressed prior to its development (Cagnacci et al. 2010). By employing GPS 

technology, we have better understanding of how animals respond to anthropogenic features 

(e.g., Panzacchi et al. 2013; Sawyer et al. 2013), increased knowledge on habitat selection (e.g., 

Leclerc et al. 2016; Valls-Fox 2018), and improved information on predator-prey dynamics (e.g., 

Hebblewhite et al. 2005; DeMars and Boutin). In turn, such information has been imperative for 

informing successful conservation efforts and evaluating management actions (e.g., Wydeven et 

al. 2009; Sawyer et al. 2012).  

Wild and feral equids are iconic megafauna that are of strong conservation and 

management concern worldwide. GPS technology has been instrumental in improving the 

conservation and management of multiple wild equid species. Data from individuals equipped 

with GPS collars have elucidated movement barriers for Asiatic wild ass (E. hemionus; Ito et al. 
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2013), uncovered unknown migrations of plains zebra (E. quagga; Naidoo et al. 2014), revealed 

that core foraging areas of Grevy’s zebra (E. grevyi) fell outside of protected ranges (Levikov 

2014), and found that desert reintroduction sites represent marginal habitat for the previously 

extinct-in-the-wild Przewalski’s horse (E. f. przewalskii; Kaczensky et al. 2008). Contrastingly, 

GPS technology has rarely been deployed to study feral horses or burros (E. asinus), particularly 

in the United States with safety issues often a concern (Collins et al. 2014; Schoenecker et al. 

2020). 

The attachment of telemetry transmitters can negatively affect individuals of any species 

(see Krausman et al. 2004, Walker et al. 2012, Severson et al. 2019). For large, terrestrial 

mammals, transmitters are often attached to an individual via a neck collar. Equids have been 

posited to face increased safety risk from neck collars due to their tapering neck shape, which 

can make for a difficult proper fit (Collins et al. 2014; Schoenecker et al. 2020). These safety 

concerns are most apparent in the USA, where they led to a moratorium on telemetry collar use 

(see Schoenecker et al. 2020) on feral horses and burros protected and managed by the federal 

government under the Wild Free Roaming Horses and Burros Act of 1971 (Public Law 92-195). 

Recent rapid population growth has led to increased scrutiny of feral horse and burro 

management amid concerns about effects they may have on native flora and fauna (Scasta et al. 

2018). Horse-occupied sites exhibit altered vegetation composition and structure, different faunal 

communities, and decreased soil integrity compared to similar sites where horses were removed 

or excluded (Beever and Brussard 2000; Zalba and Cozzani 2004; Beever and Herrick 2006; 

Davies and Boyd 2019). Further, horses can contribute to spread of invasive species such as 

cheatgrass (Bromus tectorum; King et al. 2019), and negatively influence water use by co-

occurring native species (Hall et al. 2016; Gooch et al. 2017). In addition, managers have little, 
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or outdated, information on the natural history of horses and burros, such as home range sizes, 

daily movement distances, and habitat selection. Data from GPS collars would undoubtedly 

improve our understanding of these populations, yet safety concerns still cause hesitation to 

employ this technology.  

Complications resulting from feral horse radio-collar studies in the late-1980s are the 

primary cause of such concerns (NRC 1991). Issues from this Nevada, USA study were 

primarily attributed to collar design, collar fit, and selection of immature study individuals – all 

aspects of collar research that have improved over time. Specifically, collars were made of 10.2-

cm wide, rigid belting material, which made fine adjustments difficult, and nearly all individuals 

aged 2–5 years experienced collar complications (NRC 1991). Specific improvements in these 

areas of collar designs and animal care and use guidelines over the past quarter-century through 

the integration of better collar material and lighter hardware (such as batteries and GPS units). 

Furthermore, a recent pilot study illustrated that with proper collar design and fit, GPS collars 

can be safely used on mature, free-roaming horses (Collins et al. 2014). Nonetheless, the use of 

GPS collars on federally-protected feral equids in the USA remains a contentious issue that has 

restricted deployment by researchers to improve ecological understanding and decision making. 

To better understand if telemetry collars impose increased risk to equids relative to other 

wild ungulates, we conducted two literature reviews. We first performed a systematic review of 

all literature studies reporting telemetry collar data from wild and feral equids from 1979 to 

2017. Our goals for this review were to: A) report the number of individual equids fitted with 

telemetry collars, and B) document the number of individual equids that reportedly died or 

suffered injuries from collars or other sources. We then conducted a companion abbreviated 

review with an equivalent number of studies and during the same time period to our equid 
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systematic review to evaluate the relative risk of collar-related complications between equids and 

routinely collared North American ungulates: elk (Cervus canadensis), mule deer (Odocoileus 

hemionus), and pronghorn (Antilocapra americana). We chose these species because all have 

been frequently studied with telemetry collars, and each overlap in range with feral equids in 

western North America (Scasta et al. 2016).  

 

METHODS 

We followed systematic review guidelines (Centre for Evidence-Based Conservation 2013) to 

ensure transparency and repeatability for our global equid review. We defined a priori 

systematic search terms (Table 2.1) and review criteria (Table 2.2) for our review and performed 

searches using Web of Science and Google Scholar online databases. We assessed each study 

meeting the review criteria and extracted the following information: (1) study location, (2) 

telemetry type, (3) number of collared individuals, and (4) number and causes of mortalities and 

injuries. We included gray literature (reports, theses, dissertations) because their exclusion would 

have resulted in the loss of valuable information, particularly as it relates to early collaring 

research on equids in the USA that have never appeared in the peer-reviewed literature 

(including NRC 1991). While conducting our review, it became apparent that in several 

instances a single telemetry dataset was the basis for publication of multiple papers. When such 

situations were identified, we reconciled results to avoid duplication and redundancy in our 

reported results.  

Following our systematic global equid review, we conducted a companion review of 

studies reporting data from telemetry-collared elk, mule deer, and pronghorn in North America 

using the Google Scholar database. More than 14,000 studies were found in the initial screening 
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process; thus, we determined that it would be unfeasible to conduct this companion review as an 

exhaustive review of all studies. We therefore applied analogous search terms (elk OR mule deer 

OR pronghorn AND collar) but only reviewed 48 studies which corresponded to the number of 

studies reporting unique telemetry data from equids. We used studies matching the same 

publication date range and stratification as the systematic global equid review studies (4 studies 

from 1979–1989, 3 from 1990–1999, and matching years from 1999–2017), and the same 

number of peer-reviewed articles, reports, and theses/dissertations per year. To accomplish this 

without imposing bias, we chose which studies to review based on a random number generator. 

If the resulting study did not meet an appropriate year*publication type, another random study 

was selected until these criteria were met. We reviewed each study to extract data for the number 

of collared individuals, along with the number and causes of reported mortalities and injuries 

occurring during the studies. 

 

RESULTS 

Equids 

We identified 169 relevant results during our equid review from the screening of titles and 

abstracts, of which 83 ultimately met our review criteria (Table 2.5). Of these 83 studies, we 

identified 48 containing unique telemetry datasets (Table 2.3). Collared equids included 4 wild 

and 2 feral species spanning 18 countries and 5 continents (Fig. 2.1). Species fitted with collars 

were Asiatic wild ass, Przewalski’s horse, plains zebra, Grevy’s zebra, feral horse, and feral 

burro (Table 2.5). We found no sources reporting use of telemetry collars on African wild ass (E. 

africanus), kiang (E. kiang), nor mountain zebra (E. zebra).  
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Across all equid species, 1,089 individuals have been fitted with telemetry collars. Of 

these individuals, 83 (7.6%) were reported as mortalities during studies (Fig. 2.2). Most known 

mortality causes were natural (old age/disease; 75.9%), followed by depredation (7.2%), 

hunting/poaching (3.6%), and capture-related mortalities (3.6%). Only one mortality (0.09%); 

was explicitly stated to be caused by the telemetry collar (NRC 1991). Four causes of mortalities 

were unknown (4.8%), with no causes reported for an additional 3 deaths (3.6%). Overall, 10 

studies (20.8% studies) reported at least a single mortality (Table 2.3), with only one study 

reporting a death related to a telemetry collar.  

Injuries attributed to fit and mass of collars were described in 4 studies (8.3% of studies; 

NRC 1991; Brooks et al. 2010; Hampson et al. 2011; Fortini 2015), involving 87 individuals 

(8.0% of collared individuals). Seventy-seven (88.5%) of these injuries were observed in one 

study in Nevada, USA conducted from 1985–1990 (NRC 1991). Of 336 VHF collars fitted to 

feral horses in this study in Nevada, 42 were attached too tightly or became too tight over time, 

resulting in lacerations and infections. Conversely, 35 collars were fitted too loosely or became 

too loose over time, causing them to slip up over the horses' ears, resulting in cuts, sores, and 

infections. In addition, reported injuries were explicitly attributed to the placement of collars on 

immature horses, and the rigid and broad material that was used for the collar (see pages 26-28 in 

NRC 1991).  

In terms of effects that did not cause injury or death, collar weight may have affected the 

foraging behavior of 5 plains zebra (Brooks et al. 2010). Brooks et al. (2010) fitted 8 collars from 

2 different manufacturers to zebra. Subsequently, the 5 individuals fitted with the heavier collar 

type moved half as much when foraging compared to the 3 individuals wearing lighter collars. 
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Additionally, 5 feral horses in two studies were reported to have reduced body condition after 

being affixed with a collar, though causes were unknown (Hampson et al. 2011; Fortini 2015).  

 

North American ungulates 

Compared to equids, elk, mule deer, and pronghorn had higher reported mortality across studies. 

Twenty-seven of 48 (56.3%) studies reviewed (Table 2.4) reported mortalities. In these studies, 

4,761 individual elk, mule deer, or pronghorn were fitted with telemetry collars; of these, 1,095 

(23.0%) were reported as mortalities (Fig. 2.2). Of those reported, most causes of mortality were 

either not stated (27.2%) or unknown (18.9%). Hunting or poaching were the most frequent 

known causes of death (21.5%), followed by depredation (14.8%), natural causes (9.2%), vehicle 

collisions (5.4%), capture-related mortality (2.6%), and other causes (0.4%). No mortalities were 

explicitly stated to be collar related. Likewise, no studies mentioned any collar-related injuries or 

other collar effects.  

 

DISCUSSION 

Our review found that equids have been fitted with telemetry collars less frequently than the 

three species of North American ungulates in this review, both in number of studies and number 

of individuals collared per study. While safety concerns have prevented telemetry collar use on 

federally-protected feral equids in the USA, relatively vulnerable population sizes, difficulty of 

capture, and limited budgets are possible reasons for infrequent use on other equid populations. 

Nonetheless, vulnerable equid species have been fitted with GPS collars suggesting that safety is 

either not perceived as an issue for these equids, or the need for collecting spatial data outweighs 

any potential safety concerns. Different perceptions of zebra, for example, being considered 
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wildlife, compared to feral horses being domesticated, may also have influenced the relative 

importance and emotive nature of safety against data collection.  

 Research of wild and feral equids employing GPS collars has provided important insights 

into their ecology. The ability to collect relocation data at fine spatiotemporal scales assisted in 

obtaining more accurate estimates of home range sizes and daily movement distances (e.g., 

Hampson et al. 2010a; Girard et al. 2013; Levikov 2014). Additionally, the resolution of data 

obtained from GPS enhanced understanding of foraging and movement behaviors of equids at 

unprecedented scales (Kaczensky et al. 2011a; Owen-Smith et al. 2015). Furthermore, by placing 

GPS collars on multiple species, we better understand how equids partition resources with 

sympatric species (e.g., Macandza et al. 2012ab; Owen-Smith and Martin 2015). Better 

information on all of these topics is sorely needed for improved understanding of how feral 

equids may impact native flora and fauna and for re-introduced equids in re-wildling or 

restoration efforts in other countries. 

 Our review found that the reported mortality rate of collared equids was lower than for 

collared elk, mule deer, and pronghorn in North America. Some of this disparity is due to native 

ungulates being routinely hunted; however, removing hunting and poaching mortalities still 

suggests a higher percentage of these ungulates are killed from other causes than equids (19.0% 

vs. 7.3%). A major limitation of our review is that mortalities are not required to be reported by 

publications and often were not reported unless studies were addressing cause-specific 

mortalities. Many studies that did report mortalities merely mentioned the number of individuals 

that died, without indicating what caused these deaths. Furthermore, collars may not be retrieved 

until well after the mortality has occurred, making it difficult to assign a cause of death (e.g., 

Taylor et al. 2016). Additionally, it is often time and cost-prohibitive to monitor collared animals 
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in the field with enough regularity to identify whether collars have caused injuries to an 

individual. Many studies employ aircraft to locate individuals or use satellite systems to relay 

locations, which limits observations of collared individuals after deployment. 

Another limitation of our review is that it is difficult to disentangle whether collar 

complications were a proximate cause of mortality. Injuries or other collar related complications 

were rarely mentioned in equid studies (4.3% of studies) and completely absent in the ungulate 

studies we reviewed. We know, however, that collars can cause injuries to ungulates as they 

caused neck lesions in mule deer and bighorn sheep (Ovis canadensis) in California, USA 

(Krausman et al. 2004). The authors of this study stated they contacted the collar manufacturer to 

apprise them of the complications from their collars and therefore manufacturers could use the 

information to design a safer collar. Wild ungulates in North America have been widely studied 

with telemetry collars for the past half-century, therefore safety issues have likely been identified 

and corrected so that current safety risk is minimal (e.g., Keister et al. 1988; Diefenbach et al. 

2003; Krausman et al. 2004; Obermoller et al. 2018). Because collars have rarely been used on 

feral equids, information on improving collar design for these animals is lacking. Without more 

information, we are unable to show whether equids suffer increased risk of mortality or injury 

due to telemetry collars compared to other ungulates.  

 

CONCLUSIONS 

Feral horses are the most abundant equid worldwide (Linnell et al. 2016), yet we know little 

about their spatial ecology compared to several species of threatened, wild equids. GPS 

technology could collect robust data useful for improving management of feral horses and 

burros, especially in countries where debate of their management is contentious (e.g., Australia, 
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Canada, USA). Currently the two federal agencies with authority of equid management in the 

USA, the United States Department of Interior’s Bureau of Land Management (BLM) and the 

United States Department of Agriculture’s Forest Service (USFS) have little information on how 

animals move across political boundaries, how seasonality influences resource selection and 

movement patterns, and how these animals compete for or partition resources with wildlife and 

livestock species.  

In the published literature, discussion of collar-related complications, or lack thereof is 

rare. This is not often a goal of studies; thus, it is seemingly extraneous to include, especially 

given the cost of page charges. Nonetheless, limited understanding of how telemetry collars 

impact equids hinders their employment on feral equids under highly scrutinized management. 

Therefore, we encourage published research to explicitly discuss if collars affected study 

individuals, especially equids, when applicable.  
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TABLES & FIGURES 

Table 2.1. Search terms used for the systematic review of wild and feral equid studies utilizing 

telemetry collars globally to determine safety and application. 

Equid term Technology term 

Ass Collar 

Brumby GPS 

Burro Global Positioning System 

Donkey VHF 

Equid Very High Frequency 

Equus 

Grevy’s 

 

Horse  

Khulan  

Kiang  

Konik  

Mustang  

Onager  

Pony  

Przewalski’s   

Takhi  

Zebra  
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Table 2.2. Inclusion criteria for wild and feral equid studies utilizing telemetry collars in a global 

systematic review to determine safety and application. 

Inclusion Category Criteria 

Animals Any species of the genus Equus that was either wild or kept in an 

extensively managed pasture or enclosure 

Technology GPS or VHF telemetry device affixed to a neck collar 

Temporal range 1970–2017 

Spatial range Global 

Qualifying criteria We considered studies explicitly employing telemetry tracking devices 

affixed to a neck collar. We did not include studies that did not report 

telemetry data, such as papers focused on the capture of animals for 

subsequent collaring. 
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Table 2.3. Studies possessing unique telemetry data and meeting a priori inclusion criteria in a 

global systematic review of wild and feral equid studies utilizing telemetry collars (1979–2017). 

Numbers in parentheses correspond to mortalities and injuries directly attributed to a telemetry 

collar. 

Reference Continent 
Collar 

Type 

No. of 

Collars 

Publication 

Type 

Mortalities 

Reporteda 

Injuries 

Reporteda 

Feral horse (Equus caballus)   

  Berman 1991 Australia VHF 5 Thesis NA NA 

  Hampson et al. 2010a Australia GPS 3 Peer-reviewed 0 0 

  Hampson et al. 2010b Australia GPS 12 Peer-reviewed 0 0 

  Hampson et al. 2011 Australia GPS 6 Peer-reviewed 3 1 (1) 

  Fortini 2015 Europe GPS 6 Thesis 0 4 (4) 

  Jodowska et al. 2015 Europe GPS 1 Peer-reviewed NA NA 

  Kohler et al. 2016 Europe GPS 1 Peer-reviewed 0 NA 

  Popp and Scheibe 2014 Europe VHF 1 Peer-reviewed NA NA 

  Radoi et al. 2015 Europe GPS 32 Peer-reviewed NA NA 

  van Hoesel and van der Werff 2011 Europe GPS 2 Thesis 0 NA 

  Collins et al. 2014 North America GPS 28 Peer-reviewed 0 0 

  Ehsan et al. 2012 North America GPS 6 Peer-reviewed NA NA 

  Ganskopp and Vavra 1986 North America VHF 11 Peer-reviewed NA NA 

  Girard et al. 2013 North America GPS 4 Peer-reviewed NA NA 

  Goodloe et al. 2000 North America VHF 10 Peer-reviewed NA NA 

  Leverkus 2015 North America GPS 13 Thesis NA NA 

  National Research Council 1991 North America VHF 336 Report 63 (1) 77 (77) 

  Siniff et al. 1986 North America VHF 169 Peer-reviewed 4 NA 

  Zervanos and Keiper 1979 North America VHF 10 Report NA NA 

       

Przewalski’s horse (E. f. przewalskii)       

  Kaczensky and Huber 2010 Asia GPS 1 Peer-reviewed 0 0 

  Kaczensky et al. 2008 Asia GPS 9 Peer-reviewed 1 NA 

  Kaczensky et al. 2010b Asia GPS 5 Peer-reviewed 0 NA 

  Lugauer 2010 Asia GPS 2 Thesis NA NA 

       

Asiatic wild ass (E. hemionus)   

  Giotto et al. 2015 Asia GPS 5 Peer-reviewed NA NA 

  Kaczensky et al. 2008 Asia GPS 7 Peer-reviewed 1 NA 

  Kaczensky et al. 2010a Asia GPS 16 Peer-reviewed 0 NA 

  Kaczensky et al. 2010b Asia GPS 10 Peer-reviewed 0 NA 

  Kaczensky et al. 2011a Asia GPS 14 Peer-reviewed 1 NA 

  Kaczensky et al. 2011b Asia GPS 12 Peer-reviewed NA NA 

  Shah and Qureshi 2007 Asia VHF 2 Peer-reviewed NA NA 

  World Bank 2006 Asia GPS 7 Report 1 NA 

       

Feral burro (E. asinus)   

  Marshal et al. 2012 North America VHF 44 Peer-reviewed NA NA 

  Seegmiller and Ohmart 1981 North America VHF 7 Peer-reviewed 0 NA 
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Grevy’s zebra (E. grevyi)   

  Hostens 2009 Africa GPS 16 Thesis NA NA 

  Levikov 2014 Africa GPS 26 Thesis NA NA 

  Sundaresan et al. 2007 Africa VHF 6 Peer-reviewed NA NA 

  Wheeler 2013 Africa GPS 10 Thesis NA NA 

  Younan 2015 Africa GPS 21 Thesis NA NA 

       

Plains zebra (E. quagga)   

  Barnier et al. 2014 Africa GPS 7 Peer-reviewed NA NA 

  Bartlam-Brooks et al. 2011 Africa GPS 26 Peer-reviewed 2 0 

  Bradley 2012 Africa GPS 21 Thesis 4 NA 

  Brooks 2005 Africa GPS 25 Thesis NA 5 (5) 

  Courbin et al. 2016 Africa GPS 22 Peer-reviewed NA NA 

  Fischhoff et al. 2007 Africa GPS 4 Peer-reviewed NA NA 

  Hopcraft et al. 2014 Africa GPS 13 Peer-reviewed NA NA 

  Kamath et al. 2014 Africa GPS 70 Peer-reviewed NA NA 

  Macandza 2009 Africa GPS 6 Thesis NA NA 

  Martin & Owen-Smith 2016 Africa GPS 4 Peer-reviewed 0 0 

  Naidoo et al. 2014 Africa GPS 8 Peer-reviewed 1 NA 

  Venter et al. 2014 Africa GPS 7 Peer-reviewed 4 NA 
a NA means that mortalities or injuries were not reported  



42 

 

Table 2.4. All studies reviewed in the comparative search for studies utilizing telemetry collars 

on elk (Cervus elaphus), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra 

americana).  

Reference Country 
Collar 

Type 

No. of 

Collars 
Publication Type 

Mortalities 

Reporteda 

Elk (Cervus canadensis)      

  Irwin and Peek 1983 USA VHF 16 Peer-reviewed NA 

  Witmer and deCalesta 1985 USA VHF 6 Peer-reviewed NA 

  Biggs et al. 1997 USA GPS 6 Report 2 

  Petersburg et al. 2000 USA VHF 52 Peer-reviewed 35 

  DeGroot and Woods 2006 Canada VHF/GPS 24 Report 1 

  Sargeant and Oehler 2007 USA VHF/GPS 175 Peer-reviewed 36 

  Hebblewhite and Merrill 2007 Canada VHF/GPS 131 Peer-reviewed 93 

  Anderson et al. 2008 USA GPS 7 Peer-reviewed NA 

  Gower 2009 USA VHF 115 Thesis/dissertation 95 

  Woodside 2010 USA GPS 10 Thesis/dissertation 0 

  Laporte et al. 2010 Canada GPS 22 Peer-reviewed NA 

  Smallidge et al. 2010 USA VHF 110 Peer-reviewed NA 

  Brook 2010 Canada VHF/GPS 130 Peer-reviewed NA 

  Baasch et al. 2010 USA VHF 21 Peer-reviewed NA 

  Biggs et al. 2010 USA GPS 29 Peer-reviewed NA 

  Kolada 2011 USA VHF 10 Thesis/dissertation 0 

  Webb et al. 2011 USA VHF/GPS 184 Peer-reviewed 39 

  Kindall et al. 2011 USA VHF 156 Peer-reviewed 62 

  Ciuti et al. 2012 Canada GPS 122 Peer-reviewed 25 

  Starr 2013 USA GPS 10 Thesis/dissertation 1 

  Beck et al. 2013 USA VHF 46 Peer-reviewed 7 

  Monello et al. 2014 USA VHF 136 Peer-reviewed 29 

  Pruvot et al. 2014 Canada GPS 168 Peer-reviewed NA 

  Buchanan et al. 2014 USA VHF/GPS 76 Peer-reviewed NA 

  Roberts et al. 2015 USA GPS 25 Thesis/dissertation 3 

  Smith 2015 USA GPS 108 Thesis/dissertation NA 

      

Mule deer (Odocoileus hemionus)      

  Springer and Wenger 1981 USA VHF 23 Report 6 

  Eberhardt and Caldwell 1983 USA VHF 17 Peer-reviewed NA 

  Relyea et al. 1994 USA VHF 10 Peer-reviewed NA 

  Gray 1995 USA VHF 77 Thesis/dissertation 24 

  D-Eon and Serrouya 2005 Canada GPS 20 Peer-reviewed NA 

  Haskell 2007 USA VHF 303 Thesis/dissertation 135 

  Bender 2011 USA VHF 46 Peer-reviewed 22 

  Kolada 2011 USA VHF 10 Thesis/dissertation 1 

  Silbernagel et al. 2011 Canada GPS 107 Peer-reviewed NA 

  McKee 2012 USA GPS 81 Thesis/dissertation 17 

  Schuler et al. 2014 USA GPS 40 Peer-reviewed 2 

  Northrup et al. 2014 USA GPS 134 Peer-reviewed NA 

  Lendrum et al. 2014 USA GPS 100 Peer-reviewed NA 
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  Freeman 2014 USA VHF 189 Thesis/dissertation NA 

  Marescot et al. 2015 USA GPS 60 Peer-reviewed 24 

  Coe et al. 2015 USA GPS 492 Peer-reviewed 162 

  Mulligan 2015 USA VHF/GPS 621 Thesis/dissertation 223 

  Olson et al. 2015 USA GPS 31 Peer-reviewed NA 

  Perez-Solano et al. 2016 Mexico VHF 9 Peer-reviewed 1 

      

Pronghorn (Antilocapra americana)      

  Kolar 2009 USA VHF/GPS 218 Thesis/dissertation 27 

  Beckmann et al. 2012 USA GPS 125 Peer-reviewed NA 

  Jacques et al. 2014 USA VHF 61 Peer-reviewed NA 

  Collins 2016 USA GPS 39 Peer-reviewed 2 

  Taylor et al. 2016 USA GPS 52 Peer-reviewed 21 

a NA means that mortalities were not reported  
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Table 2.5. All studies meeting the review criteria in the systematic search of wild and feral equid 

studies utilizing telemetry collars. 

Reference Continent Publication Type Included in Analyses 

Feral horse (Equus ferus caballus)  

  Berman 1991 Australia Thesis/Dissertation Yes 

  Hampson et al. 2010a Australia Peer-reviewed Yes 

  Hampson et al. 2010b Australia Peer-reviewed Yes 

  Hampson et al. 2011 Australia Peer-reviewed Yes 

  Fortini 2015 Europe Thesis/Dissertation Yes 

  Jodowska et al. 2015 Europe Peer-reviewed Yes 

  Kohler et al. 2016 Europe Peer-reviewed Yes 

  Naslund 2016 Europe Thesis/Dissertation No 

  Popp and Scheibe 2014 Europe Peer-reviewed Yes 

  Radoi et al. 2015 Europe Peer-reviewed Yes 

  van Hoesel and van der Werff 2011 Europe Thesis/Dissertation Yes 

  Asa 1999 North America Peer-reviewed No 

  Collins et al. 2014 North America Peer-reviewed Yes 

  Eagle et al. 1992 North America Peer-reviewed No 

  Eagle et al. 1993 North America Peer-reviewed No 

  Ehsan et al. 2012 North America Peer-reviewed Yes 

  Ganskopp and Vavra 1986 North America Peer-reviewed Yes 

  Girard et al. 2013 North America Peer-reviewed Yes 

  Goodloe et al. 2000 North America Peer-reviewed Yes 

  Leverkus 2015 North America Thesis/Dissertation Yes 

  National Research Council 1991 North America Report Yes 

  Siniff et al. 1986 North America Peer-reviewed Yes 

  Zervanos and Keiper 1979 North America Report Yes 

 

Przewalski's horse (Equus ferus przewalskii) 

 

  Kaczensky and Huber 2010 Asia Peer-reviewed Yes 

  Kaczensky et al. 2008 Asia Peer-reviewed Yes 

  Kaczensky et al. 2010b Asia Peer-reviewed Yes 

  Lugauer 2010 Asia Thesis/Dissertation Yes 

    

Asiatic wild ass (Equus hemionus)  

  Bayarbaatar 2016 Asia Thesis/Dissertation No 

  Giotto et al. 2015 Asia Peer-reviewed Yes 

  Ito et al. 2013 Asia Peer-reviewed No 

  Kaczensky et al. 2008 Asia Peer-reviewed Yes 

  Kaczensky et al. 2010a Asia Peer-reviewed Yes 

  Kaczensky et al. 2010b Asia Peer-reviewed Yes 

  Kaczensky et al. 2011a Asia Peer-reviewed Yes 

  Kaczensky et al. 2011b Asia Peer-reviewed Yes 

  Lugauer 2010 Asia Thesis/Dissertation No 

  Nandintsetseg et al. 2016 Asia Peer-reviewed No 

  Shah and Qureshi 2007 Asia Peer-reviewed Yes 

  Sheehy et al. 2010 Asia Report No 

  Sheehy et al. 2012 Asia Report No 
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  World Bank 2006 Asia Report Yes 

 

Feral burro (Equus asinus) 

 

  Marshal et al. 2012 North America Peer-reviewed Yes 

  Seegmiller and Ohmart 1981 North America Peer-reviewed Yes 

 

Grevy's zebra (Equus grevyi) 

 

  Hostens 2009 Africa Thesis/Dissertation Yes 

  Letoiye 2014 Africa Peer-reviewed No 

  Levikov 2014 Africa Thesis/Dissertation Yes 

  Low et al. 2009 Africa Peer-reviewed No 

  Sundaresan et al. 2007 Africa Peer-reviewed Yes 

  Wheeler 2013 Africa Thesis/Dissertation Yes 

  Younan 2015 Africa Thesis/Dissertation Yes 

  Zero et al. 2013 Africa Peer-reviewed No 

 

Plains Zebra (Equus quagga) 

 

  Barnier et al. 2014 Africa Peer-reviewed Yes 

  Bartlam-Brooks et al. 2011 Africa Peer-reviewed Yes 

  Bartlam-Brooks et al. 2013a Africa Peer-reviewed No 

  Bartlam-Brooks et al. 2013b Africa Peer-reviewed No 

  Bracis and Mueller 2017 Africa Peer-reviewed No 

  Bradley 2012 Africa Thesis/Dissertation Yes 

  Brooks 2005 Africa Thesis/Dissertation Yes 

  Brooks and Harris 2008 Africa Peer-reviewed No 

  Brooks et al. 2008 Africa Peer-reviewed No 

  Cain et al. 2012 Africa Peer-reviewed No 

  Courbin et al. 2016 Africa Peer-reviewed Yes 

  Fischhoff et al. 2007 Africa Peer-reviewed Yes 

  Goodall 2014 Africa Thesis/Dissertation No 

  Hopcraft et al. 2014 Africa Peer-reviewed Yes 

  Kamath et al. 2014 Africa Peer-reviewed Yes 

  Macandza 2009 Africa Thesis/Dissertation Yes 

  Macandza et al. 2012a Africa Peer-reviewed No 

  Macandza et al. 2012b Africa Peer-reviewed No 

  Macandza et al. 2013 Africa Peer-reviewed No 

  Martin & Owen-Smith 2016 Africa Peer-reviewed Yes 

  Naidoo et al. 2014 Africa Peer-reviewed Yes 

  Owen-Smith 2013 Africa Peer-reviewed No 

  Owen-Smith and Goodall 2014 Africa Peer-reviewed No 

  Owen-Smith and Martin 2015 Africa Peer-reviewed No 

  Owen-Smith et al. 2012 Africa Peer-reviewed No 

  Owen-Smith et al. 2013 Africa Peer-reviewed No 

  Owen-Smith et al. 2015 Africa Peer-reviewed No 

  Traill et al. 2016 Africa Peer-reviewed No 

  Venter et al. 2014 Africa Peer-reviewed Yes 

  Zhang et al. 2004 Africa Peer-reviewed No 

  Zidon et al. 2017 Africa Peer-reviewed No 

  Zinn 2013 Africa Thesis/Dissertation No 
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Figure 2.1. Locations of all studies reporting data from telemetered wild and feral equids (1979–

2017). Also shown are the number of studies from each location, telemetry collar type (VHF in 

white, GPS in black), and the species of equids collared at each location. Some studies occurred 

at more than one location and/or collared more than one equid species. 
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Figure 2.2. Number of all telemetry-collared equids, mule deer, elk, and pronghorn per mortality 

cause from reviewed studies utilizing telemetry collars (1979–2017).  
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CHAPTER 3. Variation in sage-grouse habitat quality metrics across a gradient of feral 

horse use 

 

Citation: Hennig, J.D., J.L. Beck, C.J. Duchardt, J.D. Scasta. In revision. Variation in sage-

grouse habitat quality metrics across a gradient of feral horse use. Journal of Arid 

Environments. 

 

ABSTRACT 

Feral horse (Equus ferus caballus) grazing can alter arid shrubland habitat in the western United 

States to the detriment of sympatric wildlife species, including the greater sage-grouse 

(Centrocercus urophasianus). To date, studies of horse-influenced habitat alteration have only 

occurred in a few locations and have infrequently represented gradients of horse use. We 

investigated whether greater sage-grouse habitat quality metrics were negatively associated with 

feral horse use in southcentral Wyoming, USA. We also tested whether utilization distributions 

generated from feral horses tracked with global position system transmitters were correlated with 

dung pile density, our index of horse use. Dung pile density did not vary among utilization 

distribution levels, indicating utilization distributions were a poor predictor of cumulative horse 

use. Bare ground increased with dung pile density (β = 0.06, 85% CI = 0.04–0.18), and grass 

height exhibited a threshold response and began to decline after 638 piles/ha. Other habitat 

metrics including percent shrub cover, native perennial grass cover, and visual obstruction were 

better explained by topographic and temporal variation. Our results suggest that herd size 

reduction may limit soil erosion potential and improve desired herbaceous structure, though 
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additional management actions regarding feral horse use are needed to sustain high-quality 

greater sage-grouse habitat.  

 

INTRODUCTION 

After the extinction of most Pleistocene megafauna, arid western North American shrublands 

evolved under warmer and drier climates with relatively lower grazing pressure compared to 

grasslands and savannahs (i.e., the American Great Plains; Mack and Thompson, 1982). 

American bison (Bison bison) were still widely distributed across western North America after 

the Pleistocene but were frequently absent within large geographic areas for extended time 

periods likely due to spatiotemporal variability in resources and hunting pressure from Native 

Americans (Bailey, 2016). Consequently, the graminoid species in the understory of arid 

shrublands are more sensitive to repeated herbivory by large introduced grazers, feral horses 

(Equus ferus caballus) and cattle (Bos taurus; Mack and Thompson, 1982). Mismanagement of 

both feral horse and cattle grazing can negatively affect arid shrubland ecosystems (e.g., 

Kauffman et al. 1983, Batchelor et al. 2015, Davies and Boyd 2019), necessitating informed and 

careful decision-making when managing either species. While livestock on public rangelands in 

the United States are managed under a federal permitting system to optimize the timing, 

intensity, and duration of use to maintain ecosystem functions, horse grazing management is less 

structured. In part, it is the Wild Free-Roaming Horses and Burros Act (Public Law 92-195) that 

prevents the application of an analogously managed grazing structure for feral horses, leading to 

largely unrestricted horse grazing. This translates into a greater potential for feral horses to 

negatively influence arid shrublands, a current concern considering recent escalation in their 

abundance (BLM 2020). Limited funds (Garrott and Oli, 2013) and legislative impediments 
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(Scasta et al., 2018) have in part led to the dramatic increase in population sizes of feral horses 

on Bureau of Land Management land, with recent estimates of 79,568 individuals (BLM 2020). 

This is >300% of the maximum appropriate management level, a population limit set to maintain 

a thriving natural ecological balance (Public Law 95-514). 

Feral horses alter shrubland structure and composition through consumption, trampling, 

and as vectors of invasive species spread (Beever and Aldridge, 2011; King et al., 2019). Horse-

grazed sites, compared to areas where horses have been removed or excluded, exhibit 

undesirable rangeland characteristics including lower vegetation biomass and greater soil 

penetration resistance (Beever et al., 2008; Davies et al., 2014). Mesic areas receive 

proportionally greater use from feral horses (Crane et al., 1997) and grazing effects in riparian or 

riparian-adjacent areas have been well-studied (e.g., Beever and Brussard 2000, Boyd et al. 

2017). How more xeric upland sites respond to horse use is comparatively understudied; yet, 

answering this question is critical considering the potential indirect effects on sympatric wildlife 

(Beever and Aldridge, 2011; Davies et al., 2014). 

The greater sage-grouse (Centrocercus urophasianus; henceforth ‘sage-grouse’) is a 

species that are particularly vulnerable to shrubland habitat alteration (Beck et al. 2012). Habitat 

loss and alteration and concomitant declining populations have led to greater sage-grouse being 

petitioned eight times for protection under the Endangered Species Act of 1973 (Public Law 93-

205, USFWS 2010, 2015). Consequently, sage-grouse are the focus of several broad-scale 

management efforts to conserve its habitat quality (e.g. Chambers et al., 2017). Approximately 

12% of current sage-grouse range overlaps with areas managed for feral equids, and this overlap 

can result in decreased nesting and escape cover, and/or reduced forage availability for sage-
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grouse (Beever and Aldridge, 2011). Consequently, feral equid grazing is considered a threat to 

several sage-grouse populations (USFWS 2013). 

Research on horse-induced habitat alteration has mainly focused on differences between 

grazed and un-grazed sites (e.g., Baur et al., 2017; Beever et al., 2008; Fahnestock and Detling, 

1999, Freedman et al. 2011; Lopez et al. 2017). These experiments have proved invaluable for 

revealing the negative effects of horse occupation on rangelands. Even so, grazing is not a binary 

disturbance and is more realistically quantified as a continuous variable such that heavily used 

areas may exhibit a greater degree of alteration than areas with lighter use, and this relationship 

may be non-linear (Davies and Boyd, 2020). Currently, removal gathers (or musters) are the 

primary tool for managing horse populations in the United States; but these temporary reductions 

in herd size do not restrict when or where horses may graze. Without restricting horse access to 

some areas (i.e., exclosures), there may be little variation in habitat quality metrics due to 

relatively even grazing pressure across the landscape, particularly if horses exceed the 

appropriate management level.  

We designed our study to evaluate variation in sage-grouse habitat quality metrics across 

a gradient of feral horse use within the Red Desert of southcentral Wyoming, USA. We 

identified 8 metrics known to directly or indirectly influence habitat quality for sage-grouse 

(Table 1) and examined the response of these metrics to an index of feral horse use. We also 

assessed the potential for utilization distributions to be used as an adequate index of total horse 

population use. We expected percent shrub cover, shrub height, perennial grass cover, grass 

height, and visual obstruction to decrease, but shrub fragmentation, bare ground, and cheatgrass 

(Bromus tectorum L.) cover to increase with greater horse use.  
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METHODS 

Study Area 

We conducted our study within the Adobe Town Herd Management Area located in southern 

Wyoming, USA (Fig. 1). The management area covers 3,413 km2 and is classified as cold-arid-

steppe (Kottek et al., 2006) with elevation ranging from 1,883–2,506 m (USGS 2016a) and  

annual mean 30-year normal precipitation and temperatures of 27.7 cm and 6.0°C, respectively 

(PRISM Climate Group 2004). Dominant shrub species included Wyoming big sagebrush 

(Artemisia tridentata Nutt. Wyomingensis Beetle & Young), greasewood (Sarcobatus 

vermiculatus (Hook.) Torr.), yellow rabbitbrush (Chrysothamnus viscidiflorus (Hook.) Nutt.), 

rubber rabbitbrush (Ericameria nauseosa (Pall. ex Pursch) G.L. Nesom & Baird), and assorted 

saltbush species (Atriplex spp.). Perennial grass species included cool-season (C3 photosynthetic 

pathway) bunchgrasses such as squirreltail (Elymus elymoides (Raf.) Swezey), prairie Junegrass 

(Koeleria macrantha (Ledeb.) Schult.), and Sandberg’s bluegrass (Poa secunda J. Presl), along 

with warm-season (C4 photosynthetic pathway) grasses such as inland saltgrass (Distichlis 

spicata (L.) Greene), and sandhill muhly (Muhlenbergia pungens Thurb.). Cheatgrass was the 

main exotic annual grass present. Estimated herd size was within appropriate management level 

(610–800 horses) in 2018 but was 24% above appropriate management level in 2019, the years 

of our study (BLM 2020). Our study area included six livestock allotments permitted for summer 

grazing by cattle (Bos taurus). Allotted animal unit months between March and November 

totaled 6,596. The study area provided crucial habitat for iconic wildlife species including sage-

grouse, elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra 

americana). 
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Horse use and field data collection 

We used location data from horses equipped with global positioning system (GPS) transmitters 

to generate vegetation and soil sampling locations within the study area. As part of a concurrent 

research project, we attached Lotek Wireless IridiumTrackM 3D GPS (Lotek Wireless, Inc., 

Newmarket, Ontario, Canada) or Vectronic Vertex Lite GPS (Vectronic Aerospace GmbH, 

Berlin, Germany) collars to adult (>4 years of age) female horses in 2017. All collars included 2-

way Iridium-based satellite communication and recorded location fixes every 2 hours. All animal 

handling and use followed protocols approved by the Institutional Animal Care and Use 

Committee of the University of Wyoming (protocol #20160826DS00249) and were applied 

within the criteria set forth in the DOI-BLM-WY_DO30_0104-EA Environmental Assessment. 

Using horse location data beginning on 1 May each year, we constructed utilization 

distributions for horse groups (bands) containing a GPS-collared individual using dynamic 

Brownian Bridge movement models (Kranstauber et al., 2012). Horses form static social groups 

and therefore the locations of one individual reflect locations of the entire group. During the 

2018 data collection period, 18 unique horse bands featured a collared individual compared to 15 

bands in 2019. We divided each utilization distribution into strata based on levels of predicted 

use: high (top 10% of use), moderately high (>10-25%), moderately low (>25-50%), and low 

(>50%). For each horse by stratum combination, we randomly selected a sample location used by 

the horse within the previous 2 weeks. We constrained sampling availability to sagebrush habitat 

defined by LANDFIRE Existing Vegetation Type 1.4 (USGS 2016b) and aimed to lessen 

topographic influence by constraining sample sites to fall within one standard deviation of the 

mean slope, elevation, and compound topographic index of the study area. After completing one 

round of field data collection, we updated utilization distributions with newly acquired location 
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data and repeated the sample selection process. We ensured that samples were evenly distributed 

across each horse band by utilization distribution combination by sampling one location per 

utilization distribution level per band per year.  

At each sample location we measured variables known to influence habitat quality for 

sage-grouse (Table 1). To quantify vegetation structure and composition at each sampling 

location, we established four perpendicular 50-m transects oriented along each cardinal direction. 

We measured percent shrub canopy cover and gap length between shrubs using the line-intercept 

method (Canfield 1941). We assessed sagebrush height by measuring the maximum height of the 

plant at the center location and along each transect at 5, 15, 25, 35, and 45 m intervals (n = 21). 

We recorded visual obstruction readings using a Robel pole (Robel et al., 1970) and quantified 

vegetation composition using 0.5 m2 (100 cm x 50 cm) Daubenmire quadrats (Daubenmire, 

1959) at the same intervals. Within each Daubenmire quadrat we estimated canopy cover of the 

following 13 plant functional groups and ground cover classes: cheatgrass, native annual grasses, 

native perennial C3 grasses, and native perennial C4 grasses, sedges, forbs, cacti, shrubs, litter, 

bare ground, lichen, biological soil crust, and rocks; via the following cover classes: 0, <1%, 1–

5%, 6–25%, 51–75%, 76–95%, >96% (Scasta et al., 2016). To increase estimation accuracy, we 

taped sections of the quadrat to signify polygons representing 5% and 25% of the quadrat area. 

We recorded the droop height of the tallest grass specimen present within the 5% polygon to 

assess grass height (Connelly et al., 2003).  

Ungulate fecal counts can be a useful metric for intensity of use and is relatively easy for 

managers and researchers to employ (Forsyth et al., 2007). To determine if utilization 

distribution levels were a similarly effective predictor of horse use, we counted individual fecal 

piles for horses within 2 m along both sides of each of the four, 50-m perpendicular transects 
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(800 m2; Beever and Brussard 2004). Male horses defecate in latrines, which make counting 

these piles difficult; thus, we did not include such piles in our counts (Street 2020). To account 

for use by cattle and wild ungulates (elk, mule deer, and pronghorn), we counted fecal piles for 

these species as well. Species-specific identification of native ungulate feces was difficult to 

universally apply, therefore counts for these native ungulates were pooled together and analyzed 

collectively.   

 

Spatial data 

We identified topographic, soil, and precipitation variables that could explain variation among 

shrubland habitat metrics. We used ArcGIS Geomorphometry & Gradient Metrics toolbox 

(Evans et al. 2014) within ArcMap 10.6.1 (ESRI 2018) to create 30-m rasters of aspect, 

compound topographic index, and slope from a digital elevation model (DEM; USGS 2016a). 

We used POLARIS Soil Properties (Chaney et al., 2019) to create 30-m rasters of mean percent 

sand, silt, and clay at both 0 to 5 cm, and 5 to 15 cm depths. We used daily 4-km precipitation 

data (PRISM Climate Group 2020) to obtain estimated precipitation at each sample location for 

the 14 days prior to sample date. 

 

Statistical analyses 

We conducted a one-way analysis of variance test with Tukey’s honestly significant difference 

adjustments (Tukey 1953) to determine whether mean fecal pile density was significantly 

different across the 4 utilization levels at the α = 0.05 level. We then compared which horse use 

metric, utilization level or fecal pile density, better fit each habitat variable using linear models. 

We ranked models using Akaike’s Information Criterion corrected for small sample sizes (AICc; 
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Burnham and Anderson 2002) and used the top ranked variable as our metric of horse use in the 

following analyses.  

We performed a multi-stage model selection process using the “spdep” (Bivand et al., 

2013) and “spatialreg” (Bivand and Piras, 2015) packages within program R (R Core Team 

2019). We first assessed which abiotic, biotic, and temporal variables were informative 

predictors of each habitat metric. To do this, we generated linear models for all combinations 

within each of the following categories: topographic, temporal, soil texture, ungulate use, and 

precipitation variables (five model sets). We also examined whether a linear or quadratic term 

for horse use best fit each response variable. We used AICc to rank models within each set and 

calculated model-averaged 85% confidence intervals for variables found in models <2 AICc of 

the top model to assess informative predictors (Arnold, 2010). For models not meeting 

assumptions of normality or homoscedasticity, we applied an arcsine transformation to response 

proportion variables (native perennial grass and cheatgrass cover) and a square root 

transformation to non-proportion variables (visual obstruction). Informative predictors from each 

model set were brought forward into a final model set. All soil texture variables were highly 

correlated (r >0.95), therefore only one variable was included per model and only the top ranked 

variable, if it was informative, was brought forward.  

We then generated linear models using all variable combinations within the final model 

set for each habitat variable. We calculated a Moran’s I statistic (Moran, 1948) to assess if model 

residuals were significantly spatially dependent at the α = 0.05 level. If spatial dependency was 

present, we first added location coordinates as model covariates; however, if that did not 

adequately account for spatial autocorrelation we assessed Lagrange Multiplier test diagnostics 

(Anselin, 1998) to determine whether a spatial lag or spatial error model was most appropriate to 
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employ. If applicable, we re-ran models using the appropriate spatial regression model and 

confirmed final models were not spatially autocorrelated (Moran’s I) and conformed to 

homoscedasticity assumptions (Breusch-Pagan test; Breusch and Pagan 1979). We ranked all 

models using AICc and present model-averaged parameter estimates, standard errors, and 85% 

confidence intervals for all variables found within models <2 AICc of the top ranked model 

(Arnold, 2010).  

 

RESULTS 

We measured habitat variables at 131 locations between June and August in 2018 (n = 72) and 

2019 (n = 59). The number of horse fecal piles per sample location ranged from 150 to 1462 per 

ha ( = 504.3, SD = 228.2). The number of cow pats ranged from 0 to 888 per ha ( = 100.6, 

SD = 144.6) and were uncorrelated with horse fecal piles (r = -0.01, P = 0.89). Native ungulate 

fecal piles ranged from 63 to 2100 per ha ( = 547.5, SD = 363.5) and were negatively 

correlated with horse fecal piles (r = -0.09, P = 0.09). Mean number of horse fecal piles 

decreased from the highest to lowest utilization levels, but analysis of variance results revealed 

no difference among group means (F3,127 = 1.86, P = 0.14; Fig. 2). Between the metrics of horse 

use, the number of fecal piles per location was a better fit for all response variables than the 

categorical variable of utilization levels; therefore, we used fecal piles as the metric of horse use 

for subsequent analyses.   

 Horse use appeared in highly ranked models explaining variation in percent bare ground 

and grass height (Table 2). Bare ground increased with horse use (β = 0.11, SE = 0.04; Fig. 3A) 

and as the summer progressed (β = 0.16, SE = 0.04), but declined with steeper slopes (β = -1.40, 

SE = 1.09) and higher elevations (β = -0.05, SE = 0.02; Table 3). A quadratic term of horse use 

x x

x
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explained grass height better than the linear term (Table 2). Grass height declined after 

approximately 638 horse fecal piles/ha (Fig. 3B) and was higher in 2019 than 2018 (β = 2.07, SE 

= 0.46; Table 3). Horse use was not informative for explaining variation in any other habitat 

metric (Table 3). Perennial grass cover was higher in 2019 than 2018 (β = -0.03, SE = 0.01) and 

increased with elevation (β = 0.02, SE = 0.01). Cheatgrass cover declined with both elevation (β 

= -0.03, SE = 0.01) and percent silt at the 5–15 cm depth (β = -0.23, SE = 0.04). Shrub height 

increased with percent sand at the 5–15 cm depth (β = 0.12, SE = 0.05), but declined with higher 

elevations (β = -0.04, SE = 0.02), and decreased with native ungulate use (β = -0.10, SE = 0.03). 

Maximum shrub intercept length was also negatively associated with native ungulate use (β = -

0.66, SE = 0.19; Table 3). No measured variables were informative predictors of visual 

obstruction or shrub cover (Table 3). 

 

DISCUSSION 

Our results add to the existing body of literature that demonstrate links between feral horse 

grazing and reduced environmental quality (Davies and Boyd, 2019; Eldridge et al., 2020). 

Specifically, we show that greater intensity of feral horse use may negatively influence soil 

health and undesirably alter herbaceous structure in xeric shrubland systems. Contrary to our 

predictions though, we found no support for horse use in explaining variation of other sage-

grouse habitat quality metrics. Our study was strictly correlative and therefore we cannot infer 

causation; yet our work demonstrates that reducing herd sizes may improve certain aspects of 

sage-grouse habitat quality, but additional management actions regarding horse use are needed to 

maintain overall high-quality habitat. 
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The link between increased horse use and percent bare ground is troubling because a high 

proportion of bare ground is an indicator of poor soil quality and subsequently rangeland health 

(Derner et al., 2018; Pyke et al., 2002). Without protection from vegetation and litter, exposed 

areas of bare ground are prone to increased soil erosion and exotic plant invasion (Davies and 

Boyd, 2019). Increased runoff and sediment loss from erosion reduces water and nutrient 

availability for plant growth and propagation (Rostagno et al., 1991). This often leads to 

decreased vegetation production and may also result in unwanted state changes (Chartier and 

Rostagno, 2006; Pimentel et al., 1995). Though we did not find a link between horse use and 

cheatgrass cover, bare ground is highly susceptible to cheatgrass invasion (Jessop and Anderson, 

2007). Cheatgrass establishment is a major threat to western US rangelands because it leads to 

decreased plant diversity, altered herbaceous structure, and increased fire frequency, all of which 

combine to reduce sage-grouse habitat quality (Connelly et al., 2004; Knapp, 1996, Lockyer et 

al. 2015). 

Separating the individual ecological effects of feral horses and cattle is notoriously 

difficult (Davies and Boyd, 2019). We attempted to account for additional use at each site from 

cattle and also native ungulates by using fecal counts as a metric of use and allowing these 

metrics to compete with horse use to explain variation in response variables. The fact that horse 

and cattle fecal counts were uncorrelated underscores the difficulty in disentangling the effects of 

both species as our results indicate inconsistent overlap in use by both species. The relationship 

between horse and native ungulate fecal counts may have implications for native ungulate habitat 

quality. We know that co-occurring animals alter their behavior at water sources in arid systems 

(Gooch et al., 2017; Osterman-Kelm et al., 2008; Perry et al., 2015), but it is unknown whether 

this extends to other areas. The weak, but negative, correlation between horse and ungulate fecal 
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piles is an interesting result that elicits future investigation of potential niche partitioning among 

species or avoidance of higher horse use areas by native ungulates.  

Differences in vegetation height between areas with and without feral horse grazing have 

been documented in several systems (Beever and Brussard, 2000; Boyd et al., 2017; Eldridge et 

al., 2019). Here we present a threshold response of grass height to a gradient horse use. We 

detected this threshold response because the quadratic term for horse use was a better fit than the 

linear term. We acknowledge that grass height only minimally declined at greater use levels; 

nonetheless, this result has important implications to sage-grouse habitat quality as taller grass 

provides better nest concealment and cover for chicks (Beck and Mitchell, 2000; Doherty et al., 

2014; Hagen et al., 2007; Holloran et al., 2005). It is critical to note that we measured grass 

height during June and July following the peak nesting period for sage-grouse (Schroeder et al., 

2020); thus, our results are most applicable to understanding the potential for horses to 

negatively influence brood-rearing habitat. Furthermore, advanced phenological expression of 

grasses during our sampling period ensured shorter grasses at sampling locations were not 

merely a factor of measuring them before they reached their potential height, which has led to 

spurious results in past models of sage-grouse nest success (Gibson et al., 2016; Smith et al., 

2018). 

We attribute the responses of bare ground and grass height to anatomical differences 

between horses and co-occurring ungulates. Unlike native ungulates and cattle, horses possess 

upper incisors (Janis, 1976). This adaptation allows them to clip vegetation closer to the ground 

than sympatric species, which can affect the ability for vegetation to regrow following herbivory 

(Menard et al., 2002; Symanski, 1994). Horses are also larger-bodied than native herbivores and 
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frequent use by these relatively large animals (>400 kg: Berger 1986) can increase soil 

compaction (Beever and Herrick, 2006), further hindering plant growth (Kozlowski, 1999). 

Fecal piles have frequently been used as an index of relative ungulate use (Forsyth et al., 

2007; Goda et al., 2008; Rhodes et al., 2017, Street 2020). Because we concurrently had GPS-

collared horses with 2-way Iridium-based technology, we were able to assess the efficacy of 

near-real time horse data in assessing cumulative population use. Fecal piles did not significantly 

vary among the four utilization distribution levels and while this may seem surprising given the 

call for more fine-scale movement data to improve our understanding of habitat use (Cagnacci et 

al., 2010), there are several reasons why individual utilization distributions were uninformative 

in our experiment. First, 4 to 12 weeks of GPS data (336 to 1008 locations assuming a 2-hour fix 

rate) may not be a sufficient sample size to properly estimate and differentiate between use 

levels. Second, we observed a wide range in the number of individuals per horse band (2–15, 

unpublished data) and many other bands without a collared individual. Fecal pile counts capture 

the increased use of larger bands of horses and horse bands without collared individuals, whereas 

utilization distribution levels only reflect the collared individuals. Subsequently, because horses 

exhibited non-exclusive home ranges, utilization distribution levels of one band do not account 

for additional use of another. Without knowing the movements and group sizes for each band in 

the study area, we could not appropriately correct utilization distribution levels; thus, the number 

of fecal piles per sample location was a better metric of total horse use.  

We did not find significant relationships between horse use and shrub cover, shrub 

fragmentation, shrub height, visual obstruction, and native perennial or cheatgrass cover. This 

does not definitely indicate that horse use does not affect these characteristics. We attempted to 

limit topographic variation in our sampling design, yet topographic characteristics were still 
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informative predictors of some metrics, suggesting that more restrictive topographic variation in 

sampling was warranted. Perhaps more importantly, we did not sample sites without horse use. 

We know that the variables we evaluated often differ between grazed and un-grazed sites (e.g., 

Beever and Brussard, 2004; de Villalobos and Zalba, 2010), consequently reference sites without 

active grazing may be needed to detect differences in these metrics but such sites may also be 

inherently unpreferred for certain features, further confounding measurements. The lack of 

grazing exclosures may be a reason why we did not detect a correlation between grass cover and 

feral horse use. The digestive physiology of horses necessitates a high-intake strategy (Janis 

1976), particularly of graminoids; thus, we would expect increased horse use in areas with higher 

grass cover. Therefore, our methods may not have been able to differentiate between sites with 

low grass cover due to herbivory and sites with inherently low grass cover due to abiotic factors.  

 

CONCLUSIONS 

Livestock management on private and public lands involves grazing systems that routinely 

incorporate recovery and/or rest periods for pastures and allotments (NRCS 2016). This respite 

from grazing disturbance is fundamental to grazing management because it allows for plant 

recovery and long-term sustainability of rangeland health (Danvir, 2018; Jacobo et al., 2006). 

Our study indicates that decreased horse use may reduce the potential for soil erosion and 

positively influence cover for sage-grouse, but management of population size alone is likely 

ineffective for maintaining other aspects of habitat quality because repeated use of the same 

areas, regardless of population size, has negative implications on ecosystem services. The 

Federal Land Policy and Management Act of 1976, mandates federal agencies to manage public 

lands to support multiple uses, including feral horse, livestock, and wildlife habitat (Public Law 
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94-579). Manipulation of when and where horses graze, in addition to population management, 

is recommended to sustain wildlife habitat quality within herd management areas into the future.   
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TABLES & FIGURES 

Table 3.1. The set of sagebrush habitat quality metrics measured across a gradient of feral horse 

(Equus ferus caballus) use, along with their importance to greater sage-grouse (Centrocercus 

urophasianus) and predicted response of each metric from increased horse use, Adobe Town 

Herd Management Area, Wyoming, USA, June through August 2018–2019. 

Habitat quality metric Importance  
Predicted 

response 
Citation 

Bare ground a Indirect effects on habitat 

quality 

Increase Davies and Boyd 2019 

Shrub cover a Food resource; yearlong 

habitat 

Decrease Crawford et al. 2004 

Shrub height b Nesting habitat Decrease Connelly et al. 2000 

Shrub fragmentation c Escape cover, nest 

concealment 

Increase Schroeder and Baydack 

2001 

Native perennial grass 

cover a 

Escape cover, nest 

concealment 

Decrease Aldridge and Boyce 

2007 

Cheatgrass cover a Indirect effects on habitat 

quality  

Increase Miller et al. 2007 

Grass height d Nest and brood 

concealment 

Decrease Doherty et al. 2014 

Visual obstruction e Nest and brood 

concealment 

Decrease Doherty et al. 2010 

a Mean percent canopy cover 
b Mean sagebrush height 
c Maximum length of shrub intercepts (Beever et al. 2008) 
d Mean droop height 
e Mean Robel pole reading  
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Table 3.2. Candidate models for explaining variation in sagebrush habitat metrics across a 

gradient of feral horse (Equus ferus caballus) use within the Adobe Town Herd Management 

Area, Wyoming, USA, from June through August 2018–2019. Models <2 AICc of top model are 

shown, in addition to the null model. 

Model K AICc ΔAICc wi 

Bare ground cover     

Horse + Elevation + Day + Slope  6 978.3 0.00 0.12 

Horse + Elevation + Day + Slope + Ungulate 7 978.3 0.03 0.12 

Horse + Elevation + Day + Slope + Silt a 7 978.8 0.54 0.09 

Horse + Elevation + Day + Slope + Ungulate + Silt a 8 979.3 1.03 0.07 

Horse + Elevation + Day + Silt a 6 979.3 1.04 0.07 

Horse + Elevation + Day + Slope + Ungulate + Cattle 8 980.1 1.77 0.05 

Horse + Elevation + Day 5 980.1 1.84 0.05 

Null 3 1011.8 30.48 0.00 

     

Native perennial grass cover     

Elevation + Day + Year + Ungulate 7 -318.4 0.00 0.33 

Elevation + Day + Year + Ungulate + Cattle 8 -317.3 1.11 0.19 

Null 3 -292.1 26.34 0.00 

     

Cheatgrass cover     

Silt a + CTI + Elevation + Latitude + Longitude 7 -393.5 0.00 0.50 

Silt a + CTI + Elevation + Aspect + Latitude + Longitude 8 -393.4 0.16 0.46 

Null 5 -336.3 57.22 0.00 

     

Grass height     

Aspect + Year + Latitude + Longitude 6 633.1 0.00 0.25 

Year + Horse + Horse2 + Latitude + Longitude 7 633.3 0.23 0.23 

Year + Latitude + Longitude 5 633.5 0.37 0.21 

Aspect + Year + Horse + Horse2 + Latitude + Longitude 8 634.1 0.98 0.16 

Null 4 646.3 13.17 0.00 

     

Visual obstruction     

Ungulate 4 226.2 0.00 0.94 
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Null 3 231.8 5.53 0.06 

     

Shrub cover     

Ungulate 3 -373.9 0.00 0.23 

Ungulate + Aspect 4 -373.3 0.57 0.17 

Ungulate + Cattle 4 -372.1 1.74 0.10 

Ungulate + Horse 4 -372.0 1.87 0.09 

Null 2 -371.6 2.26 0.07 

     

Shrub height     

Elevation + Sand a + Ungulate 6 948.1 0.00 0.57 

Null 3 969.8 21.73 0.00 

     

Maximum shrub intercept length     

Ungulate 3 1459.1 0.00 0.32 

Ungulate + Slope 4 1459.3 0.17 0.29 

Ungulate + Year 4 1460.0 0.91 0.20 

Ungulate + Slope + Year 5 1460.2 1.07 0.19 

Null 2 1469.9 10.75 0.00 

a 5–15 cm depth  
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Table 3.3. Model-averaged parameter estimates, standard errors, and 85% confidence intervals 

for informative variables explaining variation in sagebrush habitat metrics across a gradient of 

feral horse (Equus ferus caballus) use within the Adobe Town Herd Management Area, 

Wyoming, USA, from June through August 2018–2019.  

Parameter Estimate SE 85% CIs 

Bare ground 

Intercept 121.44 31.40 (76.39, 166.49) 

Slope -1.40 1.09 (-3.10, -4.47) 

Day 0.16 0.04 (0.10, 0.22) 

Horse 0.11 0.04 (0.04, 0.19) 

Elevation -0.05 0.02 (-0.07, -0.02) 

    

Native perennial grass cover 

Intercept -3.62 2.29 (-6.92, -0.33) 

Rho a 0.39 0.10 (0.24, 0.54) 

Year2019 -0.28 0.11 (-0.45, -0.12) 

    

Exotic annual grass cover 

Intercept 8.51 1.59 (5.38, 11.64) 

CTI -0.07 0.03 (-0.12, -0.01) 

    

Grass height 

Intercept -48.75 29.95 (9.35, 13.26) 

Year2019 1.85 0.48 (1.43, 2.77) 

Horse 0.03 0.05 (0.02, 0.14) 

Horse2 -0.00 0.00 (-0.00, -0.00) 

    

Visual obstruction 

Intercept 1.76 0.30 (1.33, 2.20) 

Rho a 0.30 0.12 (0.12, 0.47) 

    

Shrub cover 

Intercept 0.17 0.01 (0.15, 0.19) 
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Shrub height    

Intercept 117.79 35.82 (66.23, 169.35) 

Rho a 0.21 0.13 (0.03, 0.39) 

Sand c 0.12 0.05 (0.05, 0.19) 

Ungulate -0.10 0.03 (-0.15, -0.06) 

Elevation -0.04 0.02 (-0.07, -0.02) 

    

Maximum shrub intercept length 

Intercept 163.21 14.85 (141.88, 184.54) 

Ungulate -0.66 0.19 (-0.94, -0.39) 
a spatial autoregressive parameter 
b simultaneous autoregressive error coefficient  
c 5–15 cm depth  
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Figure 3.1. Sample locations and land surface ownership within the Adobe Town Herd 

Management Area in south-central Wyoming, USA, June through August 2018–2019.  
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Figure 3.2.  Boxplot of feral horse (Equus ferus caballus) fecal piles per utilization distribution 

level. Group means were not statistically different according to Tukey’s honestly significant 

difference adjustments (F3,127 = 1.86, P = 0.14).  
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Figure 3.3. Predicted values (85% CIs) of A) percent bare ground and B) mean grass height by 

number of feral horse (Equus ferus caballus) fecal piles per hectare, Adobe Town Herd 

Management Area, Wyoming, USA, June through August 2018–2019. Grass height began to 

decline at 638 fecal piles/ha.   
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CHAPTER 4. Digestive morphology mediates sedentism versus nomadism in sympatric 

rangeland ungulates 

 

Formatted for submission to Journal of Animal Ecology 

 

ABSTRACT 

1. Differences in spatiotemporal resource dynamics manifest in different population-level 

movement syndromes, including migration, sedentism, and nomadism. Much like how migratory 

and sedentary behaviors occur along a spectrum, we postulate that sedentary and nomadic 

movements do as well. For ungulates, plant phenology dynamics, concordant with the forage 

maturation hypothesis (FMH), routinely drive ungulate movements, yet nearly all tests of FMH 

predictions involve ruminants in relatively productive areas, thus this hypothesis may have 

limited applicability for cecal digestors, particularly in arid systems. 

2. We posited that differences in digestive morphology and feeding strategy mediate differences 

in resource selection and ultimately movement syndromes of sympatric ungulates. We predicted 

that cecal digestors should select for patches offering greater vegetation biomass rather than 

increased forage quality, while we predicted forage quality to be the strongest predictor of 

ruminant movements. In arid systems with limited forage production and water availability, 

digestive morphology differences suggest that cecal digestors should select for areas closer to 

water, while ruminants, especially concentrate selectors, should be less bound to water sources.  

3. We tested this hypothesis in sympatric populations of feral horses (Equus ferus caballus; cecal 

digestors, bulk roughage feeders) and pronghorn (Antilocapra americana; ruminant, concentrate 

selector) in an arid-cold-steppe North American rangeland. We used global positioning system 
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(GPS) transmitters to collect location data of both ungulates, and applied a combination of 

semivariograms, movement metrics, and step-selection functions to quantify spatiotemporal 

resource dynamics, examine differences in movement syndromes, and link movement with 

resource dynamics. 

4. Feral horses exhibited more sedentary movements largely driven by selection for predictable 

patches of high biomass patches and areas closer to water. Conversely, pronghorn displayed 

more nomadic movements, but contrary to our expectations they exhibited weak selection for 

patches with greater energy potential and did not select for areas closer to water. 

5. Our results offer further evidence that the forage maturation hypothesis does not universally 

predict movements of all ungulate species and that in arid systems, water restrictions mediated 

by digestive strategy play an outsized role in determining resource selection and movement 

syndromes.  

Key-words arid lands, Antilocapra americana, Equus ferus caballus, feral horse, herbivore, 

pronghorn, movement syndrome, nomadism, sedentism, ungulate 

 

INTRODUCTION 

Animals move to exploit variation in resources and maximize fitness. Differences in 

spatiotemporal resource dynamics manifest in different population-level movement syndromes, 

namely migration, sedentism, and nomadism (Mueller and Fagan 2008). Migratory syndromes 

arise in response to predictable variation between resource-rich areas that are spatially distinct 

(Dingle and Drake 2007). Migratory populations gain fitness advantages by performing long-

distance movements while tracking the gradual change in resources between two areas (Merkle 

et al. 2016, Aikens et al. 2017). Conversely, animals that obtain their resource requirements in a 
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relatively localized area exhibit sedentism (Mueller and Fagan 2008). Often populations are 

comprised of individuals exhibiting both syndromes with migratory and sedentary behaviors 

occurring along a spectrum (Cagnacci et al. 2011, Pratt et al. 2017). Nomadism has been 

proposed as a third movement syndrome and arises when resource variation is unpredictable 

across both space and time (Teitelbaum and Mueller 2019). Nomadism is understudied compared 

to other movement syndromes (Nandintsetseg et al. 2019), in part due to its multiple definitions 

and lack of clear distinction in multiple movement metrics from sedentism (Fahse et al. 1998, 

Roshier and Reid 2003, Fryxell et al. 2004, Abrahms et al. 2017). Both syndromes lack the 

repeatable directional movements between non-overlapping ranges characterized by migration; 

therefore, we posit that sedentary and nomadic populations inhabit a single ‘range’ and can also 

fall along a spectrum, akin to the migratory–sedentism spectrum. On the sedentary end, animals 

exhibit high stability in space-use throughout time with more revisits and longer time spent in the 

same location (Abrahms et al. 2017). Conversely, on the nomadic end, individuals show less site 

fidelity and move greater distances throughout the year (Abrahms et al. 2017). 

In ungulate populations, spatiotemporal dynamics in vegetation production are thought to 

be the main driver of movement syndrome differences (Mueller et al. 2011). The forage 

maturation hypothesis (FMH; Fryxell 1991) is instrumental in explaining the movements of 

ungulates, particularly in understanding why many ungulate populations are migratory (Avgar et 

al. 2013, Boone et al. 2006). Measured as crude protein to fiber ratio, vegetation is of the highest 

quality during early growth stages, but plants attain greatest biomass late in the growing season 

(Fryxell 1991). Higher biomass coincides with greater proportions of fiber and subsequently 

lower digestibility (Fryxell 1991). For individuals to optimize energy intake, ungulates should 

select forage patches at an intermediate growth stage, where the curves of forage quality and 
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quantity intersect (Fryxell 1991). In systems with available movement pathways along latitudinal 

or elevational gradients, ungulates can maximize exposure to optimal forage by tracking the 

progression of green-up between ranges (e.g., Aikens et al. 2017, Bartlam-Brooks et al. 2013). 

The FMH also informs understanding of resource selection and movement syndromes of 

ungulates across systems with varying plant phenology dynamics and constraints (e.g., Drescher 

et al. 2006, Hebblewhite et al. 2008, Mueller et al. 2008, Debeffe et al. 2017). Research has 

identified a strong conceptual link between ungulate movements and plant phenology, but nearly 

all tests of the FMH involve ruminants. The drivers of movement in cecal digestors have been 

comparatively understudied, and the applicability of the FMH in predicting patch selection of 

these ungulates has recently been called into question (Esmaeili et al. Accepted ). 

Irrespective of the digestive process, as fiber content increases, the rate of digestion and 

passage rates slow, ultimately limiting intake rate (Janis 1976, Jung and Allen 1995). However, 

the consequences of subsisting on a more fibrous diet manifest differently between ruminant and 

cecal digestors (Menard et al. 2002). Ruminant digestion is more efficient for digestion of 

cellulosic plant material, primarily due to the length of time material remains in the primary 

fermentation chamber (Janis 1976). Because the main fermentation chamber, the rumen in 

ruminants, is anterior to the stomach, ruminants extract more energy per unit of forage compared 

to cecal digestors. Consequently, as fiber content increases, the digestion process slows and the 

rumen is filled to capacity more often. As intake rate is directly tied to rumen fill, ruminants eat 

less and extract less energy from fiber-dense diets (Janis 1976). Conversely, intake rate of cecal 

digestors is not constrained by digestive chamber fill so these ungulates can maintain a more 

constant intake rate regardless of fiber content (Fleurance et al. 2010). Further complicating the 

influence of gut morphology on ungulate movement, cecal digestion is less efficient for water 
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retention, relegating cecal digestors more water dependent than ruminants (Cain et al. 2012). 

Concordantly, cecal digestors select for areas closer to water compared to ruminants (Esmaeili et 

al. Accepted). 

Digestion efficiency of cellulosic material among ungulates can be further differentiated 

by feeding strategy (Hofman 1989). Bulk roughage feeders subsist mainly on graminoids that 

have comparatively higher cellulose content than the leaves of browse (shrubs and trees) species 

preferred by concentrate selectors (Hofman 1989). Concentrate selectors are typically, but with 

notable exceptions, smaller in body size and thus have comparatively higher metabolic rates 

(Kleiber 1947) than larger bulk roughage feeders. It follows that small-bodied, concentrate 

selector ruminants should select forage patches that maximize energy potential while large-

bodied, bulk rough cecal digestors should maximize forage intake.  

Because patterns of resource selection should differ between sympatric ungulates with 

varying digestive morphologies, we predict that movement syndromes should differ as well. In 

non-migratory populations, we postulate that ungulates exhibit a movement syndrome along a 

gradient from sedentism to nomadism dependent on the spatiotemporal variation of the limiting 

resource respective to digestive morphology (Fig. 1). Ungulates that are most limited by forage 

quantity rather than quality should be relatively sedentary in systems with predictable and 

limited spatial variation in vegetation biomass but should become more nomadic given greater 

unpredictability in when and where the most productive forage patches occur. Dynamics of plant 

phenology should drive movement syndromes of intermediate feeding or concentrate-selecting 

ruminants, and they should be sedentary with consistent gradual periods of green-up (Aikens et 

al. 2020) and nomadic in systems with unpredictable patches of green-up, such as many arid 

systems (Noy-Meir 1973). Also in arid regions, dynamics water availability may be the ultimate 
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mediator of movement syndromes (Nandintsetseg et al. 2016, 2019). Water dynamics should be 

most influential for cecal digestors and bulk roughage feeders but should be less important in 

influencing movements of concentrate selecting ruminants.   

We tested the hypothesis that digestive morphology and feeding strategy mediate the 

expression of movement syndromes in sympatric ungulates comparing movement patterns of 

pronghorn (Antilocapra americana) and feral horses (E. ferus caballus). Pronghorn are 

concentrate-selectors that maximize crude protein and digestibility (Jakes 2015, Schwartz et al. 

1977), compared to cecal digesting horses that are primarily bulk roughage feeders (Scasta et al. 

2016). The contrast in digestive morphology, feeding strategy, and body size between these 

species offers an ideal opportunity to test our hypothesis. We predicted vegetation quantity 

would be less patchily-distributed and more predictable across years while timing of vegetation 

green-up would occur in relatively unpredictable patches between years. We also predicted that 

because pronghorn likely obtain a good proportion of metabolic water from vegetation they 

consume while horses do not, horses would show greater affinity to water. Consequently, we 

expected feral horses to display more sedentary movements, selecting for patches known to 

contain high vegetation biomass closer to water while we expected pronghorn to be more 

nomadic given selection for relatively unpredictable patches of vegetation green-up and less 

reliance on known water sources.  

 

MATERIALS AND METHODS 

Study area 

We conducted our study within the Red Desert of southern Wyoming, USA. This area is 

classified as cold-arid-steppe (Kottek et al. 2006) with annual mean 30-year normal precipitation 
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and temperatures of 27.7 cm and 6.0°C (PRISM Climate Group 2004) and mean elevation was 

2080 m (USGS 2016). This was a shrub-dominated system with common species including 

Wyoming big sagebrush (Artemisia tridentata wyomingensis), greasewood (Sarcobatus 

vermiculatus), yellow rabbitbrush (Chrysothamnus viscidiflorus), rubber rabbitbrush (Ericameria 

nauseosa), and assorted saltbush species (Atriplex spp.). Perennial grass species included 

squirreltail (Elymus elymoides), prairie Junegrass (Koeleria macrantha), inland saltgrass 

(Distichlis spicata) and sandhill muhly (Muhlenbergia pungens).  

 

Animal location data 

We deployed global positioning system (GPS) collars on adult female horses and pronghorn 

within the study area in 2017. All animal handling and use followed protocols approved by the 

University of Wyoming Institutional Animal Care and Use Committee (IACUC; protocol 

#20160826DS00249) for horses and pronghorn and Wyoming Game and Fish Department 

(Chapter 33-1144 Permit) for pronghorn. At no time did we have more than 30 individual horses 

concurrently equipped with GPS collars, adhering to criteria set forth in the DOI-BLM-

WY_DO30_0104-EA Environmental Assessment. We equipped 14 horses with Lotek Wireless 

IridiumTrackM 3D collars (Lotek Wireless Inc., Newmarket, ON, CA) between February and 

March. We later equipped 23 horses with Lotek 3D collars (n = 8) and Vertex Lite GPS collars 

(Vectronic Aerospace GmbH, Berlin, Germany [n = 15]) in October. All horse collars were 

programmed to record locations at a two-hour period for a period of 2 years. We conducted 

monthly welfare checks to determine the fit of collars on each horse and detached collars if they 

were found in a precarious position (i.e., over the horse’s ears), or noticeable hair loss or chafing 

of the skin was present (Hennig et al. 2020). We captured 35 pronghorn with helicopter net-
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gunning (Native Range Capture Services, Ventura, California, USA) and attached store-on-board 

GPS/VHF collars (model G2110D; Advanced Telemetry Systems, Isanti, MN, USA) in 

November 2017. Transmitters were set to record locations every 4 hours over a two-year period.  

 

Vegetation and water resources 

We obtained location data from horses between 2017–2019 and from pronghorn between 2018–

2019, but we calculated remotely-sensed vegetation indices from a longer time period (2010–

2019) to better comprehend the spatiotemporal dynamics of vegetation production in the study 

system. We used MODIS MOD09A1 (250-m spatial resolution, 8-day temporal resolution) 

scenes to calculate the modified soil-adjusted vegetation index (SAVI; Qi et al. 1994). This 

metric is analogous to normalized difference in vegetation index (NDVI) but is a preferable 

metric for arid rangelands as it better accounts for the reflectance of bare soil (Qi et al. 1994). 

We followed previous methods to smooth yearly SAVI time series by first setting all negative 

values and all pixels classified as clouds, shadow, or snow to null values, flooring the time series 

of each pixel to a winter (January, February, November, December) value (0.025 quantile), 

replacing all winter null values with this value and filling remaining null values through linear 

interpolation, and smoothing each time series by applying a three-scene median filter (e.g., 

Bischof et al. 2012, Merkle et al. 2016). We calculated time-integrated SAVI (iSAVI) across the 

non-winter months (March – October), to quantify the amount of vegetation production per pixel 

per year (Pettorelli et al. 2005). To quantify forage energy potential (henceforth ‘quality’), we 

scaled each pixel’s yearly SAVI time-series between 0 and 1, fit a double-logistic curve to the 

time-series (Albeke and Merkle 2019), and calculated the first derivative of this curve to 

interpolate the instantaneous rate of green-up (IRG; Bischof et al. 2012, Merkle et al. 2016). IRG 
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is a good proxy for forage quality as it reaches a maximum value where the curves of crude 

protein content and biomass intersect (Merkle et al. 2016). 

 Nearly all water locations in this arid region were anthropogenic structures including dirt 

tanks installed to improve feral horse distribution, stream and spring-fed reservoirs constructed 

for livestock and wildlife benefit, and scattered natural springs and seeps (M. Astle, BLM, 

personal communication). A complete record of available water sources was unavailable, so we 

used 2017 NAIP imagery to digitize dirt tanks and reservoirs within the study area. We added 

known locations of spring and seeps to the reservoir layer and then calculated the Euclidean 

distance to each water source.  

 

Spatiotemporal variation 

We examined spatiotemporal resource dynamics in vegetation quantity using iSAVI between 

March and October, and in forage quality using the date at which peak IRG occurred (Jesmer et 

al. 2018). We then randomly generated 10000 points within the combined minimum convex 

polygon of all pronghorn and horse GPS locations, then extracted dates of peak IRG and iSAVI 

values per point per year. We used semivariograms to quantity the amount of spatial dependency 

among peak IRG date and forage quantity across 500, 2500, 5000, and 10000-m spatial lags 

(Jesmer et al. 2018, Mueller et al. 2011). We fit variograms using the ‘gstat’ package (Gräler et 

al. 2016) in R version 4.0 (R Core Team 2021) and calculated the range of each fitted variogram. 

The range corresponds to the distance at which spatial dependency is no longer significant; 

therefore, larger ranges would indicate less spatial patchiness (Jesmer et al. 2018). We then used 

a two-sample t-test to examine whether the mean ranges per distance lag differed between peak 

IRG date and iSAVI at the alpha = 0.05 level. To understand relative predictability of each 
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resource, we calculated the mean and standard deviation of each peak IRG date and iSAVI value 

per pixel across the 10-yr time period. We then calculated the mean coefficient of variation per 

metric across the study area and used a two-sample t-test to assess differences at α = 0.05. We 

assumed that water locations were fixed and reservoir volume followed a predictable time-series 

of highest in early spring (March/April) and lowest in summer (July/August). Therefore, we 

assumed that distance to water was highly predictable across space and time.   

 

Movement metrics 

We first rarified the horse location dataset (2-hr fix rate) to match the pronghorn fix rate (4-hr). 

For each horse and pronghorn, we then calculated a suite of movement metrics shown to help 

differentiate between sedentary and nomadic movement syndromes (Abrahms et al. 2017, Bracis 

et al. 2018, Nandintsetseg et al. 2019). These metrics included maximum net squared 

displacement, number of revisits per location, total residency time per location, and percent 

overlap of monthly 95% utilization distributions (Abrahms et al. 2017, Nandintsetseg et al. 2019; 

Table 1). Net squared displacement is expected to be greater for nomads, while the number of 

revisits, total residency time, and percent overlap in monthly utilization distributions should be 

greater for sedentary individuals (Abrahms et al. 2017, Bracis et al. 2018. Nandintsetseg et al. 

2019). We calculated monthly utilization distributions using dynamic Brownian Bridge 

movement models (Kranstauber et al. 2012) within the ‘move’ package (Kranstauber et al. 2019) 

and used the Bhattacharyya’s affinity (Bhattacharyya 1943) to quantify overlap (Fieberg and 

Kochanny 2005; Clapp and Beck 2015). We calculated maximum net squared displacement 

using the ‘adehabitatLT’ package (Calenge 2006), and number of revisits and residency time 

using the ‘recurse’ package (Bracis 2018). We used a 435-m radius for pronghorn and a 560-m 
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radius for horses per location to calculate the number of revisits and residency time as these were 

the median step lengths for each respective population. We set a threshold of 8 hours for both 

species to eliminate brief excursions outside of the radius (Nandintsetseg et al. 2019). We used a 

two-sample t-test to examine whether the metrics differed between populations.  

 

Selection of resources 

Even if the movement syndromes per population and spatiotemporal resource dynamics matched 

our predictions, it is also important to demonstrate that each species indeed selected for the 

predicted resource(s) based on gut morphology as they moved across the landscape. Therefore, 

we modeled step-selection functions (Thurfjell et al. 2014) using the ‘glmmTMB’ package 

(Brooks et al. 2017) to examine relative strength of selection for forage quantity, forage quality, 

and distance to water. We limited our analyses to between 21 March and 30 June to coincide 

with the growing season. We generated 10 available steps per each used step by sampling from 

an observed distribution of each individual’s step lengths and turn angles (Latham et al. 2011). 

We randomly selected one step per individual per day to reduce the influence of spatiotemporal 

autocorrelation.  

To assess relative strength of selection among variables, we centered and scaled all 

variables to a mean of zero and a standard deviation of one (Schielzeth 2010). We first built a 

base model by evaluating univariate models of variables predicted to also influence selection 

(Table 2). We incorporated the log of distance between locations in each model along with a 

random intercept and slopes for each individual by year combination (Muff et al. 2020). We 

calculated 85% confidence intervals for each variable (Arnold 2010) and brought forth all 

variables with confidence intervals not overlapping 0 into a base model. For highly correlated 
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variables (r >0.6), we ranked each model using Akaike’s Information Criterion (AIC; Burnham 

and Anderson 2002) and brought forth the top-ranked variable. Next we evaluated a candidate 

model set that included all additive combinations of iSAVI, IRG, and distance to water (8 

models total). The base variables were included as fixed effects in all models. We ranked the 

candidate models by AIC and model averaged within models <4 AIC to obtain coefficient values 

and 85% confidence intervals (Arnold 2010). 

 

RESULTS 

We collected 62,857 locations from 27 pronghorn that were collared for a mean duration of 19.0 

months (SD = 5.8 months). We recorded 15 mortalities of collared individuals, though we 

classified only 1 mortality as captured-related (i.e., occurring within 3 weeks of capture date; 

Reinking et al. 2018). We obtained 59,079 locations from 26 feral horses that were collared for 

17.9 months (SD = 7.6 months) and recorded no mortalities. 

Mean semivariogram ranges for date of maximum forage quality and overall vegetation 

quantity were significantly different across 500, 2500, and 5000-m lags (P < 0.001), but not 

different at 10000-m lags (Fig. 2). The mean coefficient of peak IRG date across the 10-year 

period was 0.16 ( = 110.8, SD = 17.3) compared to 0.09 ( = 3.0, SD = 0.26) for forage 

quantity, and these means were statistically different (P < 0.001), demonstrating that peak forage 

quality was more patchily distributed and unpredictable across years compared to total above 

ground vegetation biomass. Across all movement metrics, pronghorn exhibited more nomadic 

movements compared to the more sedentary movements of feral horses (Fig. 3). Pronghorn had 

significantly lower mean proportion of overlap among monthly home ranges (0.21 vs. 0.39), 

x x
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greater maximum net squared displacement (1088.6 km vs. 268.9 km), fewer revisits (14.6 vs. 

52.4), and shorter residency times (134.0 vs. 486.5) than horses, respectively.  

Regarding step-selection functions, both distance to water and vegetation quantity 

received 100% of the model weight for feral horses, while forage quality received no model 

support (Table 3). Feral horses exhibited the strongest selection for patches with higher 

vegetation quantity (β = 1.03, 95% CIs = 0.66, 1.40), followed by less topographically rough 

areas (β = -0.40, CIs = -0.46, -0.35), greater proportion of herbaceous cover (β = 0.216, CIs = 

0.17, 0.26), and areas closer to water (β = -0.113, CIs = -0.21, -0.01; Table 4). Vegetation 

quantity also received 100% of the model weight for pronghorn, whereas distance to water 

received 42% and forage quality received 20% (Table 5). Like horses, pronghorn exhibited the 

strongest selection for vegetation quantity (β = 1.310, CIs = 0.85, 1.77), followed by less 

topographically rough areas (β = -0.325, CIs = -0.38, -0.27). Model-averaged coefficients 

indicated weak selection for forage quality (β = 0.01, CIs = -0.01, 0.13) and areas farther from 

water (β = 0.03, CIs = -0.01, 0.13), but confidence intervals for both variables overlapped 0 

(Table 6). 

 

DISCUSSION 

We tested the hypothesis that digestive morphology mediates the movement syndromes of 

sympatric ungulates. We compared movement metrics and resource selection of feral horses 

(bulk roughage selecting cecal digestors) and pronghorn (concentrate selecting ruminants) in an 

arid cold desert system where both water and forage can be limiting. Our predictions of 

vegetation dynamics held true as values of vegetation biomass per 250-m pixel were more 

similar to each other at most spatial lags, and more predictable across years than the timing of 
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green-up. As expected, feral horses exhibited more sedentary movements driven by selection for 

high biomass patches close to water. Conversely, pronghorn were not tied to water sources and 

displayed more nomadic movements though they exhibited only weak selection for patches 

offering the greatest energy potential, a result contrary to our expectations.   

Our results offer further evidence that the FMH does not universally predict movements 

of all ungulate species (Esmaeili et al. In review). In arid regions with meager herbaceous 

vegetation production, there is likely little nutritional advantage for horses to track small 

differences in vegetation quality. Their relatively inefficient digestive system likely renders any 

increase in quality insignificant, especially if that means moving into areas where water is less 

predictable. Hence, because vegetation production was similar across space and predictable 

among years, feral horse movements were relatively sedentary characterized by stable home 

ranges near known water locations.  

In arid regions, cecal digestors likely receive only a small proportion of their water needs 

from forage and are thus highly dependent on available water sources (Kaczensky et al. 2010, 

Nandintsetseg et al. 2017). Our results indicate horses were more tied to known water locations 

than pronghorn; thus, predominantly man-made water catchments may play an outsized role in 

the movement syndrome of this feral horse population. Because feral horse grazing can have 

negative effects on ecosystems (Eldridge et al. 2020), water developments were installed to more 

evenly distribute horse use across the landscape. A side-effect of adding these water sources is 

that they promote repeated use of the same areas, thereby affording little or no rest for plant 

species that did not co-evolve with high grazing pressure (Mack and Thompson 1982). A central 

tenet of livestock management is properly manipulating the timing, intensity, and frequency of 

grazing to maintain desired rangeland function (Holechek et al. 2004). Indeed, intensity of horse 
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use in this system was linked to greater proportions of bare ground (Hennig et al. In review). We 

think that if anthropogenic reservoirs were unavailable in this system, horses may switch to a 

more nomadic syndrome moving between sparsely located natural water sources, similar to the 

water-driven nomadism of equids in the Gobi Desert (Nandintsetseg et al. 2016, 2019).  

Further contradicting the FMH, our metric of vegetation quality (IRG) received little 

model support for explaining pronghorn selection during the growing season. This presented us 

with a less clear-cut explanation for why movement metrics differed between horses and 

pronghorn. We believe the observed differences can be explained by 2 factors. First, even minor 

tracking of relatively unpredictable green-up could result in more nomadic movements than 

horses. Second, pronghorn movements were independent of known water sources during the 

growing season. Plants are most succulent during this season, and pronghorn use of free-standing 

water typically is inversely correlated with succulence and quantity of preferred forage (Beale 

and Smith 1970). Further, pronghorn possess higher body water content than other ruminants 

indicating low reliance on water (Wesley et al. 1970). Though we have documented pronghorn 

use of anthropogenic water sources in this area (Hennig et al. 2021), our results indicate such use 

may be more opportunistic in nature. Consequently, pronghorn have the ability to wander farther 

from water in exploration of forage patches translating into more nomadic movements.  

 The relatively weak selection by pronghorn for higher forage quality patches was still 

surprising. We expected pronghorn movements to maximize energy potential given their smaller 

body size and concentrate feeder strategy, especially given that at least some individuals of 

several pronghorn populations maximize energy potential by undergoing migration in myriad 

systems of the western United States (e.g. Jakes et al. 2018, Kolar et al. 2011, Sawyer et al. 

2005). So why do none of the pronghorn inhabiting this system migrate? Moving south and east 
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out of this arid system offers an elevational gradient providing more vegetation production than 

that which is available within the Red Desert. Indeed, mule deer (Odocoileus hemionus), another 

ruminant concentrate feeder, winter within portions of our study site, but many migrate to the 

aforementioned more productive areas during the spring and summer (Kauffman et al. 2020). 

The answer to why pronghorn do not migrate may simply be that they are able to meet their 

energetic needs within the system; however, they also face barriers to movement that may 

prevent migration and associated potential increases in energy acquisition. While mule deer can 

cross both fences and roads on migration paths (Sawyer et al. 2013), these anthropogenic 

features have proven to be much more restrictive for pronghorn (Reinking et al. 2019; Xu et al. 

2020). Much of the interior of our study site was unfenced and lacked major roads, but fences, 

highways, and a railroad paralleled the boundaries of our system, and we observed multiple 

GPS-collared pronghorn approaching major highways but never crossing. 

Our research provides further insight into the role that ungulate digestive systems play in 

resource selection and movement syndromes. We found that the FMH may have limited 

applicability to cecal digestors and even ruminants inhabiting arid systems. Vegetation quality 

appears to be less significant in explaining differences in movements between dryland ungulates 

than water availability. Water-driven nomadism has been documented by both cecal digestors 

and ruminants in the Gobi Desert, but there appears to be a threshold where forage dynamics 

becomes a more important driver of ungulate movements (Nandintsetseg et al. 2019). Identifying 

species- and system-specific thresholds of water limitation can help inform conservation and 

management actions for both wild and domestic ungulates, especially in the face of global 

climate change.  
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Tables and figures 

Table 4.1. Description of calculated movement metrics and predicted responses of each metric to 

sedentism versus nomadism. 

Metric Description Sedentism Nomadism 

Number of revisits Times that an individual returned to the 

same location 

Higher Lower 

Residency time The sum of hours spent at a location Higher Lower 

Bhattacharyya’s 

affinity 

Percent overlap in volume between 

monthly 95% utilization distributions 

Higher Lower 

Maximum net 

squared displacement 

Maximum displacement between any two 

locations 

Lower Higher 
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Table 4.2. Sources of variables used in step-selection functions for feral horses and pronghorn, 

Red Desert, Wyoming, USA, March–June, 2017–2019. 

Variable Source 

Proportion bare ground NLCD 2016 All Rangeland Fractional Components a  

Proportion herbaceous cover NLCD 2016 All Rangeland Fractional Components a 

Proportion sagebrush cover NLCD 2016 All Rangeland Fractional Components a 

Proportion all shrub cover NLCD 2016 All Rangeland Fractional Components a 

Distance to well pad Active oil and gas wells [COGCC (2020) b & WOGCC 

(2020) c] 

Topographic ruggedness index Digital elevation model (USGS 2016) d 

Compound topographic index Digital elevation model (USGS 2016) d 

Heat load index Digital elevation model (USGS 2016) d 

Slope position Digital elevation model (USGS 2016) d 

Distance to water NAIP 2017 aerial imagery e 

Time-integrated soil-adjusted 

vegetation index (iSAVI) 

MODIS MOD09A1 f 

Instantaneous rate of green-up (IRG) MODIS MOD09A1 f 
a Rigge et al. (2020): 

https://www.mrlc.gov/data?f%5B0%5D=category%3ARangeland%20%E2%80%93%20Basemap  
b COGCC (2019): https://cogccmap.state.co.us/cogcc_gis_online/  
c WOGCC (2019): retrieved from Wyoming Geographic Information Science Center 

https://services.wygisc.org/HostGIS/rest/services/GeoHub/WOGCCActiveWells/MapServer/0  
d Calculated using ArcGIS Geomorphometry & Gradient Metrics Toolbox (Evans et al. 2014) 
e Retrieved from Wyoming Geographic Information Science Center 

https://data.geospatialhub.org/app/108afdf1d38e4377a4444cab725b5624  
f https://lpdaac.usgs.gov/products/mod09a1v006/   

https://www.mrlc.gov/data?f%5B0%5D=category%3ARangeland%20%E2%80%93%20Basemap
https://cogccmap.state.co.us/cogcc_gis_online/
https://services.wygisc.org/HostGIS/rest/services/GeoHub/WOGCCActiveWells/MapServer/0
https://data.geospatialhub.org/app/108afdf1d38e4377a4444cab725b5624
https://lpdaac.usgs.gov/products/mod09a1v006/
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Table 4.3. Model selection results for feral horse step-selection functions, Red Desert, 

Wyoming, USA, March–June, 2017–2019.  

Model K AIC ΔAIC wi 

Distance to water + iSAVI a 13 104799.2 0.00 0.85 

Distance to water + iSAVI + IRG b 15 104802.7 3.47 0.15 

Distance to water 11 104825.2 26.01 0.00 

Distance to water + IRG 13 104828.2 29.05 0.00 

iSAVI 11 104835.7 36.52 0.00 

iSAVI + IRG 13 104839.2 40.01 0.00 

Base 9 104863.9 64.72 0.00 

IRG 11 104866.9 67.73 0.00 
a Time-integrated soil adjusted vegetation index 
b Instantaneous rate of green-up  
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Table 4.4. Model-averaged coefficients indicating relative strength of selection by feral horses, 

Red Desert, Wyoming, USA, March–June, 2017–2019. 

Model Estimate 85% CIs 

Log(dist) -0.072 -0.095, -0.050 

% herbaceous cover 0.216 0.174, 0.260 

TRI a -0.401 -0.455, -0.347 

HLI b 0.025 -0.007, 0.057 

Distance to water -0.113 -0.213, -0.014 

iSAVI c 1.029 0.657, 1.402 

IRG d -0.002 -0.057, 0.034 
a Topographic ruggedness index 
b Heat load index  
c Time-integrated soil adjusted vegetation index  
d Instantaneous rate of green-up   
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Table 4.5. Model selection results for pronghorn step-selection functions, Red Desert, Wyoming, 

USA, March–June, 2017–2019.  

Model K AIC ΔAIC wi 

iSAVI a 7 109385.8 0.00 0.46 

Distance to water + iSAVI 9 109386.4 0.61 0.34 

iSAVI + IRG b 9 109388.5 2.70 0.12 

Distance to water + iSAVI + IRG 11 109389.2 3.38 0.08 

Base 5 109425.5 39.73 0.00 

Distance to water 7 109426.0 40.16 0.00 

IRG 7 109428.9 43.05 0.00 

Distance to water + IRG 9 109429.3 43.52 0.00 
a Time-integrated soil adjusted vegetation index 
b Instantaneous rate of green-up   
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Table 4.6. Model-averaged coefficients indicating relative strength of selection by pronghorn, 

Red Desert, Wyoming, USA, March–June, 2017–2019.  

Model Estimate 85% CIs 

Log(distance) 0.011 -0.005, 0.029 

% shrub cover -0.217 -0.226, -0.178 

TRI a -0.325 -0.379, -0.271 

Distance to water 0.025 -0.010, 0.130 

iSAVI b 1.310 0.851, 1.770 

IRG c 0.006 -0.008, 0.130 
a Topographic ruggedness index 
b Time-integrated soil adjusted vegetation index 
c Instantaneous rate of green-up   
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Figure 4.1. Hypothetical relationship between resource variation and predictability in determining where along the gradient of 

sedentism to nomadism a population falls. For example, the orange arrow represents a population inhabiting an environment with low 

spatiotemporal variation and high predictability of its limiting resource, therefore the population is expected to be highly sedentary.   
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Figure 4.2. Mean semivariogram ranges of vegetation production (calculated using time-

integrated soil-adjusted vegetation index) and date of peak instantaneous rate of green-up (IRG) 

calculated across (A) 500-m, (B) 2500-m, (C) 5000-m, and (D) 10000-m spatial lags, Red 

Desert, Wyoming, USA, 2010–2019. 
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Figure 4.3. Population means and standard errors of (A) proportion of overlap (using 

Bhattacharyya’s affinity) of monthly 95% utilization distributions, (B) maximum net squared 

displacement, (C) total residency time per location (hours), (D) number of revisits per location, 

calculated for pronghorn and feral horses, Red Desert, Wyoming, USA, 2017–2019.  
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CHAPTER 5. Resource selection and occurrence overlap between feral horses, greater 

sage-grouse, and pronghorn in cold-arid-steppe 

 

Formatted for submission to Journal of Wildlife Management 

 

ABSTRACT 

Feral horse (Equus ferus caballus) populations on public rangelands in the western United States 

continue to increase, potentially impacting co-occurring wildlife species. Feral horses may 

negatively affect two iconic western species, greater sage-grouse (Centrocercus urophasianus; 

hereafter ‘sage-grouse’) and pronghorn (Antilocapra americana) through mechanisms of habitat 

alteration and competition. Wyoming contains the largest global populations of both pronghorn 

and sage-grouse and the ranges of these species overlap with feral horses most in Wyoming 

compared to other states. Therefore, evaluation of potential horse impacts to pronghorn and sage-

grouse within the state have implications at local, state, and global levels. While their ranges 

overlap, we lack understanding of comparative resource selection and space use among horses, 

pronghorn and sage-grouse within specific horse management areas, but this information is 

critical to implement successful management strategies. To address this knowledge gap, we 

captured and attached global positioning system (GPS) transmitters to female horses (n = 30), 

pronghorn (n = 30), and greater sage-grouse (n = 46) within the Bureau of Land Management–

Adobe Town Herd Management Area in southern Wyoming between 2017 and 2021 to evaluate 

seasonal resource selection and predicted proportion of overlap in occurrence among species. 

Resource selection was most similar between pronghorn and horses, with a high degree of 

predicted occurrence overlap in both summer (0.84) and winter seasons (0.90). Horse and sage-
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grouse overlap was lowest during the sage-grouse breeding (0.68) and winter (0.62) seasons, but 

selection by both species for closer proximity to water and herbaceous cover resulted in a high 

degree of occurrence overlap (0.91) in the summer. Our results suggest that pronghorn face 

potential competition with horses year-round in this area, whereas the threat of decreased habitat 

quality is most prevalent for sage-grouse during later brood-rearing. Our work can help guide 

placement of potential management actions, whereas future research should examine links 

between feral horse effects and fitness metrics of pronghorn and sage-grouse.  

KEY WORDS Antilocapra americana, breeding, Centrocercus urophasianus, Equus ferus 

caballus, habitat selection, water use, winter, Wyoming 

 

INTRODUCTION 

Management of controversial feral animals is an increasingly common issue in the Anthropocene 

(Boyce et al. 2021). In the western U.S., feral horse (Equus ferus caballus) abundance continues 

to increase on public lands, threatening the provisioning of ecosystem services (Scasta et al. 

2018). Potential competition with livestock has long been a concern regarding feral horses given 

their strong diet overlap and potential to decrease rangeland quality (Scasta et al. 2016; Beever et 

al. 2008). Feral horse grazing can decrease vegetation biomass, increase soil compaction, 

proportion of bare ground, and facilitate the spread of invasive species (Beever et al. 2008, 

Davies et al. 2014, King et al. 2019, Hennig et al. In review). Comparatively, the indirect and 

direct effects that this feral species has on native fauna is less understood; but critical assessment 

is imperative (Danvir et al. 2018). Habitat alteration and interference competition from feral 

horses can combine to potentially reduce habitat quality for co-occurring wildlife (Beever and 

Aldridge 2011; Gooch et al. 2017). The frequency and degree of horse-related effects is 
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projected to increase (Eberhardt et al. 1982, Garrott and Oli 2013), therefore a pressing need 

exists to better understand area-specific potential for feral horses to affect wildlife species, 

especially species of concern.   

 Controlling population sizes or manipulating the distribution of feral horses to mitigate 

their detrimental effects is complicated owing to their protected status under the Wild Free-

roaming Horses and Burros Act of 1971 (Public Law 92-195). This federal legislation designates 

horses and burros as natural components of western ecosystems due to their cultural significance 

to many U.S. citizens (Public Law 92-195). Equid abundances are to be balanced with the 

ecological integrity of western rangelands, but management actions are restricted to maintain a 

free-roaming status for equids (Public Law 92-195). Importantly, the Act pertains only to equids 

inhabiting federal land where they existed at the time of its passage (Public Law 95-514). These 

management boundaries are known as Herd Management Areas (HMA) on Bureau of Land 

Management (BLM) jurisdiction and Wild Horse and Burro Territories on U.S. Forest Service 

(USFS) land.  

 Many management areas overlap with the ranges of greater sage-grouse (Centrocercus 

urophasianus; henceforth ‘sage-grouse’) and pronghorn (Antilocapra americana; Beever and 

Aldridge 2011, Stoner et al. 2021); two iconic species that have undergone recent population 

declines, particularly sage-grouse (Connelly and Braun 1997, Yoakum and O’Gara 2000). The 

state of Wyoming contains >50% of the global pronghorn population and approximately 40% of 

the sage-grouse population (Yoakum and O'Gara 2000, Doherty et al. 2010c), making 

management efforts for these species within Wyoming a major priority at both the state, 

continental, and global levels. Wyoming also contains the second highest abundance of feral 

horses, and of all the western states, the degree of range overlap between feral horses with 
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pronghorn and sage-grouse is greatest within Wyoming (BLM 2021; Beever and Aldridge 2011; 

Stoner et al. 2021). Considering the high degree of range overlap, both species may be 

susceptible to habitat degradation and/or competition from horses, but data concerning these 

interactions is limited (Stoner et al. 2021). 

 There is sparse, but emergent information concerning the influence feral horses have on 

sage-grouse while multiple sources have listed horses as a potential threat to sage-grouse 

populations (Southwest and South Central Wyoming Local Sage-grouse Working Groups, 

unpublished reports; Beever and Aldridge 2011, USFWS 2013). Indirect impacts mainly stem 

from habitat alteration consisting of decreased native grass and shrub cover, lower vegetation 

height and densities, increases in exotic grass cover and bare ground, and greater prevalence of 

unpalatable forbs (Beever and Aldridge 2011, Davies et al. 2014, Boyd et al. 2017, Hennig et al. 

in review). Direct impacts are also a concern, however, as researchers have demonstrated that 

horse presence can disturb sage-grouse during lekking, a critical time-period for this species 

(Muñoz et al. 2020). Pronghorn are thought to be more affected from competition with feral 

horses. In water-limited regions, the presence of feral horses can lead to temporal overlap at 

watering points (Hennig et al. 2021), resulting in altered watering activity patterns and increased 

time spent vigilant at water sources (Hall et al. 2018; Gooch et al. 2017). Though the feeding 

strategies of horses (bulk-grazer and cecal digester; Janis 1976) and pronghorn (concentrate 

feeder and rumen digester; Jakes 2015) differ, forage competition is also a concern at sites with 

limited herbaceous production, especially during harsh winters (Krysl et al. 1984, Stephenson et 

al. 1985, Scasta et al. 2016).  

Though the ranges of feral horses, pronghorn, and sage-grouse overlap in Wyoming, 

quantification of resource selection and occurrence overlap within feral horse management areas 
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is absent. Such information could assist managers with identifying seasonally important 

resources for each species and elucidating areas where potential habitat alteration and 

competition stemming from horse activity may be greatest. To address this pressing need, we 

examined resource selection of co-occurring feral horse, pronghorn, and sage-grouse populations 

within the Adobe Town HMA in southern Wyoming, USA. Our objectives were to: 1) compare 

seasonal resource selection between horses and sage-grouse, and horses and pronghorn, 2) 

quantify the amount of predicted overlap between these species comparisons, and 3) create 

spatially explicit maps depicting relative degree of occurrence overlap between horses and each 

species on a seasonal basis.  

 

STUDY AREA 

We conducted our study within the 3,413 km2 Adobe Town HMA in southcentral Wyoming, 

USA (Fig. 1). Elevation ranged from 1883–2506 m (USGS 2016) and annual 30-year normal 

mean precipitation and temperature were 27.7 cm and 6.0°C, respectively (PRISM Climate 

Group 2004). The area was a shrubland-dominated ecosystem with common species including 

Wyoming big sagebrush (Artemisia tridentata wyomingensis), rubber rabbitbrush (Ericameria 

nauseosa), yellow rabbitbrush (Chrysothamnus viscidiflorus), greasewood (Sarcobatus 

vermiculatus), spiny hopsage (Grayia spinosa), shadscale (Atriplex confertifolia) and Gardner’s 

saltbush (A. gardneri). Grass production was low compared to much of the surrounding 

Wyoming Basin, but common species included prairie Junegrass (Koeleria macrantha), 

bottlebrush squirreltail (Elymus elymoides), Sandberg bluegrass (Poa secunda), and sandhill 

muhly (Muhlenbergia pungens). The region also contained the Powder Core Area for greater 

sage-grouse (Doherty et al. 2011, State of Wyoming 2011) and two areas classified by the 
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Wyoming Game and Fish Department (WGFD) as crucial yearlong ranges for pronghorn 

(WGFD 2021; Fig.1). Other land-uses included livestock ranching and fossil fuel exploration and 

extraction. 

 

METHODS 

Animal relocation data 

We deployed iridium-based global positioning system (GPS) collars (Lotek Wireless 

IridiumTrackM 3D collars [Lotek Wireless Inc., Newmarket, Ontario, Canada & Vertex Lite 

GPS collars [Vectronic Aerospace GmbH, Berlin, Germany]) on adult female horses residing in 

the Adobe Town HMA between February and October 2017, and store-on-board GPS collars 

(model G2110D; Advanced Telemetry Systems, Isanti, Minnesota, USA) on adult female 

pronghorn in November 2017. We captured feral horses via bait-trapping and helicopter gathers 

and attached collars while animals were restrained in a hydraulic squeeze chute. We used 

helicopter net-gunning to capture pronghorn (Native Range Capture Services, Ventura, 

California, USA) and fit collars at the capture location. We programmed GPS transmitters to 

record locations every 2 hours for horses and every 4 hours for pronghorn and set all collars to 

remotely detach after a period of 2 years.  

Beginning in April 2018, we deployed rump-mounted GPS transmitters (22-g GPS PTT 

[GeoTrack, King George, Virginia, USA and 15-g Bird Solar [e-obs GmbH, Grunwald, 

Germany]) on female sage-grouse captured across our study area and the adjacent Atlantic Rim 

(Kirol et al. 2015) through spot-lighting and hoop-netting (e.g., see Smith et al. 2016). We 

continued to capture and attach transmitters to sage-grouse each December and April 2018–
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2020. To meet the objectives of a concurrent study, we programmed transmitters to collect 

between 4 and 17 locations per day depending on the season. 

All feral horse handling and use followed protocols approved by the University of 

Wyoming Institutional Animal Care and Use Committee (IACUC; protocol 

#20160826DS00249) and at no time were more than 30 individual horses concurrently equipped 

with GPS collars, adhering to criteria set forth in the DOI-BLM-WY_DO30_0104-EA 

Environmental Assessment. Pronghorn and sage-grouse were captured, handled, and monitored 

in accordance with respective protocols approved by the Wyoming Game and Fish Department 

(Chapter 33-1144 and Chapter 33-1160 Permits) and University of Wyoming IACUC (protocols 

20160826DS00249 and 20170324AP00266).  

 

Season classification 

Sage-grouse habitat selection differs seasonally (Fedy et al. 2014), with distinct habitat 

preferences during the breeding, summer, and winter seasons (Pratt et al. 2019). Therefore, we 

delineated the yearly calendar into 3 seasonal periods for sage-grouse: winter (November – 

March), breeding (April – June), and summer (July – October). We set dates for each season by 

first fitting double-logistic curves of net-squared displacement by date to identify migratory 

individuals (Bunnefeld et al. 2011, Singh et al. 2012). We used the mean leave and return dates 

from winter ranges for migratory individuals to delineate the winter season for the entire 

population. We performed these analyses using the nlme (Pinheiro et al. 2021) and adehabitatLT 

packages (Calenge 2020) in R version 4.0 (R Core Team 2021). We then visually assessed plots 

of net-squared displacement by date to identify the distinct plateaus characteristic of resident 

movements in the non-winter period (Pratt et al. 2017). We calculated the mean dates of 
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transition (if any) between plateaus to separate breeding and summer seasons. The resulting 

seasonal date ranges closely matched statewide (Wyoming) averages of winter, breeding, and 

summer seasons for sage-grouse (J. L. Beck, unpublished data). We separated pronghorn habitat 

use into summer and winter following Reinking et al. (2019). We used the same winter date 

range as we did for sage-grouse to elicit comparisons across all 3 species. We classified the 

remaining months (April – August) as summer but removed September and October locations as 

pronghorn were exposed to hunting during these months which likely influences movements. We 

did not identify unique seasons for feral horses; instead we evaluated selection of horses relative 

to each of the aforementioned seasons.   

 

Predictor variables 

We compiled a list of variables thought to be biologically relevant for understanding resource 

selection of each species per season (Table 1). We used the National Land Use Consortium 

Dataset - All Rangeland Fractional Components (NLCD 2016) to assess the proportion of each 

30-m pixel classified as bare ground, herbaceous cover, sagebrush cover, and total shrub cover. 

We calculated topographic variables (topographic ruggedness index [TRI], compound 

topographic index [CTI], heat load index [HLI], slope position) from a 30-m digital elevation 

model (USGS 2016) using the ArcGIS Geomorphometry & Gradient Toolbox (Evans et al. 

2014) within ArcMap 10.6 (ESRI 2020). We calculated straight-line distances to water for each 

30-m pixel from a digitized layer of water reservoirs and known locations of springs and seeps 

(Chapter 4). We also calculated straight-line distance to active oil and gas well pads using 

datasets retrieved from the Wyoming and Colorado Oil & Gas Conservation Commissions 

(WOGCC 2020, COCGG 2020). We used MODIS satellite MOD09Q1 images (8-day temporal 
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and 250-m spatial resolution) to calculate modified soil-adjusted vegetation index (SAVI; Qi et 

al. 1994). We followed previous methods to smooth yearly SAVI time series by first setting all 

negative values and all pixels classified as clouds, shadow, or snow to null values, flooring the 

time series of each pixel to a winter (January, February, November, December) value (0.025 

quantile), replacing all winter null values with this value and filling remaining null values 

through linear interpolation, and smoothing each time series by applying a three-scene median 

filter (e.g., Bischof et al. 2012, Merkle et al. 2016). We calculated the time-integrated version of 

this index (iSAVI) to represent overall vegetation biomass produced during the breeding and 

summer seasons per year (Pettorelli et al. 2005). We resampled all variables to a 30-m spatial 

resolution and calculated a moving window average (500-m radius) to evaluate selection at a 

broader scale. We initially considered inclusion of moving-window averages at 1500, 3200, and 

6400-m radii (Fedy et al. 2014), but preliminary analyses revealed poor predictive power using 

these broader scales. We attributed this to non-stationarity in our study area as proportion of 

herbaceous cover, sagebrush cover, total shrub cover, and iSAVI all increase going from the core 

to the edges of our study area. In other words, models including variables at these scales resulted 

in occurrence predictions superficially similar to a density of collected locations, with little or no 

occurrence in areas in novel areas. In evaluating winter resource selection, we chose to include 

distance to water as a covariate even though most free-standing water was frozen during this 

time period. We knew that horses exhibited relatively stable home ranges driven in part by 

distances to water (Chapter 4); therefore, we postulated that distance to water was a reasonable 

year-round predictor. We also included iSAVI produced during the preceding summer with the 

assumption that greater growing season production would translate into greater amounts of 

residual forage during the winter. 
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Generating availability 

Our sage-grouse telemetry dataset included individuals that never or only partially overlapped 

spatially with our GPS-collared horses and pronghorn; therefore, we removed all locations that 

fell east of Wyoming State Highway 789, south of the Little Snake River, and south of Moffat 

County, Colorado Road 4 to better match the spatial distribution of horses and pronghorn. To 

limit influence of individuals with few locations in resource selection models, we chose to retain 

pronghorn and horses with >500 locations per season. Due to fewer grouse locations, we kept 

individuals with >200 locations per season. We generated minimum convex polygons (MCP) 

around the retained locations of each population per season and generated 10 random points per 

used location within this population-wide polygon. We then extracted predictor variables  at each 

used and random (background or available) location (Table 1).  

 

Fitting models 

We fit all models using the ‘glmmTMB’ package (Brooks et al. 2017) following the framework 

presented in Muff et al. (2020). We fit infinitely weighted logistic regression models (Wharton 

and Shepard 2010, Fithian and Hastie 2013) between used and background locations with 

random intercepts and slopes for each individual by year combination (Gillies et al. 2006, Muff 

et al. 2020). Logistic regression approximates an inhomogeneous Poisson process (IPP) when the 

number of background points is sufficiently large (Wharton and Shepard 2010). This results in 

consistent and unbiased parameter estimates and facilitates interpretation as the number of 

expected presences per unit area (Wharton and Shepard 2010, Fithian and Hastie 2013). 

Incorporating a large number of background points is computationally inefficient, so we set each 
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background point to a value of 1000 while holding all used points to a value of 1 (Muff et al. 

2020). We centered and scaled all variables to evaluate the relative strength of selection and for 

computational efficiency (Schielzeth 2010). We first compared univariate models of all variables 

and scales (30 and 500-m) to a null, intercept-only, model using Akaike’s Information Criterion 

(AIC; Burnham and Anderson 2002). The top-ranked scale per variable was brought forward for 

consideration in a global model if it performed better than the null. We also used AIC to assess 

which among highly correlated variables (|r| >0.6) should be retained. We then fit a global model 

and extracted coefficients and 95% confidence intervals for all variables.  

 

Occurrence overlap 

We generated spatially-explicit rasters of predictive occurrence based on a global model for each 

species per season. We did this by re-running models using the un-scaled variables and 

extracting fixed-effect coefficients to estimate an RSF of the following form:  

w(x) = exp[β1h1(x) + β2h2(x) + … + βnhn(x)] 

where w(x) is the proportional probability of selection, βn are fixed-effect coefficients, and hn is 

the value of a variable at location x. We mapped models results to a 30-m raster of our study area 

and then clipped the raster to a polygon representing all livestock grazing allotments within the 

Adobe Town HMA. In other words, we evaluated predicted occurrence overlap in areas where 

management actions were most likely to occur. We divided each 30-m pixel value by the sum 

value of the predicted raster, resulting in a raster summing to 1. We then calculated 

Bhattacharyya’s affinity (Bhattacharyya 1943) between predicted rasters to quantify the 

proportion of overlap in occurrence between species per seasons (Fieberg and Kochanny 2005, 

Clapp and Beck 2015, Pratt et al. 2019). We then generated spatially explicit maps of relative 
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occurrence overlap by dividing each raster into 5 equal quantiles and considered Bhattacharyya’s 

affinity values of >0.6 to represent moderately high overlap and >0.8 to indicate high overlap.  

 

RESULTS 

We used location data from 30 female feral horses, 30 female pronghorn, and 46 female sage-

grouse to evaluate resource selection for each species across biologically relevant seasons 

between 2017–2019 for horses and pronghorn, and between 2018–2021 for sage-grouse. 

Stratified by season and species, we used 21,599 horse locations from 48 unique animal by year 

combinations (AY), and 11,547 sage-grouse locations (30 AY) during the sage-grouse breeding 

season; 23,553 horse locations (43 AY) and 9,391 sage-grouse locations (24 AY) during the 

sage-grouse summer season; 41,795 horse (47 AY) and 39,953 (44 AY) pronghorn locations 

during the pronghorn summer season; and 35,940 (40 AY), 42,590 (50 AY), and 14,190 (36 AY) 

locations of horses, pronghorn, and sage-grouse during the sage-grouse winter season. We 

documented 23 sage-grouse and 15 pronghorn mortalities but attributed only 1 pronghorn 

mortality to capture, as it was the only one to occur within 3 weeks of capture (Reinking et al. 

2019). We recorded no mortalities of feral horses.   

 During the sage-grouse breeding season, feral horses selected for lower proportions of 

sagebrush cover (β = -2.02, 95% CI = -3.21, -0.84), less topographically rough areas (β = -1.18, 

CIs = -1.68, -0.68), and more vegetation biomass (β = 1.16, CIs = 0.46, 1.86) at the 500-m scale 

along with greater proportions of herbaceous cover (β = 0.16, CIs = 0.01, 0.30) at the 30-m scale, 

and closer distances to both water sources (β = -1.18, CIs = -1.60, -0.76) and well pads (β = -

0.83, CIs = -1.25, -0.41; Fig. 2). Meanwhile, sage-grouse selected for greater vegetation 

production (β = 0.49, CIs = 0.01, 0.97) and less topographically rough areas (β = -2.11, CIs = -
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3.39, -0.83) at the 500-m scale, greater proportion of herbaceous cover (β = 0.31, CIs = 0.13, 

0.48) at the 30-m scale and closer distances to well pads β = -1.36, CIs = -2.69, -0.02; Fig. 2). 

Predicted overlap in occurrence between the species was 0.68 (Fig. 3). 

Feral horse and sage-grouse selection were most similar during the summer season as 

horses selected for lower proportion of sagebrush cover (β = -1.48, CIs = -2.29, -0.68), less 

topographically rough areas (β = -1.05, CIs = -1.43, -0.66), and greater vegetation biomass (β = 

1.20, CIs = 1.03, 2.30) at the 500-m scale along with greater proportion of herbaceous cover (β = 

0.33, CIs = 0.20, 0.47) at the 30-m scale, and closer distances to both water sources (β = -0.89, 

CIs = -1.20, -0.59) and well pads (β = -0.53, CIs = -0.96, -0.11; Fig. 4). Sage-grouse exhibited 

selection for less topographically rough areas at the 500-m scale (β = -1.63, CIs = -2.76, -0.50), 

greater proportion of herbaceous cover at the 30-m scale (β = 0.46, CIs = 0.32, 0.60), and closer 

distances to water (β = -0.82, CIs = -1.32, -0.32; Fig. 4). Predicted overlap in occurrence during 

the summer season was 0.91 (Fig. 3). 

Pronghorn in summer selected for less topographically rough areas (β = -0.83, CIs = -

1.17, -0.49) and lower HLI values (β = -0.26, CIs = -0.48, -0.04) at the 500-m scale, with less 

vegetation biomass (β = -1.38, CIs = -1.86, -0.90), and lower CTI values (β = -0.11, CIs = -0.17, 

-0.05) at the 30-m scale, and closer distances to water (β = -0.78, CIs = -1.07, -0.49; Fig. 5). 

Horses selected for greater values of vegetation biomass (β = 0.89, CIs = 0.48, 1.30), less 

sagebrush cover (β = -1.58, CIs = -2.47, -0.70), and less topographically rough areas (β = -0.98, 

CIs = -1.36, -0.60) at the 500-m scale, with greater proportion of herbaceous cover (β = 0.25, CIs 

= 0.12, 0.38), and higher CTI values (β = 0.08, CIs = 0.02, 0.13) at the 30-m scale, and again 

selected for areas closer to both water (β = -1.08, CIs = -1.44, -0.72) and well pads (β = -0.83, 
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CIs = -1.30, -0.36; Fig. 5). Predicted proportion of occurrence was 0.84 between horses and 

pronghorn during summer (Fig. 6).  

In winter, sage-grouse selected for greater herbaceous cover (β = 0.41, CIs = 0.13, 0.69) 

and lower HLI values (β = -0.57, CIs = -0.78, -0.35) at the 500-m scale, greater proportion of 

sagebrush cover (β = 0.83, CIs = 0.67, 0.99) and less topographically rough areas (β = -0.84, CIs 

= -1.08, -0.60) at the 30-m scale, and closer distances to water (β = -0.44, CIs = -0.66, -0.22) and 

well pads (β = -2.29, CIs = -3.05, -1.52; Fig. 7). Feral horses exhibited selection for areas that 

produced greater vegetation biomass in the preceding summer (β = 1.71, CIs = 0.84, 0.26), less 

sagebrush cover (β = -2.79, CIs = -4.35, -1.23), and less rough topography (β = -1.50, CIs = -

2.06, -0.94) at the 500-m scale, and also selected for areas closer to water (β = -0.48, CIs = -0.77, 

-0.19; Fig. 7). Lastly, pronghorn exhibited selection for less rough areas (β = -1.58, CIs = -1.89, -

1.26), lower sagebrush cover (β = -1.64, CIs = -2.31, -0.98), and areas that produced more 

vegetation biomass during the previous summer (β = 1.60, CIs = 0.92, 2.27) at the 500-m scale, 

less herbaceous cover (β = -0.37, CIs = -0.54, -0.19) at the 30-m scale, areas closer to water (β = 

-0.52, CIs = -0.72, -0.33) but areas farther from well pads (β = 0.46, CIs = 0.23, 0.69; Fig. 7). 

Predicted occurrence overlap was 0.90 between horses and pronghorn, and 0.62 between horses 

and sage-grouse during the sage-grouse winter season (Figs. 3 and 6).  

 

DISCUSSION 

Identifying when and where to implement management actions is key to any successful 

management strategy (Sydenham et al. 2020), but due to limited budgets (Garrot and Oli 2013) 

and legislative restraints (Scasta et al. 2018), this need is even more critical within feral horse 

management areas. We evaluated resource selection of horses, pronghorn, and sage-grouse 
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within a designated feral horse management area and used the results to predict occurrence and 

quantify overlap among sympatric species. We found that feral horses used similar resources as 

pronghorn and sage-grouse, translating into moderately high to high degrees of occurrence 

overlap, depending on the species and season.  

The high degree of occurrence overlap between horses and pronghorn in summer 

reflected similar selection for smoother topography and proximity to water. Smoother terrain can 

affect use of both species (Ganskopp and Vavra 1987, Girard et al. 2013), and water availability, 

especially in arid regions, can influence the distribution of both species (Miller et al. 1983, Crane 

et al. 1997, Mogart et al. 2005). Pronghorn selection for closer proximity to water contradicts 

earlier work of pronghorn selection during the growing season at the movement scale (Chapter 

4). We suggest that this can be explained by the longer time frame and inclusion of the hottest 

and driest months of the year (July/August). We observed disparate selection between horses and 

pronghorn regarding vegetation production. As anticipated, given their cecal digestion strategy 

(Janis 1976; Chapter 4), horses selected for areas with greater aboveground vegetation 

production, but pronghorn displayed avoidance of these areas during summer. This was an 

unexpected finding because pronghorn in an adjacent study area displayed selection for greater 

vegetation production (Reinking et al. 2019), and like distance to water, it is contrary to our 

movement-scale selection results (Chapter 4). Pronghorn in the Adobe Town HMA appeared to 

be selecting for more productive areas at a landscape scale but using less productive areas at a 

finer resolution. These results could indicate resource or space partitioning (Schoener 1974, 

Macandza et al. 2012) between pronghorn and horses; however, competition may also be a 

factor. Interference competition between horses and pronghorn has been observed at water (e.g., 

Gooch et al. 2017; Hall et al. 2017), but competition has not been studied within foraging arenas. 
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Despite differences in gut morphology (cecal vs. rumen digestion) and feeding strategies (bulk 

grazer vs. concentrate feeder), diet overlap may be higher than expected between these species, 

as horse diets have been reported to contain >30% browse in harsh winters or in systems with 

scant herbaceous production (Stephenson et al. 1985, Krysl et al. 1984). Fecal analyses of horses 

within the Adobe Town HMA detail a high shrub component in feral horse diets, up to 92.5% in 

winter (BLM Rawlins Field Office, unpublished report). Further, state game biologists have 

speculated about competition with horses as a reason why this pronghorn herd has continually 

failed to meet population targets (WGFD 2017).  We stress that our study was not designed to 

evaluate competition; thus, our results only suggest the need for such research. 

Both pronghorn and horses selected areas with less sagebrush cover at the 500-m scale in 

summer and winter, though confidence intervals overlapped 0 for pronghorn in summer. Both 

species have shown mixed responses to sagebrush cover (Crane et al. 1997, Miller et al. 1993, 

Christie et al. 2017, Boccadori et al. 2008), but most studies indicate positive selection for 

sagebrush cover in winter by pronghorn (Beckmann et al. 2012, Reinking et al. 2019). We offer 

two reasonable explanations for our results. The findings may be a relic of our sampling design. 

as the interior of the Adobe Town HMA was characterized by a mixed-shrub community, and 

areas containing greater proportions of sagebrush were most common at the edges of the study 

area. Consequently, most study individuals did not reside in areas with high sagebrush cover at a 

landscape scale. Our results may also indicate that neither species is reliant upon sagebrush to 

meet seasonal requirements. Selection for sagebrush by pronghorn within regions such as the 

greater Wyoming Basin could be due to sagebrush being the most dominant shrub species 

present. Pronghorn densities are highest in sagebrush-dominated systems, but they also inhabit 
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multiple ecoregions and can possess broad diets (Schwartz and Nagy 1976, Hoskinson and 

Tester 1980; Jakes 2021) suggesting flexibility in resource use.  

Contrastingly, sage-grouse displayed selection for sagebrush cover during the winter 

period, an expected result given that sagebrush makes up the near entirety of their winter diet 

(Remington and Braun 1985). Though our results also indicated sage-grouse selection for 

sagebrush during the breeding season, 95% confidence intervals included 0 indicating less 

importance during this season. This contrasts with sage-grouse breeding habitat selection in other 

portions of their range where sagebrush cover has routinely been selected for (e.g. Doherty et al. 

2010a, Fedy et al. 2014. Kirol et al. 2015). As we indicated earlier, most of this area is not 

heavily dominated by big sagebrush; instead, it supports a variety of large-statured shrubs that 

may serve as adequate substitutes for nesting and escape cover. Nest-site selection and nest 

success in Adobe Town have yet to be quantified, however.  

Predicted occurrence overlap between grouse and horses was greatest in the summer, 

which coincides with the brood-rearing stage for female sage-grouse. Similar to other studies, we 

found positive sage-grouse selection for areas closer to water and greater proportions of 

herbaceous cover. Sage-grouse are less reliant on sagebrush during this period (Hagen et al. 

2007) and more dependent on taller grasses for cover. Further, forbs and insects constitute a high 

proportion of chick diets, and both resources are commonly found near water (Crawford et al. 

2004). As cecal digesting, bulk roughage feeders, horses require high amounts of herbaceous 

forage and are dependent on free-standing water (Janis 1976; Chapter 4), meaning that horses 

present the greatest threat to sage-grouse populations during the summer season in this area.  

 Several results of winter resource selection among all three species were unexpected. 

First, distance to water was a strong predictor for each species during winter, even though most 
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surface water was unavailable during this time. We predicted that horses may show selection for 

areas closer to water solely due to their relatively stable home ranges (Chapter 4), but we 

expected to find no selection for the other species. Relative strength of selection in winter was 

weaker for all species compared to other seasons, and coefficient values were strikingly similar 

across species; therefore distance to water may be correlated with an unknown variable 

influencing selection during this season. Similar to other studies, pronghorn avoided areas closer 

to well pads in winter (Beckmann et al. 2012, Reinking et al. 2019); but, selection for these 

anthropogenic disturbances by sage-grouse was surprising as these features are usually strongly 

avoided (e.g., Naugle et al. 2011, Holloran et al. 2015). We surmised that distance to well pads 

may be correlated with sagebrush cover or less topographic roughness, yet neither variable was 

linked with distance to well pads (r = -0.17 and r = 0.09, respectively), leaving us without an 

explanation for this result. We hesitate to say that sage-grouse were actively selecting for areas 

closer to well pads in winter, so we recommend further research to clarify this result. Selection of 

areas closer to well pads by horses during the sage-grouse breeding and summer seasons were 

also unforeseen results. We know of no studies that have evaluated responses of feral horses to 

these features, so we can only speculate that this response may be due to forage availability 

because invasive grasses and forbs are commonly found near well pads and adjacent roads 

(Bergquist et al. 2007, Manier et al. 2014). Nonetheless, it appears that horses may not be as 

sensitive to anthropogenic disturbance as many other wildlife species.  

 Increased feral horse use in this area has been linked with greater proportions of bare 

ground and lower mean grass heights (Hennig et al. in review). Consequently, there is real 

concern regarding the potential for horses to decrease habitat quality for wildlife, especially 

sage-grouse. Our work can direct the placement of management actions, but we caution that our 
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results should not be interpreted as indications of habitat quality or even population densities for 

any species. Further, links between horse-related impacts and fitness metrics of co-occurring 

species have yet to be evaluated, but are essential to fully comprehend the influence of feral 

horses on sympatric wildlife in the western U.S.  

 

MANAGEMENT IMPLICATIONS 

To determine where management actions may be most effective to mitigate potential deleterious 

effects of horses on wildlife, we recommend examination of resource selection by horses and 

species of interest within each BLM Herd Management Area or Forest Service Wild Horse and 

Burro Territory (WHBT). Due to the importance of water for all species in arid regions, we 

recommend wildlife-friendly fencing (i.e., smooth bottom wires >45 cm from ground level; 

Jones 2020) around some reservoirs and/or riparian areas within management areas to limit or 

deter horse-use. This would decrease the degree of horse interference with pronghorn at water 

and promote growth of herbaceous cover critical to brood-rearing sage-grouse. Further, as horse 

populations continue to increase, we recommend regular monitoring of breeding success and 

winter survival of pronghorn and sage-grouse within HMAs and WHBTs. If links between 

horses and decreased fitness of these species are found, this may warrant horse population 

control through removal gathers, even in areas that are within appropriate management levels.   
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TABLES & FIGURES 

Table 1. Justification of explanatory spatial variables for modeling resource selection for feral 

horses (2017–2019), pronghorn (2017–2019), and greater sage-grouse (2018–2021) within the 

Adobe Town Herd Management Area, Wyoming USA.  

 Justification citation 

Variable Horses Pronghorn Sage-grouse 

Percent sagebrush  Miller 1983 Beckmann et al. 2012 Smith et al. 2016 

Percent shrub Miller 1983 Boccadori et al. 2008  

Percent herbaceous Ganskopp & Vavra 1986 Boccadori et al. 2008 Fedy et al. 2014 

Percent bare ground  Christie et al. 2017  

Distance to water Miller 1983 Deblinger and 

Allredge 1991 

 

Distance to well pad  Beckmann et al. 2012 Doherty et al. 2010b 

Time-integrated soil-

adjusted vegetation 

index (SAVI) 

 Christie et al. 2017 Aldridge & Boyce 2007 

Topographic 

ruggedness index (TRI) 

Ganskopp & Vavra 1987  Fedy et al. 2014 

Compound topographic 

index (CTI) 

  Dinkins et al. 2014 

Heat load index (HLI)  Reinking et al. 2019  

Slope position Ganskopp & Vavra 1987   
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Figure 5.1. Location and surface land management of study area, which included the Adobe 

Town Bureau of Land Management Herd Management Area, pronghorn yearlong and winter 

crucial range, and the Powder greater sage-grouse Core Area.   
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Figure 5.2. Relative strength of selection coefficients and 95% confidence intervals for resource 

selection by feral horses (2017–2019) and greater sage-grouse (2018–2020) during the greater-

sage grouse breeding season (April–June), Red Desert, Wyoming, USA.  
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Figure 5.3. Predicted proportion of 

overlap in occurrence between 

feral horses (2017–2019) and 

greater sage-grouse during sage-

grouse breeding, summer, and 

winter seasons (2018–2021), 

Adobe Town Herd Management 

Area, Wyoming, USA. This map 

spatially depicts proportion of 

overlap binned into five quantiles 

of relative overlap in occurrence.  
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Figure 5.4. Relative strength of selection coefficients and 95% confidence intervals for resource 

selection by feral horses (2017–2019) and greater sage-grouse (2018–2020) during the greater-

sage grouse summer season (July–October), Red Desert, Wyoming, USA.   
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Figure 5.5. Relative strength of selection coefficients and 95% confidence intervals for resource 

selection by feral horses and pronghorn during summer (April–August 2017–2019), Red Desert, 

Wyoming, USA.  
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Figure 5.6. Predicted 

proportion of overlap in 

occurrence between feral horses 

and pronghorn during the 

summer and winter seasons 

(2017–2019), Adobe Town 

Herd Management Area, 

Wyoming, USA. This map 

spatially depicts proportion of 

overlap binned into five 

quantiles of relative overlap in 

occurrence.  
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Figure 5.7. Relative strength of selection coefficients and 95% confidence intervals for resource 

selection by feral horses (2017–2019), pronghorn (2017–2019), and greater sage-grouse (2018–

2021) during winter (November–March), Red Desert, Wyoming, USA.  


