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Lautenbach, Jonathan, D., Subspecies Delineation, Habitat Ecology, and Population 

Demography of Sharp-tailed Grouse in Southcentral Wyoming, Doctor of Philosophy, 

Program in Ecology and Evolution, May, 2025. 

ABSTRACT 

Prairie grouse (Tympanuchus) are a closely related group of upland game birds comprised of 

three species: lesser prairie-chicken (T. pallidicinctus), greater prairie-chicken (T. cupido), and 

sharp-tailed grouse (T. phasianellus). Across the ranges of prairie grouse species, many 

populations of prairie grouse are species of conservation concern. Across the range of sharp-

tailed grouse, Columbian sharp-tailed grouse and sharp-tailed grouse in western Wyoming (west 

of the Continental Divide) are populations of conservation concern. Sharp-tailed grouse in 

western Wyoming are primarily found in south-central Wyoming, in Carbon County. This 

population of sharp-tailed grouse is relatively understudied, and the subspecies of the population 

is in question. The aim of my Dissertation was to evaluate overlap in the distributions of all 

prairie grouse populations and to evaluate the subspecies identity, evaluate lek locations in 

relation to seasonal habitat selection and mortality risk, and to evaluate the population 

demography of sharp-tailed grouse in southcentral Wyoming.  

 In Chapter 1, I examined the overlap and correlation of encounter rates of prairie grouse 

populations (greater prairie-chicken, lesser prairie-chicken, and sharp-tailed grouse) and sharp-

tailed grouse populations (six extant subspecies and two populations where the subspecies is 

unknown or in question). Encounter rates are similar to occupancy models and are used for semi-

structured datasets, such as eBird data. I found that the encounter rates of prairie grouse and 

sharp-tailed grouse populations were more correlated for populations that were more closely 

related. My results suggest that differences in habitat may have aided in the speciation for more 



 2 

distantly related populations and that subspeciation of populations within prairie grouse species 

is complex.  

 In Chapter 2, I examined the subspecies of sharp-tailed grouse occurring in south-central 

Wyoming by evaluating differences in habitat, morphology, and genetic markers between my 

focal population in southcentral Wyoming and the two geographically closest subspecies of 

sharp-tailed grouse, Columbian sharp-tailed grouse (T. p. columbianus) and plains sharp-tailed 

grouse (T. p. jamesi). We found that the population of sharp-tailed grouse in south-central 

Wyoming is different from both Columbian and plains Sharp-tailed Grouse and we recommend 

that the subspecies identification of the population continue to be evaluated using more targeted 

phylogenetic studies. This chapter is in press in Ecology and Evolution with co-authors A. 

Gregory, S. Galla, A. Pratt, M. Schroeder, and J. Beck (Lautenbach et al. In Press. Using habitat, 

morphological, and genetic characteristics to delineate the subspecies of Sharp-tailed Grouse in 

southcentral Wyoming. Ecology and Evolution). 

 In Chapter 3, I evaluated sharp-tailed grouse lek-site selection and size in relation to 

seasonal habitat use, seasonal mortality risk, and landscape features. We found that sharp-tailed 

grouse lek-site selection was based on a combination of landscape features and seasonal female 

habitat. Specifically, leks were located in areas with less rugged terrain and lower nest, brood, 

and late nonbreeding season mortality risks. Lek size increase was related to landscape features. 

Consequently, we recommend that management of lekking species continue to be focused 

around leks. This chapter is in revision at Ecosphere with co-authors A. Pratt and J. Beck. 

 The objective of Chapter 4 was to evaluate the population demography of sharp-tailed 

grouse in southcentral Wyoming using a Bayesian integrated population model. We found that 

the sharp-tailed grouse in southcentral Wyoming were declining, population growth was 
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correlated with adult and chick survival, and instantaneous risk of mortality was lowest for adults 

and highest for juveniles during the fall. Our results highlight that potential hunting seasons 

should consider the timing of harvest relative to biologically important seasons and try to 

minimize the impacts of hunting on population size and growth. This chapter is formatted for 

submission to The Journal of Wildlife Management with co-authors S. Mathews-Sanchez, A. 

Pratt, P. Coates, and J. Beck. 
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CHAPTER ONE 

Similarities and differences in the distributions of prairie grouse species: potential 

implications for range expansion and hybridization  

ABSTRACT 

By definition, different species occupy different habitats, however it has been suggested that 

some closer related species may occupy similar habitats. Prairie grouse (genus Tympanuchus) are 

a group of closely related upland game bird species that can be found throughout much of North 

America. Prairie grouse populations diverged from each other in the past 300-500,000 years and 

differentiation of these species has been linked to the glacial cycles of the past million years and 

varying refugia created during past glacial maximums. Prairie grouse species generally occupy 

different habitats; however, recent range expansion has led to a hybrid zone between the 

populations and areas of range overlap. I investigated if closer related populations of prairie 

grouse occupy similar habitats through evaluating differences and similarities in encounter rate 

models for each of the three prairie grouse species (greater prairie-chicken [T. cupido], lesser 

prairie-chickens [T. pallidicinctus], and sharp-tailed grouse [T. phasianellus]) and the seven 

sharp-tailed grouse subspecies. Encounter rate models are used as a proxy for occupancy models 

in semi-structured citizen science data such as eBird. I generated encounter rate models from 

eBird observations based on land cover data and current bioclimatic conditions and evaluated 

overlap and correlation between the encounter rates of the different populations. I found that the 

encounter rates of prairie grouse populations were more correlated for populations that were 

more related while encounter rate overlap was more related to time since known range overlap. 

For sharp-tailed grouse populations, I found that encounter rates for more closely related 

populations had more overlap and were more correlated, with northern populations all being 
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similar to each other and southern populations generally differing from each other. My results 

support ecological niche conservatism, with the encounter rates of more closely related 

populations being more correlated. However, my results suggest that differences in habitat may 

have aided in the speciation and subspeciation of populations within the prairie grouse species is 

complex.  

INTRODUCTION 

Avian species and subspecies are typically defined by checklist committees (e.g., North 

American Classification Committee; Chesser et al. 2024) and are typically updated annually. By 

definition, different species occupy different habitats, requiring diverse resources to survive and 

reproduce (Hall et al. 1997). Differences in resource requirements and the availability of new 

resources has helped facilitate evolution in some sympatric species (Petren et al. 1999, Danley 

and Kocher 2001, Loses et al. 2003). However, some species that are closely related still require 

similar resources and occupy similar habitat conditions compared to more distantly related 

species (Harvey and Pagel 1991, Holt and Gaines 1992, Ricklefs and Latham 1992, Peterson et 

al. 1999, Pryon et al. 2015), which can lead to range overlap and hybridization.  

Prairie grouse (Tympanuchus) are a closely related group of upland game birds comprised 

of three species: lesser prairie-chicken (T. pallidicinctus), greater prairie-chicken (T. cupido), and 

sharp-tailed grouse (T. phasianellus). Prairie grouse can be found throughout much of North 

America, ranging from coastal Texas to the south, western Quebec to the east, central 

Washington to the west, and Alaska to the north (Hagen and Giesen 2020, Johnson et al. 2020, 

Connelly et al. 2024). Prairie grouse are typically found in rangeland habitats such as shrublands 

and grasslands, with the different species generally occupying different habitat conditions 

(Hagen and Giesen 2020, Johnson et al. 2020, Connelly et al. 2024). Greater prairie-chickens 
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typically inhabit grasslands that may include a shrub component (Johnson et al. 2020); lesser 

prairie-chickens typically inhabit grassland and shrubby grasslands with vegetation less than one 

meter in height (Hagen and Giesen 2020); and sharp-tailed grouse typically inhabit more shrubby 

areas than the other prairie grouse (DeYoung and Williford 2016, Connelly et al. 2024). 

 Recently, landscape changes and range shifts have led to prairie grouse populations 

coming in contact, and creating hybrid zones (Johnsgard and Wood 1968, Oyler-McCance et al. 

2016), which has resulted in documented cases of hybridization between greater and lesser 

prairie-chickens (Bain and Farley 2002, Oyler-McCance et al. 2016) and between greater prairie-

chicken and sharp-tailed grouse (Johnsgard and Wood 1968, Sparling 1980). These hybridization 

zones are likely caused by intersections in habitat needs and available habitat conditions being 

suitable for the populations that overlap. Additionally, recent genetic (Black et al. 2024) and 

morphological (Stein 2023) evidence suggests that greater and lesser prairie-chicken are very 

similar and may not be fully diverged from each other. Evidence also suggests that all three 

species of prairie grouse have recently diverged from each other, with sharp-tailed grouse 

diverging from greater and lesser prairie-chicken ~300,000 years before present (ybp; Spaulding 

et al. 2006, DeYoung and Williford 2016), and prairie-chickens diverging more recently from 

each other (~170,000 ybp; Galla and Johnson 2015, DeYoung and Williford 2016). The recent 

divergence of the three species has been attributed to sexual selection (Spaulding 2007, Oyler-

McCance et al. 2010) and glacial cycles over the past million years (Drovetski 2003, DeYoung 

and Williford 2016). Prairie grouse populations are generally thought to have occupied different 

areas during the last glacial maximum (~21,000 ybp), with sharp-tailed grouse predicted to have 

a different refugia than both species of prairie-chickens (DeYoung and Williford 2016), 
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suggesting that differing climatic conditions and resulting habitats helped differentiate these 

species.  

Within the prairie grouse group, there are also multiple subspecies that are recognized, 

including three greater prairie-chicken subspecies and seven subspecies of sharp-tailed grouse 

(Johnson et al. 2020, Connelly et al. 2024). Of the three greater prairie-chicken subspecies, only 

two are extant (Attwater’s [T. c. attwateri] and greater [T. c. pinnatus]) and one is extinct (heath 

hen [T. c. cupido]); T. c. attwateri only occur in a small portion of Texas, whereas T. c. pinnatus 

is found throughout the rest of their range in the Great Plains, and T. c. cupido was formerly 

found along the East Coast of the United States from Maine to Virginia (Johnson et al. 2020, 

2023). Of the seven recognized subspecies of sharp-tailed grouse, one is extinct (New Mexico 

[T. phasianellus hueyi]) and six are extant (prairie [T. p. campestris], Alaskan [T. p. caurus], 

Columbian [T. p. columbianus], plains [T. p. jamesi], northwestern [T. p. kennicotti], and 

northern [T. p. phasianellus]; Connelly et al. 2024). Sharp-tailed grouse populations have 

historically been delineated using slight visual differences and differences in habitat (Johnsgard 

2002, Connelly et al. 2024). With different species and subspecies complex of prairie-grouse 

occupying different habitats, this suggests that habitat may have played a role in speciation and 

subspeciation, respectively, and understanding current habitat differences might lead to a better 

understanding of where the different species and subspecies occur and why hybridization zones 

occur. 

  I sought to understand differences in habitat use, using both current environmental 

conditions (e.g., land cover and topographic conditions) and current and past (last glacial 

maximum) bioclimatic conditions, between the three species of prairie grouse (hereafter prairie 

grouse populations), and between the six extant subspecies of sharp-tailed grouse and two 
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populations of sharp-tailed grouse with unknown subspecies (hereafter sharp-tailed grouse 

populations). Specifically, I evaluated differences between the encounter rates of the different 

populations using a species distribution modeling approach. The encounter rate of a species is 

the average rate at which an observer will encounter the species and reflects the product of 

occupancy and detectability (Johnson et al. 2021). Encounter rate models are a form of species 

distribution model that are used in place of occupancy models when the input data does not meet 

all the assumptions of occupancy models, such as absolute detectability, such as the semi-

structured citizen science database, eBird (Johnson et al. 2021, Strimas-Mackey et al. 2023c). 

Encounter rate models are based on locations where the focal species is observed and locations 

where the focal species is not observed, a version of use versus availability study designs 

(Johnson et al. 2021). However, encounter rate models do account for some variability in 

detectability and therefore, are typically proportional to occupancy models (Strimas-Mackey et 

al. 2023c). Species distribution models have been used to quantify differences and potential 

overlap in habitat conditions suitable for different species (Warren et al. 2008).  

I used eBird data to estimate the encounter rates of each prairie grouse and sharp-tailed 

grouse population relative to habitat features (e.g., land cover and topography) and bioclimatic 

conditions using Random Forests models (Breiman 2001). I then compared the individual 

encounter rates for prairie grouse populations and sharp-tailed grouse populations to understand 

if there was overlap and correlation in encounter rates between populations. Overlap in encounter 

rates represents the potential for populations to interact while correlation represents similar 

responses to the environmental conditions being evaluated. I hypothesize that populations of 

prairie grouse and sharp-tailed grouse that are genetically more related to each other will have 

greater overlap and correlation between their encounter rates (Harvey and Pagel 1991). I predict, 
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of the prairie grouse populations, greater and lesser prairie-chickens will have the most overlap 

and correlation in encounter rates because these are the two more closely related species with 

sharp-tailed grouse being a sister group to the prairie-chickens (Galla and Johnson 2015, Johnson 

et al. 2023). For sharp-tailed grouse populations, I predict that the encounter rates of the northern 

populations (T. p. caurus, T. p. kennicotti, T. p. phasianellus, and a population with unknown 

subspecies in northern Canada) will have more overlap than with other populations, as the 

northern populations are more related based on mitochondrial DNA (Galla and Johnson 2015) 

and autosomal DNA (Johnson et al. 2023; but see Galla and Johnson 2015). Additionally, I 

predict that of the southern populations (T. p. campestris, T. p. columbianus, T. p. jamesi, and a 

population with unknown subspecies in southern Wyoming and northwestern Colorado), T. p. 

columbianus and T. p. jamesi will have the most overlap because they are more related based on 

mitochondrial DNA (Galla and Johnson 2015) and autosomal DNA (Johnson et al. 2023; but see 

Galla and Johnson 2015). 

METHODS 

Study area 

For my analyses of prairie grouse populations, my study area was comprised of the middle 

northern portion of the United States and the majority of Canada and encompassed the ranges of 

all three prairie-grouse populations (Figure 1.1). For my analysis of sharp-tailed grouse 

populations, my study area encompassed the range of the sharp-tailed grouse in the United States 

and Canada (Figure 1.1). For each of my analyses, I obtained eBird checklists from across the 

ranges of the populations of interest between 1 January 2010 and 31 October 2023 (eBird 2023). 

Environmental conditions 
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To understand available environmental conditions, I obtained remotely sensed land cover and 

topography data. I obtained available land cover data from two different sources: 1) the North 

American Land Change Monitoring System (NALCMS; 30-m grain size) from the Commissions 

for Environmental Cooperation (https://www.cec.org/; Table 1.1) and 2) International 

Geosphere-Biosphere Programme (IGBP; 463-m grain size) from MODIS data collection (Friedl 

and Sull-Menashe 2022; Table 1.1). I used these two different land cover databases because they 

estimate different land cover classes and are produced on different temporal scales (NALCMS is 

only available for 2010, 2015, and 2020; IGBP is available annually from 2010–2023). I 

converted land cover data to binary data for each classification value using the classify function 

within the terra package in Program R (Hijmans 2025, R Core Team 2024). To understand 

available topographic differences, I used a digital elevation model from the Commission for 

Environmental Cooperation (https://www.cec.org/; 250-m grain size). I calculated heat load 

index (McCune and Keon 2002, McCune 2007), terrain ruggedness index (Riley et al. 1999), and 

topographic position index (De Reu et al. 2013) using the hli, tri, and tpi functions in the 

spatialEco package in program R (Evans and Murphy 2023). Once I generated all of the land 

cover and topographic layers, I used the project function using the bilinear method from the 

terra package in Program R (Hijmans 2025) to re-sample all of the NALCMS and topographic 

layers to the same spatial resolution and coordinate reference system as the IGBP layers. I 

resampled to the IGBP layers because this dataset had the coarsest spatial resolution. To 

accommodate the imprecise locations from eBird, I used a 1,500-m moving window analysis 

using the focalMat and focal functions in the terra package (Hijmans 2025) in Program R 

version 4.4.1 (R Core Team 2024) to get average available conditions within 1,500-m of each 

cell and extracted the average within each cell at each observation location.  

https://www.cec.org/
https://www.cec.org/
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Bioclimatic conditions 

I obtained current (1979–2013) and last glacial maximum (~21,000 ybp) bioclimatic conditions 

from Climatologies at High Resolution for the Earth’s Land Surface Areas (CHELSA; Karger et 

al. 2017a, b). The bioclimatic conditions from the last glacial maximum were developed from 

the PMIP3 general circulation model using the NCAR-CCSM4 model (Karger et al. 2017a). I 

downloaded the current and last glacial maximum data sets using the paleoclim function within 

the rpaleoclim package in Program R (Brown et al. 2018). 

Observation locations 

To obtain locations where individuals of each population were observed and not observed across 

the occupied range of all populations, I used eBird checklists with confirmed observations of the 

population of interest. I removed duplicate observations from the database prior to analyzing 

eBird data. I categorized the population of interest based on whether the species was observed 

(prairie grouse populations; Figure 1.1) or based on the published ranges of each subspecies 

(sharp-tailed grouse populations; Spaulding et al. 2006, Galla and Johnson 2015; Figure 1.1). For 

sharp-tailed grouse populations, I separated the populations by subspecies range and in cases 

where the subspecies identity was in question (e.g., southcentral Wyoming and northern Canada, 

see Chapter 2 of this dissertation) by populations for a total of eight populations (Figure 1.1). 

The 8 sharp-tailed grouse populations I evaluated were T. p. campestris, T. p. caurus, T. p. 

columbianus, T. p. jamesi, T. p. kennicotti, T. p. phasianellus, a population with unknown 

subspecies in Canada population (unknown Canada), and a population with unknown subspecies 

in Wyoming/Colorado (unknown Wyoming/Colorado; Figure 1.1). I used checklists from 

January 2010–October 2023 and filtered checklist data according to data use recommendations 

(Johnson et al. 2021, Strimas-Mackey et al. 2023c); this included limiting checklists to complete 
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checklists where all observed individuals were reported, checklists with distances less than 5 km, 

checklists less than 6 hours long, checklists with less than 10 observers, and checklists with 

speeds less than 100 kmph (Johnson et al. 2021, Strimas-Mackey et al. 2023c). To obtain non-

detection data, I used the auk_zerofill function within auk package in program R (Johnson et al. 

2021, Strimas-Mackey et al. 2023a). To account for spatial bias, temporal bias, and class 

imbalance (between checklists where the focal species was observed and not observed), I 

independently subsampled detection and non-detection locations within a 3-km grid by selecting 

one detection and one non-detection location per grid cell per week using the 

grid_sample_stratified function within the ebirdst package in program R (Johnson et al. 2021, 

Strimas-Machey et al. 2023b, c). Once I had filtered all the locations, I extracted the 

environmental covariates and bioclimatic variables, identified above, to each checklist. I aligned 

checklists with land cover data based on the year of the checklist. Because annual land cover 

data was not available from the NALCMS dataset, I used 2010 land cover data for points from 

2010–2012, I used 2015 land cover data for points from 2013–2017, and I used 2020 land cover 

data for points from 2018–2023. 

Statistical analysis 

I used Random Forests models to generate encounter rates for each prairie grouse and sharp-

tailed grouse population to compare overlap in encounter rates between populations (Breiman 

2001). I calculated encounter rates because the nature of eBird data does not allow for 

calculations of true species distribution models, but they do approximate a species occupancy 

and can be considered “apparent distributions” of a species (Johnson et al. 2021). Encounter rates 

modeled using eBird data can be approximated as the probability that an eBirder encounters the 

species of interest on a standard eBird checklist and are similar to occupancy models (Strimas-



 10 

Mackey et al. 2023c). Once I identified my final presence and pseudo-absence locations, I used a 

down-sampled Random Forests model (Valavi et al. 2021) using the ranger function from the 

ranger package in program R (Wright and Ziegler 2017). I used the suite of environmental 

variables and several effort variables as predictors of encounter rate. I used effort variables to 

help account for differences in detectability; the effort variables that I used were time of day, day 

of year, year, duration of the checklist, length of the checklist, speed of the checklist, and number 

of observers.  

I ran my Random Forests models using 80% of the data as training data so that I could 

use the remaining 20% of the data (test data set) to assess the fit of the model. I evaluated the fit 

of the Random Forests models using mean square error using the test data set (Johnson et al. 

2021); all mean square error estimates were less than 0.01 indicating a good fit to the data. I 

standardized variable importance values so the top variable equaled 1 and the remaining 

variables were proportions derived by dividing by the top variable (Doherty et al. 2018). In 

addition, I generated partial dependency plots of the three most important variables that were in 

common between all (prairie grouse) or most (sharp-tailed grouse) of the populations. Once I ran 

the training model, I calibrated the model following Strimas-Mackey et al. (2023c). I used the 

calibrated model to generate a predictive surface for environmental conditions, current 

bioclimatic conditions, and last glacial maximum bioclimatic condition and I reclassified the 

encounter rate probability between zero and one for each predictive surface. This provided the 

ability to calculate overlap in encounter rates between populations.  

To evaluate overlap in encounter rates, I calculated pairwise I statistics (a measure 

derived from Hellinger distance; Warren et al. 2008) and Spearman’s rank correlations (ρ) using 

the raster.overlap function in the ENMTools package in program R (Warren et al. 2008, Warren 
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and Dinnage 2024). Specifically, I quantifies the potential for species to interact or compete with 

one another and measures shared suitable habitat, where 0 represents no overlap and 1 represents 

complete overlap (Warren et al. 2008). Spearman’s rank correlation (ρ) evaluates the population 

responses to habitat conditions and identifies if the suitable habitat conditions are similar 

between populations. Spearman’s rank correlation coefficients vary between -1 and 1, with 

negative 1 representing complete opposite encounter rates and positive 1 representing complete 

correlation in encounter rates. For each metric (I and ρ), I considered encounter rates to have 

minimal overlap/correlation for values between |0.0–0.5|, moderate overlap/correlation for values 

between |0.5–0.7|, and I considered them to have high overlap/correlation with values between 

|0.7–1.0|. For negative Spearman’s rank correlation values, I used the same categories but 

considered the encounter rates to have minimal negative correlation, moderate negative 

correlation, and high negative correlation, respectively. 

RESULTS 

In total, there were 7,486 greater prairie-chicken, 1,569 lesser prairie-chicken, and 20,538 sharp-

tailed grouse observations in the eBird dataset from January 2010–October 2023 that met my 

criteria to be included in my analyses. For sharp-tailed grouse subspecies, observation totals 

were 5,886 for T. p. campestris, 282 for T. p. caurus, 738 for T. p. columbianus, 11,787 for T. p. 

jamesi, 46 for T. p. kennicotti, 595 for T. p. phasianellus, 178 unknown sharp-tailed grouse 

subspecies in Canada, and 510 observations of unknown sharp-tailed grouse subspecies in 

Wyoming/Colorado. The total observations of sharp-tailed grouse subspecies/populations do not 

add up to the total sharp-tailed grouse observations because some of the eBird observations were 

outside the recognized subspecies/population ranges. 

Environmental conditions encounter rate models 
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Prairie grouse encounter rate model overlap—I created predictive surfaces for each species of 

prairie grouse as predicted by the Random Forests models (Figure 1.2). When evaluating 

encounter rate overlap using I, all species of prairie grouse had moderate overlap with each 

other, with the overlap between greater prairie-chicken and sharp-tailed grouse being the highest 

(I = 0.65) followed by lesser prairie-chicken and sharp-tailed grouse and the species pair with the 

least overlap being greater and lesser prairie-chicken (Table 1.3). I found that the encounter rates 

of greater and lesser prairie-chicken were highly correlated (ρ = 0.73) while sharp-tailed grouse 

were moderately correlated with both greater (ρ = 0.53) and lesser prairie-chicken (ρ = 0.57; 

Table 1.2). 

Prairie grouse variable importance—For greater prairie-chicken encounter rate 

modeling, the most important land cover and topographic variables for predicting encounter rates 

were shrublands, grasslands, croplands, conifer forest, and terrain ruggedness index (Table 1.3). 

For lesser prairie-chicken, the most important land cover and topographic variables predicting 

lesser prairie-chicken encounter rate were wetlands, grasslands, conifer forests, mixed forests, 

and terrain ruggedness index (Table 1.3). For sharp-tailed grouse, the most important land cover 

and topographic variables predicting sharp-tailed grouse encounter rate were grasslands, terrain 

ruggedness index, croplands, topographic position index, and shrublands (Table 1.3). Partial 

dependency plots showed that encounter rates were highest in areas with a greater proportion of 

grasslands within 1,500 m for all species (Figure 1.3), encounter rates were highest in areas with 

less rugged terrain for all species (Figure 1.4), and encounter rates were highest for greater 

prairie-chicken in areas with a lower proportion of shrublands within 1,500 m while encounter 

rates were highest for lesser prairie-chicken and sharp-tailed grouse in areas with a greater 

proportion of shrublands within 1,500 m (Figure 1.5).  
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Sharp-tailed grouse encounter rate model overlap—I created a predictive surface for 

each subspecies/population of sharp-tailed grouse as predicted by the Random Forests models 

(Figure 1.6). When evaluating overlap (I) in encounter rate, T. p. caurus, T. p. phasianellus, T. p. 

kennicotti, and the unknown Canada populations, all moderate or high overlap with each other 

(Table 1.4). The encounter rate of T. p. columbianus had moderate overlap with T. p. caurus, T. 

p. jamesi, T. p. phasianellus, and the unknown Canada population (Table 1.4). When evaluating 

correlation (ρ) in encounter rates between sharp-tailed grouse populations, I found that T. p. 

caurus, T. p. kennicotti, T. p. phasianellus, and the unknown Canada population were highly 

correlated with each other (range of ρ = 0.77–0.88; Table 1.4). I found that the encounter rate of 

T. p. jamesi was negatively correlated with T. p. caurus, T. p. kennicotti, T. p. phasianellus, and 

the unknown Canada population and T. p. jamesi was moderately correlated with T. p. 

columbianus (Table 1.4). For complete results evaluating overlap (I) and Spearman’s rank 

correlation (ρ) between sharp-tailed grouse populations see Table 1.4. 

Sharp-tailed grouse variable importance—For encounter rate models of sharp-tailed 

grouse subspecies, the most important land cover and topographic variables as predicted by the 

Gini index for predicting encounter rate of T. p. campestris were terrain ruggedness index, 

deciduous forest, topographic position index, heat load index, and croplands (Table 1.4). For T. 

p. caurus, the most important land cover and topographic variables predicting encounter rate 

were conifer forests, woody savannas, mixed forest, wetlands, and barren lands (Table 1.4). For 

T. p. columbianus, the most important land cover and topographic variables predicting encounter 

rate were shrublands, heat load index, croplands, mixed forest, and terrain ruggedness index 

(Table 1.4). The most important land cover and topographic variables predicting the encounter 

rate of T. p. jamesi were grasslands, woody savanna, conifer forests, croplands, and terrain 
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ruggedness index (Table 1.4). The most important land cover and topographic variables 

predicting the encounter rate of T. p. kennicotti were savanna, croplands, conifer forest, 

topographic position index, and terrain ruggedness index (Table 1.4). The most important land 

cover and topographic variables predicting the encounter rate of T. p. phasianellus were conifer 

forests, terrain ruggedness index, woody savanna, mixed forests, and topographic position index 

(Table 1.4). The most important land cover and topographic variables predicting the encounter 

rate of unknown sharp-tailed grouse in Canada were croplands, woody savanna, wetlands, 

conifer forests, and mixed forest (Table 1.4). For unknown sharp-tailed grouse in 

Wyoming/Colorado, the most important land cover and topographic variables predicting 

encounter rate were shrublands, terrain ruggedness index, deciduous forest, grasslands, and 

barren lands (Table 1.4). Partial dependency plots for conifer forest demonstrated that more 

northern populations of sharp-tailed grouse (e.g., T. p. caurus, T. p. kennicotti, T. p. phasianellus, 

and unknown Canada population) had higher encounter rates when there was more conifer forest 

cover (Figure 1.7 B, E, F, G) while the more southern populations (e.g., T. p. campestris, T. p. 

jamesi, T. p. columbianus, and unknown Wyoming/Colorado population) generally had lower 

encounter rates when there was more conifer forest (Figure 1.7 A, C, D, H). Partial dependency 

plots for terrain ruggedness index demonstrated that in general, sharp-tailed grouse populations 

had higher encounter rates when terrain was less rugged (Figure 1.8), while the encounter rates 

for T. p. columbianus and unknown Wyoming/Colorado were highest in slightly more rugged 

terrain (Figure 1.8 C and H). Partial dependency plots for croplands did not follow a trend for all 

populations, but the encounter rates for T. p. campestris, T. p. columbianus, and T. p. jamesi 

increased as the proportion of croplands increased (Figure 1.9 A, C, D) while the encounter rates 
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for T. p. caurus, T. p. kennicotti, and unknown Canada were highest when the proportion of 

grasslands was low (Figure 1.9 B, E, G).  

Bioclimatic encounter rate models 

Prairie grouse encounter rate model overlap—I created predictive surfaces for each species of 

prairie grouse as predicted by the Random Forests models for current bioclimatic conditions 

(Figure 1.10) and bioclimatic conditions during the last glacial maximum (Figure 1.11). Using 

current bioclimatic conditions, there was little overlap (I) between prairie grouse encounter rates, 

while the encounter rates between greater and lesser prairie-chicken were the most correlated (ρ 

= 0.47; Table 1.6). Using bioclimatic conditions during the last glacial maximum, there was 

significant overlap in encounter rates between all populations and encounter rates of greater and 

lesser prairie-chicken were moderately correlated (ρ = 0.65; Table 1.7). 

Sharp-tailed grouse encounter rate model overlap—I created predictive surfaces for each 

species of prairie grouse as predicted by the Random Forests models for current bioclimatic 

conditions (Figure 1.12) and bioclimatic conditions during the last glacial maximum (Figure 

1.13). Under current bioclimatic conditions, I found that there was moderate overlap (I) between 

the three northern most populations (T. p. caurus, T. p. kennicotti, and unknown Canada) and 

moderate overlap between T. p. kennicotti and unknown Wyoming/Colorado (Table 1.8). Under 

current bioclimatic conditions, there was moderate to high correlation between the four most 

northern populations (T. p. caurus, T. p. kennicotti, T. p. phasianellus, and unknown Canada; ρ = 

0.61–0.88; Table 1.8). Additionally, T. p. campestris, T. p. phasianellus, and unknown Canada 

populations were all correlated (ρ = 0.71–0.79) and T. p. columbianus and unknown 

Wyoming/Colorado were moderately correlated (ρ = 0.63). Under bioclimatic conditions during 

the last glacial maximum, I found that there was high overlap (I) between all populations of 
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sharp-tailed grouse (Table 1.9). Under bioclimatic conditions during the last glacial maximum, 

there was high correlation (ρ) between the three most northern populations (T. p. caurus, T. p. 

kennicotti, and unknown Canada; Table 1.9) and moderate to low correlation between the rest of 

the populations (Table 1.8). For complete results evaluating overlap (I) and Spearman’s rank 

correlation (ρ) between sharp-tailed grouse populations based on bioclimatic conditions see 

Tables 1.8 and 1.9. 

DISCUSSION 

Prairie grouse are found through much of the rangelands in the Great Plains and Intermountain 

West of North America and are known to hybridize in portions of their ranges (Hagen and 

Giesen 2020, Johnson et al. 2020, Connelly et al. 2024). I evaluated the overlap and correlation 

of the encounter rates of the different species of prairie grouse and the different subspecies of 

sharp-tailed grouse based on land cover and topography and bioclimatic condition. Among 

prairie grouse species, I found that the encounter rates of the more closely related species were 

more correlated with each other (greater and lesser prairie-chicken) indicating more similarity in 

required habitat conditions, while the species with the larger projected hybridization zone 

(greater prairie-chicken and sharp-tailed grouse) had the most overlap in encounter rates which 

indicates a greater potential to interact. Within the populations of sharp-tailed grouse, the 

encounter rates of more closely related populations generally had more overlap and were 

generally more correlated with each other, forming a more northerly group (T. p. caurus, T. p. 

kennicotti, T. p. phasianellus, and unknown Canada), with the southern populations having 

limited overlap or correlation with each other except for moderate overlap and correlation in 

encounter rates between T. p. jamesi and T. p. columbianus based on current land cover and 

topographic conditions. The trends of overlap and correlation of encounter rates during the last 
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glacial maximum were generally similar to those based on current conditions. My results suggest 

that more closely related populations within the prairie grouse species and subspecies complex 

generally have more similar land cover and bioclimatic habitat requirements. 

The ranges of prairie grouse are thought to have shifted over the past 200 years as a result 

of land use change (Johnsgard and Wood 1968, Bain and Farley 2002), likely resulting in 

currently observed areas of range overlap between the populations. The ranges of the greater and 

lesser prairie-chicken are thought to have come in contact during the past 30 to 40 years (Bain 

and Farley 2002, Hagen and Giesen 2020) with known hybrids occurring since at least 2001 

(Bain and Farley 2002). My results demonstrate that the encounter rates of greater and lesser 

prairie-chicken were most correlated between the three prairie grouse populations, suggesting 

that these species occupy similar environmental conditions. While I did not evaluate future 

conditions, similar habitat use in areas of overlap (Dahlgren et al. 2016), coupled with my results 

demonstrating correlation in encounter rates using both land cover and bioclimatic conditions 

suggest that there is potential for more range overlap in the future. My results indicate that there 

is more overlap between greater prairie-chicken and sharp-tailed grouse encounter rates then 

there is correlation suggesting that there is more potential for these species to interact, likely as a 

result of these species co-occurring since the late 1800’s (Gurney 1884, Johnsgard and Wood 

1968), with hybrids documented as early as 1877 (Gurney 1884). The areas where greater 

prairie-chicken and sharp-tailed grouse co-occur are thought to have expanded during the late 

1800s as a result of land-use changes associated with expansion of agriculture (Johnsgard and 

Wood 1968).  

Prairie grouse speciation is predicted to have occurred because of periodic glaciation 

during the late Pleistocene and prairie grouse are generally thought to have been geographically 
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separated from each other prior to European settlement (DeYoung and Williford 2016). Similar 

to my results, a previous study evaluating habitat suitability of prairie grouse based on museum 

specimens suggests that there was more correlation in habitat conditions between greater and 

lesser prairie-chicken with limited correlation between sharp-tailed grouse and both prairie-

chicken species during the last glacial maximum (DeYoung and Williford 2016). Greater and 

lesser prairie-chicken are closely related, and thought to have diverged around 170,000 ybp 

(Galla and Johnson 2015, DeYoung and Williford 2016), whereas prairie-chickens are thought to 

have diverged from sharp-tailed grouse around 300,000 ybp (Spaulding et al. 2006, DeYoung 

and Williford 2016). While I did not evaluate genetic relationships, the correlation in suitable 

habitat during the last glacial maximum aligns with the expected genetic relationships between 

these populations with more closely related species having more correlation between suitable 

habitats. Similar to prairie-grouse populations, I found that the suitable habitat of more closely 

related sharp-tailed grouse populations were generally more correlated with each other during the 

last glacial maximum. The greater correlation in suitable habitat during the last glacial maximum 

for closer related populations suggests that differences in habitat requirements may have aided in 

the divergence of prairie grouse species and populations, generally following the patterns of 

phylogenetic niche conservatism, where closely related populations retain some ancestral 

ecological characteristics over time (Harvey and Pagel 1991, Ricklefs and Latham 1992, 

Peterson et al. 1999, Pryon et al. 2015). To better understand the connection between habitat 

conditions and genetic relationships among prairie grouse populations, I recommend a 

phylogeographic and landscape genetic study that includes samples from across the range of 

each population of prairie grouse. 
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When evaluating sharp-tailed grouse subspecies, I observed the encounter rates of the 

northern populations (T. p. caurus, T. p. kennicotte, T. p. phasianellus, and unknown Canada) 

generally overlapped, were generally correlated, and had similar variables important for 

predicting encounter rates. The northern populations of sharp-tailed grouse are more closely 

related genetically to each other then they are to the southern populations (T. p. campestris, T. p. 

columbianus, T. p. jamesi, and unknown Wyoming/Colorado; Galla and Johnson 2015, Johnson 

et al. 2023) and the northern populations share similar morphology with these populations 

appearing darker-colored overall and smaller than the southern populations (Connelly et al. 

2024). In contrast, a phylogeographic study of sharp-tailed grouse populations suggests that there 

is limited genetic connectivity between the northern populations (Perktaş and Elverici 2019), 

though the sample size was small and represent a small fraction of the northern populations. The 

two southern populations I observed with the most overlap based on land cover and topography 

were T. p. columbianus and T. p. jamesi, which are also two of the more related southern 

populations (Galla and Johnson 2015, Johnson et al. 2023); however, based on bioclimatic 

conditions, the encounter rates of these two populations did not overlap. The encounter rates of 

T. p. columbianus and the unknown Wyoming/Colorado population had limited overlap and 

correlation based on land cover and topography, despite the unknown Wyoming/Colorado 

population historically classified as T. p. columbianus (Spaulding et al. 2006, Connelly et al. 

2024). When using more detailed data on vegetation cover, a Random Forests classification 

model was able to identify differences in habitat between T. p. columbianus, T. p. jamesi, and 

unknown Wyoming/Colorado populations (Chapter 2, this Dissertation). In contrast, encounter 

rates based on bioclimatic condition had moderate overlap and correlation between T. p. 

columbianus and unknown Wyoming/Colorado populations. Land use changes have resulted in 
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increased grasslands across portions of the range of T. p. columbianus (Hoffman et al. 2015, 

Stevens et al. 2023), likely altering the land cover types occupied by T. p. columbianus despite 

similarities in bioclimatic conditions. 

My results suggest that the encounter rates of more closely related populations are more 

correlated, suggesting these populations have similar habitat requirements. The populations of 

prairie grouse with more overlap (greater prairie-chicken and sharp-tailed grouse) have a longer 

history of known range overlap and hybridization (Gurney 1884, Johnsgard and Wood 1968, 

Johnson et al. 2020). Similarly, the populations of prairie-grouse with more correlated encounter 

rates (greater and lesser prairie-chicken) are more closely related to each other (Galla and 

Johnson 2015, Johnson et al. 2023), with some suggesting that they may not be fully diverged 

from each other (Black et al. 2024). The relationships between sharp-tailed grouse populations 

were similar, with more closely related populations typically having more overlap and 

correlation between populations. My results support ecological niche conservatism, with the 

encounter rates of more closely related populations being more correlated; however, my results 

also suggest that differences in habitat requirements may have aided in the speciation and 

subspeciation of populations within the prairie grouse species complex by helping to maintain 

spatial and ecological separation of populations. 

LITERATURE CITED 

Bain, M. R., and G. H. Farley. 2002. Display of an apparent hybrid prairie-chickens in a zone of 

geographic overlap. Condor 104:683-687. 

Black, A. N., A. J. Mularo, J. Y. Jeon, D. A. Haukos, K. J. Bondo, K. A. Fricke, A. J. Gregory, B. 

Grisham, Z. E. Lowe, and J. A. DeWoody. 2024. Discordance between taxonomy and 



 21 

population genomic data: an avian example relevant to the United States Endangered 

Species Act. PNAS Nexus 3:pgae298.  

Breiman, L. 2001. Random Forests. Machine Learning 45:5–32. 

Brown, J. L., D. J. Hill, A. M. Dolan, A. C. Carnaval, and A. M. Haywood. 2018. PaleoClim, 

high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 

5:180254. 

Burda, B., C. M. Somers, K. Conkin, and R. J. Fisher. 2022. Lek habitat suitability for the sharp-

tailed grouse (Tympanuchus phasianellus jamesi) on the Northern Great Plains. PLoS 

ONE 17(4): e0265316. 

Burr, P. C., A. C. Robinson, R. T. Larsen, R. A. Newman, and S. N. Ellis-Felege. 2017. Sharp-

tailed grouse nest survival and nest predator habitat use in North Dakota’s Bakken oil 

field. PLoS ONE 12:e0170177. 

Chesser, R. T., S. M. Billerman, K. J. Burns, C. Cicero, J. L. Dunn, B. E. Hernández-Baños, R. 

A. Jiménez, O. Johnson, A. W. Kratter, N. A. Mason, and P. C. Rasmussen. 2024. Check-

list of North American Birds (online). American Ornithological Society. 

https://checklist.americanornithology.org/ 

Connelly, J. W., M. W. Gratson, and K. P. Reese. 2024. Sharp-tailed grouse (Tympanuchus 

phasianellus), version 1.1. In A. F. Poole, F. B. Gill, and M. G. Smith (editors). Birds of 

the World (. Cornell Lab of Ornithology, Ithaca, NY, USA. 

https://doi.org/10.2173/bow.shtgro.01.1. 

Dahlgren, D. K., R. D. Rodgers, R. D. Elmore, and M. R. Bain. 2016. Grasslands of Western 

Kansas, North of the Arkansas River. Pages 259–279 in D. A. Haukos and C. W. Boal 

https://checklist.americanornithology.org/


 22 

(editors). Ecology and conservation of lesser prairie-chickens. Studies in Avian Biology 

(no. 48), CRC Press, Boca Raton, FL, USA. 

Danley, P. D., and T. D. Kocher. 2001. Speciation in rapidly diverging systems: lessons from 

Lake Malawi. Molecular Ecology 10:1075–1086. 

De Reu, J., J. Bourgeois, M. Bats, A. Zwertvaegher, V. Gelorini, P. De Smedt, W. Chu, M. 

Antrop, P. De Maeyer, P. Finke, M. Van Meirvenne, J. Verniers, and P. Crombé. 2013. 

Application of the topographic position index to heterogeneous landscapes. 

Geomorphology 186:39–49. 

DeYoung, R. D., and D. L. Williford. 2016. Genetic variation and population structure in the 

prairie grouse. Pages 77–97 in D. A. Haukos and C. W. Boal (editors). Ecology and 

conservation of lesser prairie-chickens. Studies in Avian Biology (no. 48), CRC Press, 

Boca Raton, FL, USA. 

Doherty, K. E., J. D. Hennig, J. B. Dinkins, K. A. Griffin, A. A. Cook, J. D. Maestas, D. E. 

Naugle, and J. L. Beck. 2018. Understanding biological effectiveness before scaling up 

range-wide restoration investments for Gunnison sage-grouse. Ecosphere 9(3):e02144. 

Drovetski, S. V. 2003. Plio-Pleistocene climate oscilations, Holarctic biogeography, and 

speciation in an avian subfamily. Journal of Biogeography 30:1173–1181. 

eBird. 2023. eBird: An online database of bird distribution and abundance [web application]. 

eBird, Cornell Lab of Ornithology, Ithaca, New York. Available: http://www.ebird.org. 

(Accessed: November 25, 2023). 

Evans J. S., and M. A. Murphy. 2023. spatialEco. R package version 2.0-2, 

<https://github.com/jeffreyevans/spatialEco>. 



 23 

Friedl, M., and D. Sulla-Menashe. 2022. MODIS/Terra+Aqua land cover type yearly L3 Global 

500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active 

Archive Center. Accessed 3 October 2024 from 

https://doi.org/10.5067/MODIS/MCD12Q1.061 

Galla, S. J., and J. A. Johnson. 2015. Differential introgression and effective size of marker type 

influence phylogenetic inference of a recently divergent avian group (Phasianidae: 

Tympanuchus). Molecular Phylogenetics and Evolution 84:1–13. 

Gurney, J. H. 1884. Hybrid between Pedioecetes phasianellus and Cupidonia cupido. Auk 

1:391–392. 

Hagen, C. A. and K. M. Giesen. 2020. Lesser prairie-chicken (Tympanuchus pallidicinctus), 

version 1.0. In A. F. Poole (editor). Birds of the World. Cornell Lab of Ornithology, 

Ithaca, NY, USA. https://doi.org/10.2173/bow.lepchi.01 

Hall, L. S., P. R. Krausman, and M. L. Morrison. 1997. The habitat concept and a plea for 

standard terminology. Wildlife Society Bulletin 25:173–182. 

Harvey, P. H., and M. D. Pagel. 1991. The Comparative Method in Evolutionary Biology. Oxford 

University Press, Oxford, New York, USA. 

Hijmans, R. 2025. terra: spatial data analysis. R package version 1.8-29, https://CRAN.R-

project.org/package=terra. 

Hiller, T. L., J. E. McFadden, L. A. Powell, and W. H. Schacht. 2019. Seasonal and interspecific 

landscape use of sympatric greater prairie-chickens and plains sharp-tailed grouse. 

Wildlife Society Bulletin 43:244–255. 

Hoffman, R. W., K. A. Griffin, J. M. Knetter, M. A. Schroeder, A. D. Apa, J. D. Robinson, S. P. 

Espinosa, T. J. Christiansen, R. D. Northrup, D. A. Budeau, and M. J. Chutter. 2015. 

https://doi.org/10.5067/MODIS/MCD12Q1.061
https://doi.org/10.2173/bow.lepchi.01


 24 

Guidelines for the management of Columbian sharp-tailed grouse populations and their 

habitats. Sage and Columbian Sharp-tailed Grouse Technical Committee, Western 

Association of Fish and Wildlife Agencies, Cheyenne, Wyoming, USA. 

Holt, R. D., and M. S. Gaines. 1992. Analysis of adaptation in heterogeneous landscapes: 

implications for the evolution of fundamental niches. Evolutionary Ecology 6:433–447. 

Hovick, T. J., R. D. Elmore, B. W. Allred, S. D. Fuhlendorf, and D. K. Dahlgren. 2014. 

Landscapes as a moderator of thermal extremes: a case study from an imperiled grouse. 

Ecosphere 5:35. http://dx.doi.org/10.1890/ES13-00340.1. 

Jarnevich, C. S., T. R. Holcombe, B. A. Grisham, J. Timmer, C. W. Boal, M. Butler, J. Pitman, S. 

Kyle, D. Klute, G. Beauprez, A. Janus, and B. Van Pelt. 2016. Assessing range-wide 

habitat suitability for the lesser prairie-chicken. Avian Conservation and Ecology 11(1):2. 

http://dx.doi.org/10.5751/ACE-00807-110102.  

Johnsgard, P. A. 2002. Grassland grouse and their conservation. Smithsonian Institution, 

Washington D. C., USA. 

Johnsgard, P. A., and R. E. Wood. 1968. Distributional changes and interaction between prairie 

chickens and sharp-tailed grouse in the Midwest. Wilson Bulletin 80:173-188. 

Johnson, A., W. M. Hochachka, M. E. Strimas-Mackey, V. Ruiz Gutierrez, O. J. Robinson, E. T. 

Miller, T. Auer, S. T. Kelling, and D. Fink. 2021. Analytical guidelines to increase the 

value of citizen science data: using eBird data to estimate species occurrence. Diversity 

and Distributions 27:1265–1277. 

Johnson, J. A., B. Novak, G. Athrey, A. G. Sharo, T. Chase, and J. Toepfer. 2023. Phylogenomics 

of the extinct heath hen provides support for sex-biased introgression among extant 

prairie grouse. Molecular Phylogenetics and Evolution 189:107927. 

http://dx.doi.org/10.1890/ES13-00340.1
http://dx.doi.org/10.5751/ACE-00807-110102


 25 

Johnson, J. A., M. A. Schroeder, and L. A. Robb. 2020. Greater prairie-chicken (Tympanuchus 

cupido), version 1.0. In A. F. Poole (editor). Birds of the World. Cornell Lab of 

Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.grpchi.01 

Kelling, S., A. Johnston, D. Fink, V. Ruiz-Gutierrez, R. Bonney, A. Bonn, M. Fernandez, W. M. 

Hochachka, R. Julliard, R. Kraemer, and R. Guralnick. 2018. Finding the signal in the 

Noise of Citizen Science Observations. BioScience 69:170–179. 

Karger, D.N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, 

P. Linder, and M. Kessler. 2017a. Climatologies at high resolution for the Earth land 

surface areas. Scientific Data 4:170122. https://doi.org/10.1038/sdata.2017.122 

Karger, D.N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, 

P. Linder, and M. Kessler. 2017b. Data from: Climatologies at high resolution for the 

earth’s land surface areas. Dryad Digital Repository. 

http://dx.doi.org/doi:10.5061/dryad.kd1d4 

Lautenbach, J. M., R. T. Plumb, S. G. Robinson, C. A. Hagen, D. A. Haukos, and J. C. Pitman. 

2017. Lesser prairie-chicken avoidance of trees in a grassland landscape. Rangeland 

Ecology and Management 70:78–86. 

Lawrence, A. J., M. A. Boggie, W. R. Gould, S. A. Carleton, and C. T. Nichols. 2022. Differential 

seasonal avoidance of anthropogenic features and woody vegetation by lesser prairie-

chickens. Ornithological Applications 124:duac022. 

Loses, J. B., M. Leal, R. E. Glor, K. de Queiroz, P. E. Hertz, L. R. Schettino, A. C. Lara, T. R. 

Jackman, and A. Larson. 2003. Niche lability in the evolution of a Caribbean lizard 

community. Nature 423:542–545. 

https://doi.org/10.1038/sdata.2017.122
http://dx.doi.org/doi:10.5061/dryad.kd1d4


 26 

McCune, B. 2007. Improved estimates of incident radiation and heat load using non-parametric 

regression against topographic variables. Journal of Vegetation Science 18:751–754. 

McCune, B., and D. Keon. 2002. Equations for potential annual direct incident radiation and heat 

load index. Journal of Vegetation Science 13:603–606. 

McNew, L. B., V. L. Winder, J. C. Pitman, and B. K. Sandercock. 2015. Alternative rangeland 

management strategies and the nesting ecology of greater prairie-chickens. Rangeland 

Ecology and Management 68:298–304. 

Oyler-McCance, S. J., R. W. DeYoung, J. A. Fike, C. A. Hagen, J. A. Johnson, L. C. Larsson, and 

M. A. Patten. 2016. Rangewide genetic analysis of lesser prairie-chicken reveals 

population structure, range expansion, and possible introgression. Conservation Genetics 

17:643–660. 

Oyler-McCance, S. J., J. St. John, and T. W. Quinn. 2010. Rapid evolution in lekking grouse: 

implications for taxonomic definitions. Ornithological Monographs 67:114–122. 

Perktaş, U., and C. Elverici. 2019. Climate-driven range shifts of the sharp-tailed grouse 

Tympanuchus phasianellus. Acta Ornithologica 54:213–222. 

Peterson, A. T., J. Soberón, and V. Sanchez-Cordero. 1999. Conservatism of ecological niches in 

evolutionary time. Science 285:1265–1267. 

Petren, K., B. R. Grant, and P. R. Grant. 1999. A phylogeny of Darwin's finches based on 

microsatellite DNA length variation. Proceeding of the Royal Society B 266:321–329. 

Pryon, R. A., G. C. Costa, M. A. Patten, and F. T. Burbrink. 2015. Phylogenetic niche 

conservatism and the evolutionary basis of ecological speciation. Biological Reviews 

90:1248–1262. 



 27 

R Core Team. 2024. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Raymond, R. L. 2001. Use of summer and winter habitat by Alaska sharp-tailed grouse 

(Tympanuchus phasianellus caurus) in eastern interior Alaska. Thesis, Alaska Pacific 

University, Anchorage, Alaska, USA. 

Raynor, E. J., L. A. Powell, and W. H. Schacht. 2018. Present and future thermal environments 

available to sharp-tailed grouse in an intact grassland. PLoS ONE 13:e0191233. 

Ricklefs, R. E., and R. E. Latham. 1992. Intercontinental correlation of geographical ranges 

suggests stasis in ecological traits of relict genera of temperate perennial herbs. American 

Naturalist 139:1305–1321. 

Riley, S. J., S. D. DeGloria and R. Elliot. 1999. A terrain ruggedness index that quantifies 

topographic heterogeneity, Intermountain Journal of Sciences 5:23–27. 

Roy, C. L., and D. Chen. 2023. High population prevalence of neonicotinoids in sharp-tailed 

grouse and greater prairie-chickens across an agricultural gradient during spring and fall. 

Science of the Total Environment 856:159120. 

Sparling, Jr., D. W. 1980. Hybridization and taxonomic status of greater prairie-chickens and 

sharp-tailed grouse. Prairie Naturalist 12:92-101. 

Spaulding, A. W., K. E. Mock, M. A. Schroeder, and K. I. Warheit. 2006. Recency, range 

expansion, and unsorted lineages: implications for interpreting neutral genetic variation 

in the sharp-tailed grouse (Tympanuchus phasianellus). Molecular Ecology 15:2317–

2332. 

Spaulding, A. W. 2007. Rapid evolution due to sexual selection in grouse and wood warblers. 

Dissertation, Utah State University, Logan, Utah, USA. 

https://www.r-project.org/


 28 

Stein, C. M. 2023. Greaters, lessers, guessers: a look into the hybridization of greater and lesser 

prairie-chickens. Thesis, University of North Texas, Denton, Texas, USA. 

Stevens, D. S., C. J. Conway, J. M. Knetter, S. B. Roberts, and P. Donnelly. 2023. Multi-scale 

effects of land cover, weather, and fire on Columbian sharp-tailed grouse. Journal of 

Wildlife Management 87:e22349 

Strimas-Mackey, M., E. Miller, and W. Hochachka. 2023a. auk: eBird Data Extraction and 

Processing with AWK. R package version 0.7.0. 

https://cornelllabofornithology.github.io/auk/ 

Strimas-Mackey, M., S. Ligocki, T. Auer, D. Fink. 2023b. ebirdst: Access and Analyze eBird 

Status and Trends Data Products. R package version 3.2022.0. 

https://ebird.github.io/ebirdst/  

Strimas-Mackey, M., W.M. Hochachka, V. Ruiz-Gutierrez, O.J. Robinson, E.T. Miller, T. Auer, 

S. Kelling, D. Fink, A. Johnston. 2023c. Best Practices for Using eBird Data. Version 2.0. 

https://ebird.github.io/ebird-best-practices/. Cornell Lab of Ornithology, Ithaca, New 

York. https://doi.org/10.5281/zenodo.3620739 

Valavi, R., J. Elith, J. J. Lahoz-Monfort, and G. Gurutzeta-Arroita. 2021. Modelling species 

presence-only data with random forests. Ecography 44:1731–1742. 

Warren, D., and R. Dinnage. 2024. ENMTools: analysis of niche evolution using niche and 

distribution models. R package version 1.1.2, <https://CRAN.R-

project.org/package=ENMTools>.  

Warren D. L., R. E. Glor, and M. Turelli. 2008. Environmental niche equivalency versus 

conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883. 

https://ebird.github.io/ebirdst/
https://ebird.github.io/ebird-best-practices/


 29 

Wright, M. N., and A. Ziegler. 2017. ranger: a fast implementation of Random Forests for high 

dimensional data in C++ and R. Journal of Statistical Software 77:1–17. 

doi:10.18637/jss.v077.i01 

 

 



 

 

TABLES 

Table 1.1. Names, description, the original values from the original datasets used to derive the variable, the initial spatial resolution of 

the variables, and a description of why and references supporting the inclusion the variables in the models that were used to 

understand differences in habitat use between populations of prairie grouse (lesser prairie-chicken, greater prairie-chicken, and sharp-

tailed grouse) and between populations of sharp-tailed grouse (sharp-tailed grouse subspecies). 

Environmental 

Condition Layer description 

Layer 

value(s)a 

Initial Spatial 

Resolution 

Reason for inclusion in 

analysis References 

Barren landsb 

Combination of barren 

lands and sub-polar and 

polar barren lands 

13, 16 30 me 

Bare ground is avoided by 

prairie grouse and barren lands 

might represent unimproved 

roads or small developments 

avoided by prairie grouse 

Lawrence et al. 2022, 

Burr et al. 2017, 

McNew et al. 2015 

Croplandb All croplands 15 30 me 

Used by some prairie grouse 

populations during the 

nonbreeding season 

Roy and Chen 2023 

Deciduous 

forestsb 

Temperate or sub-polar 

broadleaf deciduous 

forests 

5 30 me 
Avoided and used by different 

prairie grouse populations  

Lawrence et al. 2022, 

Raymond 2001, 

Connelly et al. 2024 

Mixed forestsb 
Mixed deciduous and 

coniferous forests 
6 30 me 

Potentially avoided by prairie 

grouse populations, but some 

evidence for use by sharp-

tailed grouse 

Raymond 2001, 

Connelly et al. 2024 

Conifer forestsb 
Temperate and sub-polar 

coniferous forest 
1, 2 30 me 

Avoided by some prairie 

grouse populations 

Lautenbach et al. 

2017 
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Grasslandsb 

All grasslands including 

temperate, tropical, and 

sub-polar grasslands 

9, 10, 12 30 me 

Important habitat component 

for all prairie grouse 

populations and most sharp-

tailed grouse populations 

Hagen and Giesen 

2020, Johnson et al. 

2020, Connelly et al. 

2024 

Shrublandsb 

All shrublands including 

temperate, tropical, and 

sub-polar shrublands 

7, 8, 11 30 me 

Important component for some 

lesser prairie-chicken and 

sharp-tailed grouse populations 

Hagen and Giesen 

2020, Connelly et al. 

2024 

Wetlandsb All wetland cover 14 30 me 
Avoidance and selection by 

prairie grouse populations 
Hiller et al. 2019 

Savannasc Savannas with 10–30% 

tree cover 
8 465 me 

Open conifer and deciduous 

woodlands used by some 

populations  

Connelly et al. 2024 

Woody 

savannasc 

Savannas with 30–60% 

tree cover 
9 465 me 

Open conifer and deciduous 

woodlands used by some 

populations 

Connelly et al. 2024 

Heat load indexd 

Calculated from digital 

elevation model 

(McCune and Keon 

2002) 

— 250 me 

Southern populations of prairie 

grouse use areas that minimize 

exposure to temperature 

extremes 

Hovick et al. 2014, 

Raynor et al. 2018 

Terrain 

ruggedness 

indexd 

Calculated from digital 

elevation model (Riley et 

al. 1999) 

— 250 me 
Prairie grouse typically occupy 

less rugged terrain 

Jarnevich et al. 2016, 

Burda et al. 2022 

Topographic 

position indexd 

Calculated from digital 

elevation model 

(De Reu et al. 2014) 

— 250 me 
Prairie grouse leks are typically 

located on hill tops 

Hagen and Giesen 

2020, Johnson et al. 

2020, Connelly et al. 

2024 

 

aLayer values are the values used from the respective land cover database to derive the layer used 
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bDerived from the North American Land Monitoring System dataset from: http://www.cec.org/north-american-land-change-

monitoring-system/ 

cDerived from the International Geosphere-Biosphere Programme land cover classification from MODIS available from: 

https://lpdaac.usgs.gov/products/mcd12q1v061/ 

dDerived from a digital elevation model downloaded from http://www.cec.org/north-american-environmental-atlas/elevation-2023/ 

eFinal spatial resolution used for all layers was 465 m to ensure that all layers used were in the same spatial resolution for projection. 

For layers that were not originally in this spatial resolution, I reprojected them to the same spatial resolution as the 

International Geosphere-Biosphere Programme raster layer using the ‘bilinear’ method within the project function in the terra 

package in Program R (Hijmans 2025). 

 

http://www.cec.org/north-american-environmental-atlas/elevation-2023/


 

 

Table 1.2. Pairwise metrics for I statistic (above diagonal line) and Spearman’s rank correlation 

(ρ; below diagonal line) comparing the overlap (I) and correlation (ρ) in Random Forests models 

predicting encounter rates for greater prairie-chicken, lesser prairie-chicken, and sharp-tailed 

grouse across North America using land cover and topographic features. Because the encounter 

rate models include effort and date variables, the encounter rate is predicted for 15 April 2020. 

Overlap (I) represents two populations’ potential to interact with each other while correlation (ρ) 

identifies if the two populations’ responses to habitat conditions are similar between populations. 

 Greater prairie-

chicken 

Lesser prairie-

chicken 

Sharp-tailed 

grouse 

Greater prairie-chicken 
 

0.57 0.65 

Lesser prairie-chicken 0.73  0.64 

Sharp-tailed grouse 0.52 0.57  
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Table 1.3. Scaled variable importance (Gini index) for the top five most important land cover 

and topographic variables from Random Forests models predicting the encounter rate of greater 

prairie-chicken, lesser prairie-chicken, and sharp-tailed grouse in North America using land 

cover and topographic features (Jan 2010–Oct 2023). 

Species Predictor 

Scaled variable 

importance 

Greater prairie-chicken Shrublands 1.00 

 Grasslands 0.68 

 Croplands 0.57 

 Conifer forests 0.39 

 Terrain ruggedness index 0.36 

Lesser prairie-chicken Wetlands 0.75 

 Grasslands 0.66 

 Conifer forests 0.64 

 Mixed forests 0.33 

 Terrain ruggedness index 0.32 

Sharp-tailed grouse Grasslands 1.00 

 Terrain ruggedness index 0.83 

 Croplands 0.58 

 Topographic position index 0.45 

  Shrublands 0.45 

 

 



 

 

Table 1.4. Pairwise metrics for I statistic (above diagonal line) and Spearman’s rank correlation (ρ; below diagonal line) comparing 

the overlap (I) and correlation (ρ) in Random Forests models predicting encounter rates based on eBird data for subspecies of sharp-

tailed grouse (Tympanuchus phasianellus) and populations where the subspecies is unknown or in question (Unknown) across the 

sharp-tailed grouse range in North America using land cover and topographic features. Because the encounter rate models include 

effort and date variables, the encounter rate is predicted for 15 April 2020. Overlap (I) represents two populations’ potential to interact 

with each other while correlation (ρ) identifies if the two populations’ responses to habitat conditions are similar between populations. 

  
T. p. 

campestris 

T. p. 

caurus 

T. p. 

columbianus 

T. p. 

jamesi 

T. p. 

kennicotti 

T. p. 

phasianellus 

Unknown 

Canada 

Unknown 

WY/CO 

T. p. campestris  0.58 0.45 0.30 0.37 0.65 0.63 0.09 

T. p. caurus 0.34  0.56 0.21 0.59 0.81 0.88 0.17 

T. p. columbianus -0.54 -0.49  0.63 0.48 0.54 0.63 0.41 

T. p. jamesi -0.13 -0.72 0.55  0.20 0.22 0.28 0.11 

T. p. kennicotti 0.11 0.77 -0.27 -0.50  0.68 0.70 0.12 

T. p. phasianellus 0.56 0.78 -0.48 -0.53 0.76  0.91 0.12 

Unknown Canada 0.38 0.88 -0.42 -0.52 0.84 0.86  0.16 

Unknown WY/CO -0.55 -0.01 0.41 -0.12 0.05 -0.28 -0.14  
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Table 1.5. Scaled variable importance (Gini index) for the top five most important land cover 

and topographic variables from Random Forests models predicting the encounter rate of sharp-

tailed grouse subspecies (Tympanuchus phasianellus) and populations where the subspecies is in 

question or unknown (Unknown) as predicted using eBird observations from across the range of 

sharp-tailed grouse in North America using land cover and topographic features (Jan 2010–Oct 

2023). 

Subspecies Predictor 

Scaled 

Importance 

T. p. campestris Terrain ruggedness index 1.00 

 Deciduous forest 0.48 

 Topographic position index 0.34 

 Heat load index 0.30 

 Cropland 0.27 

T. p. caurus Conifer forest 1.00 

 Woody savanna 0.74 

 Mixed Forest 0.54 

 Wetlands 0.48 

 Barren lands 0.47 

T. p. columbianus Shrublands 1.00 

 Heat load index 0.29 

 Cropland 0.25 

 Mixed Forest 0.25 

 Terrain ruggedness index 0.25 

T. p. jamesi Grasslands 1.00 

 Woody savanna 0.43 

 Conifer forest 0.41 

 Cropland 0.40 

 Terrain ruggedness index 0.38 

T. p. kennicotti Savanna 1.00 

 Cropland 0.86 

 Conifer forest 0.79 

 Topographic position index 0.21 

 Terrain ruggedness index 0.19 

T. p. phasianellus Conifer forest 1.00 

 Terrain ruggedness index 0.71 

 Woody savanna 0.69 
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 Mixed Forest 0.39 

 Topographic position index 0.31 

Unknown Canada Cropland 1.00 

 Woody savanna 0.55 

 Wetlands 0.53 

 Conifer forest 0.46 

 Mixed Forest 0.40 

Unknown Wyoming/Colorado Shrublands 1.00 

 Terrain ruggedness index 0.52 

 Deciduous forest 0.31 

 Grasslands 0.20 

  Barren lands 0.18 
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Table 1.6. Pairwise metrics for I statistic (above diagonal line) and Spearman’s rank correlation 

(ρ; below diagonal line) comparing the overlap (I) and correlation (ρ) in Random Forests models 

predicting encounter rates for greater prairie-chicken, lesser prairie-chicken, and sharp-tailed 

grouse across North America using current (1979–2013) bioclimatic conditions. Because the 

encounter rate models include effort and date variables, the encounter rate is predicted for 15 

April 2020. Overlap (I) represents two populations’ potential to interact with each other while 

correlation (ρ) identifies if the two populations’ responses to habitat conditions are similar 

between populations. 

  Greater prairie-

chicken 

Lesser prairie-

chicken 

Sharp-tailed 

Grouse 

Greater prairie-chicken  0.13 0.20 

Lesser prairie-chicken 0.47  0.01 

Sharp-tailed Grouse  0.08 -0.21  
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Table 1.7. Pairwise metrics for I statistic (above diagonal line) and Spearman’s rank correlation 

(ρ; below diagonal line) comparing the overlap (I) and correlation (ρ) in Random Forests models 

predicting encounter rates for greater prairie-chicken, lesser prairie-chicken, and sharp-tailed 

grouse across North America using bioclimatic conditions during the last glacial maximum 

(~21,000 ybp). Because the encounter rate models include effort and date variables, the 

encounter rate is predicted for 15 April 2020. Overlap (I) represents two populations’ potential to 

interact with each other while correlation (ρ) identifies if the two populations’ responses to 

habitat conditions are similar between populations. 

  Greater prairie-

chicken 

Lesser prairie-

chicken 

Sharp-tailed 

Grouse 

Greater prairie-chicken 
 

0.83 0.74 

Lesser prairie-chicken 0.65 
 

0.67 

Sharp-tailed Grouse  -0.10 -0.32 
 

 



 

 

Table 1.8. Pairwise metrics for I statistic (above diagonal line) and Spearman’s rank correlation (ρ; below diagonal line) comparing 

the overlap (I) and correlation (ρ) in Random Forests models predicting encounter rates based on eBird data for subspecies of sharp-

tailed grouse (Tympanuchus phasianellus) and populations where the subspecies is unknown or in question (Unknown) across the 

sharp-tailed grouse range in North America using current (1979–2013) bioclimatic conditions. Because the encounter rate models 

include effort and date variables, the encounter rate is predicted for 15 April 2020. Overlap (I) represents two populations’ potential to 

interact with each other while correlation (ρ) identifies if the two populations’ responses to habitat conditions are similar between 

populations. 

  
T. p. 

campestris 

T. p. 

caurus 

T. p. 

columbianus 

T. p. 

jamesi 

T. p. 

kennicotti 

T. p. 

phasianellus 

Unknown 

Canada 

Unknown 

WY/CO 

T. p. campestris  
0.15 0.04 0.08 0.18 0.20 0.30 0.14 

T. p. caurus 0.33  0.20 0.15 0.76 0.36 0.54 0.47 

T. p. columbianus -0.53 0.01 
 

0.11 0.21 0.10 0.12 0.43 

T. p. jamesi -0.13 -0.11 -0.34  0.13 0.09 0.17 0.26 

T. p. kennicotti 0.47 0.88 -0.03 -0.21 
 

0.45 0.68 0.53 

T. p. phasianellus 0.71 0.61 -0.33 -0.23 0.75  0.50 0.29 

Unknown Canada 0.74 0.67 -0.43 0.00 0.77 0.79 
 

0.36 

Unknown WY/CO  -0.39 0.26 0.63 -0.17 0.23 -0.09 -0.20   
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Table 1.9. Pairwise metrics for I statistic (above diagonal line) and Spearman’s rank correlation (ρ; below diagonal line) comparing 

the overlap (I) and correlation (ρ) in Random Forests models predicting encounter rates based on eBird data for subspecies of sharp-

tailed grouse (Tympanuchus phasianellus) and populations where the subspecies is unknown or in question (Unknown) across the 

sharp-tailed grouse range in North America using bioclimatic conditions during the last glacial maximum (~21,000ybp). Because the 

encounter rate models include effort and date variables, the encounter rate is predicted for 15 April 2020. Overlap (I) represents two 

populations’ potential to interact with each other while correlation (ρ) identifies if the two populations’ responses to habitat conditions 

are similar between populations. 

  
T. p. 

campestris 

T. p. 

caurus 

T. p. 

columbianus 

T. p. 

jamesi 

T. p. 

kennicotti 

T. p. 

phasianellus 

Unknown 

Canada 

Unknown 

WY/CO 

T. p. campestris   0.87 0.69 0.85 0.92 0.95 0.95 0.87 

T. p. caurus 0.52  0.73 0.80 0.88 0.84 0.92 0.83 

T. p. columbianus -0.56 -0.45 
 

0.84 0.59 0.64 0.64 0.79 

T. p. jamesi 0.24 -0.05 -0.43  0.73 0.78 0.80 0.83 

T. p. kennicotti 0.81 0.78 -0.50 0.06  0.89 0.94 0.81 

T. p. phasianellus 0.86 0.56 -0.45 0.05 0.80  0.94 0.83 

Unknown Canada 0.82 0.74 -0.58 0.13 0.89 0.84  0.83 

Unknown WY/CO  0.53 0.35 -0.18 -0.09 0.55 0.53 0.43   
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FIGURES 

 

Figure 1.1. Range maps of greater prairie-chicken, lesser prairie-chicken, and sharp-tailed 

grouse in North America and locations of eBird observations (colored points) of each species. 

Sharp-tailed grouse range and observation are split into the different subspecies/populations. The 

range boundary for greater prairie-chicken was created by an interstate working group of state 

wildlife agency personnel (ArcGIS ID: 4ddf4b84148e4994a69c9e221d9108f8); the range 

boundary for lesser prairie-chicken was obtained from WAFWA Lesser Prairie-Chicken 

Interstate Working Group (2022); and the range boundary for sharp-tailed grouse and the 

different subspecies of sharp-tailed grouse was derived from Spaulding et al. (2006) and Galla 

and Johnson (2015). 
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Figure 1.2. Predicted encounter rate based on eBird observations generated using Random Forests models based on land cover and 

topographic features for three species of grouse: greater prairie-chicken (A), lesser prairie-chicken (B), and sharp-tailed grouse (C) 

across the combined range of the three species in North America. Cooler colors represent lower probability of encountering the 

species and warmer colors represent greater probability of encountering the species; white border represents the combined described 

ranges of the three species.  
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Figure 1.3. Partial dependence plots for the proportion of grasslands within 1,500 m as predicted 

by Random Forests models predicting the encounter rates of three species of prairie grouse using 

eBird observations: greater prairie-chicken (A), lesser prairie-chicken (B), and sharp-tailed 

grouse (C) in North America (2010–2023). 
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Figure 1.4. Partial dependence plots for the mean terrain ruggedness index within 1,500 m as 

predicted by Random Forests models predicting the encounter rates of three species of prairie 

grouse using eBird observations: greater prairie-chicken (A), lesser prairie-chicken (B), and 

sharp-tailed grouse (C) in North America (2010–2023). 
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Figure 1.5. Partial dependence plots for the proportion of shrublands within 1,500 m as 

predicted by Random Forests models predicting the encounter rates of three species of prairie 

grouse using eBird observations: greater prairie-chicken (A), lesser prairie-chicken (B), and 

sharp-tailed grouse (C) in North America (2010–2023). 
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Figure 1.6. Predicted encounter rate based on eBird observations generated using Random Forests models based on land cover and 

topographic features for eight populations/subspecies of sharp-tailed grouse: Tympanuchus phasianellus campestris (A), T. p. caurus 

(B), T. p. columbianus (C), T. p. jamesi (D), T. p. kennicotti (E), T. p. phasianellus (F), a population with unknown subspecies in 

Canada (G), and a population with unknown subspecies in Wyoming/Colorado (H) across the range of sharp-tailed grouse in North 

America. Cooler colors represent lower probability of encountering the species and warmer colors represent greater probability of 

encountering the species; white border represents the published ranges of the different populations.  
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Figure 1.7. Partial dependence plots for the proportion of conifer forest within 1,500 m as 

predicted by Random Forests models predicting the encounter rates of eight populations of 

sharp-tailed grouse (Tympanuchus phasianellus) using eBird observations: T. p. campestris (A), 

T. p. caurus (B), T. p. columbianus (C), T. p. jamesi (D), T. p. kennicotti (E), T. p. phasianellus 

(F), a population with unknown subspecies in Canada (G), and a population with unknown 

subspecies in Wyoming/Colorado (H) across the sharp-tailed grouse range in North America 

(2010–2023). 
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Figure 1.8. Partial dependence plots for the mean terrain ruggedness index within 1,500 m as 

predicted by Random Forests models predicting the encounter rates of eight populations of 

sharp-tailed grouse (Tympanuchus phasianellus) using eBird observations: T. p. campestris (A), 

T. p. caurus (B), T. p. columbianus (C), T. p. jamesi (D), T. p. kennicotti (E), T. p. phasianellus 

(F), a population with unknown subspecies in Canada (G), and a population with unknown 

subspecies in Wyoming/Colorado (H) across the sharp-tailed grouse range in North America 

(2010–2023). 
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Figure 1.9. Partial dependence plots for the proportion of croplands within 1,500 m as predicted 

by Random Forests models predicting the encounter rates of eight populations of sharp-tailed 

grouse (Tympanuchus phasianellus) using eBird observations: T. p. campestris (A), T. p. caurus 

(B), T. p. columbianus (C), T. p. jamesi (D), T. p. kennicotti (E), T. p. phasianellus (F),  a 

population with unknown subspecies in Canada (G), and a population with unknown subspecies 

in Wyoming/Colorado (H) across the sharp-tailed grouse range in North America (2010–2023). 

 

 



 

 

 

Figure 1.10. Predicted encounter rate based on eBird observations generated using Random Forests models based on current 

bioclimatic conditions for three species of grouse: greater prairie-chicken (A), lesser prairie-chicken (B), and sharp-tailed grouse (C) 

across the combined range of the three species in North America. Cooler colors represent lower probability of encountering the 

species and warmer colors represent greater probability of encountering the species; white border represents the combined described 

ranges of the three species.  
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Figure 1.11. Predicted encounter rate based on eBird observations generated using Random Forests models based on bioclimatic 

conditions during the last glacial maximum (~21,000 ybp) for three species of grouse: greater prairie-chicken (A), lesser prairie-

chicken (B), and sharp-tailed grouse (C) across the combined range of the three species in North America. Cooler colors represent 

lower probability of encountering the species and warmer colors represent greater probability of encountering the species; white 

border represents the combined described ranges of the three species.  
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Figure 1.12. Predicted encounter rate based on eBird observations generated using Random Forests models based on current 

bioclimatic conditions for eight populations/subspecies of sharp-tailed grouse: Tympanuchus phasianellus campestris (A), T. p. caurus 

(B), T. p. columbianus (C), T. p. jamesi (D), T. p. kennicotti (E), T. p. phasianellus (F), a population with unknown subspecies in 

Canada (G), and a population with unknown subspecies in Wyoming/Colorado (H) across the range of sharp-tailed grouse in North 

America. Cooler colors represent lower probability of encountering the species and warmer colors represent greater probability of 

encountering the species; white border represents the published ranges of the different populations. 
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Figure 1.13. Predicted encounter rate based on eBird observations generated using Random Forests models based on bioclimatic 

conditions during the last glacial maximum (~21,000ybp) for eight populations/subspecies of sharp-tailed grouse: Tympanuchus 

phasianellus campestris (A), T. p. caurus (B), T. p. columbianus (C), T. p. jamesi (D), T. p. kennicotti (E), T. p. phasianellus (F), a 

population with unknown subspecies in Canada (G), and a population with unknown subspecies in Wyoming/Colorado (H) across the 

range of sharp-tailed grouse in North America. Cooler colors represent lower probability of encountering the species and warmer 

colors represent greater probability of encountering the species; white border represents the published ranges of the different 

populations. 
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ABSTRACT 

Identifying species and subspecies is the foundation for focusing conservation efforts and 

studying evolutionary ecology. Subspecies delineation has occurred using multiple data types, 

including ecological, morphological, and genetic data. There are currently seven recognized 

Sharp-tailed Grouse (Tympanuchus phasianellus, Linnaeus, 1758) subspecies, with two of these 

subspecies occurring in Wyoming: Columbian Sharp-tailed Grouse (T. p. columbianus) and 

plains Sharp-tailed Grouse (T. p. jamesi). There is a third population of Sharp-tailed Grouse in 

south-central Wyoming with an unknown subspecific identification. Historically this population 

has been classified as Columbian Sharp-tailed Grouse, however previous genetic evidence 

questioned this classification. To better understand the subspecific status of this south-central 

Wyoming population, our study used habitat characteristics, morphological characteristics, and 



 56 

genetic data (microsatellite loci and single nucleotide variants) collected from known Columbian 

Sharp-tailed Grouse, known plains Sharp-tailed Grouse, and the south-central Wyoming 

population of Sharp-tailed Grouse. We modeled differences among the populations using 

discriminant analysis of principal components and Random Forests classification models. Across 

all four datasets and both modeling techniques, we found that each population (Columbian 

Sharp-tailed Grouse, plains Sharp-tailed Grouse, and south-central Wyoming population of 

Sharp-tailed Grouse) generally represented its own cluster. Our results suggests that the 

population of Sharp-tailed Grouse in south-central Wyoming is different from both Columbian 

and plains Sharp-tailed Grouse. We recommend further evaluation of the subspecies of Sharp-

tailed Grouse using more targeted phylogenomic studies to identify if Sharp-tailed Grouse in 

south-central Wyoming represent a separate subspecies or are a distinct population of another 

subspecies. Our results potentially change our understanding of Columbian Sharp-tailed Grouse 

distribution and management and highlight the importance of using a more comprehensive 

approach to identifying subspecies.  

Key words: genetics, genomics, morphology, habitat, subspecies, Sharp-tailed Grouse, 

Tympanuchus 

INTRODUCTION  

Taxonomic classifications assist ecologists in measuring the distribution of biodiversity 

on a changing planet and enacting conservation actions. Infraspecific taxonomic classifications, 

or those below the rank of species (e.g., subspecies), are important in providing designations to 

conserve biodiversity into the future (Haig et al. 2006, Haig and D'Elia 2010, Winker 2010, 

Taylor et al. 2017b). Subspecies and other infraspecific classifications (e.g., ecotypes, varieties, 

distinct population segments, and evolutionary significant units) represent the diversity of 
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functional traits—and therefore evolutionary potential—within a species (Haig et al. 2006) and 

conservation of subspecific taxa may help ensure species persistence in a changing environment 

(Winker 2010). This has been explicitly recognized by the Endangered Species Act as amended 

in 1978 (16 U.S.C. §§ 1532[16]) allowing listing of not just entire species but also subspecies, 

Distinct Population Segments, and Evolutionary Significant Units (NOAA 1991, USFWS 1996). 

Despite this recognition of the importance of infraspecific classification of organisms, there is 

still debate about what methods best describe significant intraspecific variation (Zink 2004, Haig 

et al. 2006, Remsen 2010, Winker 2010, Patten 2015).  

Different approaches have been used to conceptualize and describe subspecies (Haig et 

al. 2006, Winker 2010). Some of the primary approaches used to describe subspecies have been 

based on ecology (e.g., the ecological and biological species concepts), morphology (e.g., the 

morphological species concept), and phylogeny (e.g., the phylogenetic species concept). Each of 

these species concepts have limitations associated with the application to define subspecies. For 

example, within the ecological species concept, populations may inhabit different habitats, but 

may not be distinguishable in terms of genetics or morphology; within the morphological species 

concept, morphological differences in subspecies may not represent genetic differences (Zink 

1989, Ball and Avise 1992, Zink 2004, Haig et al. 2006); and the phylogenetic species concept 

recognizes species as the smallest supported monophyletic unit, but groupings within species 

(e.g., subspecies) do not exist (Haig et al. 2006). Because of these issues, some authors suggest 

using multiple species concepts to define and assess the validity of subspecies (Helbig et al. 

2002, Haig et al. 2006, Wallin et al. 2017), though some recent studies have used or suggested 

the use of phylogenetics (Archer et al. 2017, Taylor et al. 2017a, Nevard et al. 2020, Ferrante et 

al. 2022, Black et al. 2024). One generally accepted rule for demarcating subspecies is the “75% 
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rule,” where 75% of individuals in a population are identifiable from ≥99% of overlapping 

populations (Amadon 1947, Patten and Unitt 2002, Patten 2010, Winker 2010, Taylor et al. 

2017b), however there are multiple different methods to identify which individuals are different 

from overlapping populations. Utilizing multiple subspecies concepts and having a unified 

approach to identifying individuals that differ from overlapping populations across different 

subspecies concepts might lead to a more unified understanding of subspecies delineations. 

North American prairie grouse (genus Tympanuchus) are a recently diverged group of 

three species of Galliformes (Greater Prairie-Chicken [T. cupido, Linnaeus, 1758], Lesser 

Prairie-Chicken [T. pallidicinctus, Ridgway, 1873], and Sharp-tailed Grouse [T. phasianellus, 

Linnaeus, 1758]) found throughout portions of the grasslands and shrublands of Canada and the 

United States (Galla and Johnson 2015, DeYoung and Williford 2016). This group represents a 

unique opportunity to study species and subspecies classifications given their recent 

diversification (Galla and Johnson 2015, Black et al. 2024). Sharp-tailed Grouse are of special 

interest, given the recognition of six extant subspecies and one extinct subspecies (Spaulding et 

al. 2006, Oyler-McCance et al. 2010, Connelly et al. 2024). The six extant subspecies of Sharp-

tailed Grouse are primarily differentiated geographically (e.g., Continental Divide and the Red 

River in Minnesota, North Dakota, and Manitoba), with slight differences in morphology and 

habitat use (Johnsgard 2016, Connelly et al. 2024). Some populations having no clear definition 

for their subspecies status (Spaulding et al. 2006). One population of Sharp-tailed Grouse in 

south-central Wyoming and northwestern Colorado has mixed support (genetic and 

morphological) for it belonging to two different subspecies of Sharp-tailed Grouse: Columbian 

(T. phasianellus columbianus, Ord, 1815) and plains (T. p. jamesi, Lincoln, 1917; Spaulding et 

al. 2006, Connelly et al. 2024). Columbian Sharp-tailed Grouse are of conservation interest, 
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given they now occupy <10% of their historical range (Miller and Graul 1980, Hoffman et al. 

2015) and they have been petitioned for listing under the Endangered Species Act of 1973 on 

two occasions (USDI 2000, 2006). Identifying the subspecies of Sharp-tailed Grouse for the 

population in south-central Wyoming will provide a map for future identification of populations 

to subspecies and important information to practitioners for conservation. 

The goal of our research was to apply ecological (i.e., habitat association), 

morphological, and genetic conceptual approaches to identify the subspecies of Sharp-tailed 

Grouse inhabiting south-central Wyoming (hereafter, unknown Sharp-tailed Grouse). Through 

using multiple lines of evidence, we aimed to provide a robust assessment of which subspecies 

the unknown Sharp-tailed Grouse population assigns to. We used ecological (i.e., habitat) 

characteristics, morphological variation, and genetic differentiation to test three hypotheses 

regarding the unknown Sharp-tailed Grouse population: 1) the population assigns to Columbian 

Sharp-tailed Grouse, 2) the population assigns to plains Sharp-tailed Grouse, and 3) the 

population does not assign to either Columbian or plains Sharp-tailed Grouse. We compared 

habitat characteristics, morphological characteristics, nuclear DNA microsatellite loci, and single 

nucleotide variants (SNVs, including insertions and deletions) derived from low-resolution 

whole genome resequencing data between three groups of Sharp-tailed Grouse namely: known 

Columbian Sharp-tailed Grouse from the nearest population in southeastern Idaho, known plains 

Sharp-tailed Grouse from the nearest population in eastern Wyoming, and unknown Sharp-tailed 

Grouse in south-central Wyoming. We included Lesser Prairie-Chicken, a closely related species 

within the genus Tympanuchus, as an outgroup to help provide discriminatory power for our 

analyses. Outgroups serve as a reference group for the groups that are being evaluated and are 

less related to the groups being evaluated than the groups being evaluated are to each other. 
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Using Lesser Prairie-Chicken as an outgroup allowed us to compare Sharp-tailed Grouse 

populations to a related organism to better understand the differences in habitat characteristics, 

morphological characteristics, and single nucleotide variant data; we were not able to collect 

microsatellite data from Lesser Prairie-Chickens and we did not include an outgroup in our 

microsatellite analyses.  

METHODS 

To evaluate the subspecies of Sharp-tailed Grouse in south-central Wyoming, we used four 

different datasets: habitat data, morphological data, and two genetic datasets (microsatellite 

genotype data and low-resolution genome-wide single nucleotide variants [SNVs, including 

insertion and deletions] data). We collected data on four populations of grouse: Lesser Prairie-

Chicken, Columbian Sharp-tailed Grouse, plains Sharp-tailed Grouse, and unknown Sharp-tailed 

Grouse. To evaluate differences in habitat associations, we used occurrence locations from 

eBird, a citizen-science database (Sullivan et al. 2009, eBird 2023). Morphological data and 

genetic samples for Lesser Prairie-Chickens were collected at four different study areas in 

western Kansas and southeastern Colorado from 2013–2017; detailed descriptions of these study 

areas can be found in Lautenbach et al. (2019; Figure 1). We attempted to collect morphological 

and genetic samples from the populations of Columbian and plains Sharp-tailed Grouse closest 

to our focal population in south-central Wyoming because these are the areas that unknown 

Sharp-tailed Grouse potentially interacted with in the past. Morphological data for Columbian 

Sharp-tailed Grouse were collected from areas throughout Idaho and Washington in 2005–2012 

(Figure 1). Genetic samples for Columbian Sharp-tailed Grouse were collected in eastern Idaho 

in 2019 as well three samples from western Wyoming in Grand Teton National Park in 2013, 

2016, and 2021. Morphological and genetic data for Columbian Sharp-tailed Grouse were 
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collected during different years and from different locations because we were not able to collect 

morphological data for Columbian Sharp-tailed Grouse and we were only able to obtain 

morphological data from a previous study (Schroeder et al. 2023). We obtained genetic samples 

for Columbian Sharp-tailed Grouse from hunter harvested wings (eastern Idaho) or road killed 

specimens (Grand Teton National Park). We collected morphological data and genetic samples 

for plains Sharp-tailed Grouse in eastern Wyoming in Laramie and Goshen counties in 2019. We 

collected morphological data and genetic samples for unknown Sharp-tailed Grouse in western 

Carbon County, Wyoming from 2017–2019.  

Genetic and Morphological Field Data Collection 

DNA collection techniques varied depending on the population. We captured Lesser Prairie-

Chicken, plains Sharp-tailed Grouse, and unknown Sharp-tailed Grouse and collected blood 

samples from captured birds and stored these samples for latter DNA extraction. We captured 

Lesser Prairie-Chickens and plains and unknown Sharp-tailed Grouse at leks using walk-in 

funnel traps (Haukos et al. 1990; Schroeder and Braun 1991) and drop nets (Lesser Prairie-

Chickens only; Silvy et al. 1992). Upon capture, we collected blood via syringe from the ulnar 

vein or clipped the toenail of the helix toe to obtain a small sample of blood (10–30 µL). Blood 

samples for Lesser Prairie-Chickens were stored in 700 µL lysis buffer (Longmire et al. 1997) 

and then frozen at -20 °C. Blood samples for plains and unknown Sharp-tailed Grouse were 

stored on Whatman FTA Micro Cards (GE Healthcare, Chicago, IL, USA) at room temperature. 

We collected morphological measurements from the birds we captured on leks including culmen 

length (mm), head length (mm), mass (g), tail (mm), tarsus + longest toe (mm), and wing cord 

(mm). For Columbian Sharp-tailed Grouse, we collected DNA samples from tissue from hunter 

harvested wings (eastern Idaho) or breast tissue from road-killed birds (Grand Teton Nation 



 62 

Park, Wyoming). We obtained morphological measurements from Columbian Sharp-tailed 

Grouse captured during spring for another project (Schroeder et al. 2023); morphological 

measurements from Columbian Sharp-tailed Grouse included mass (g), tail (mm), tarsus + 

longest toe (mm), and wing cord (mm). Capturing and handling techniques for Lesser Prairie-

Chickens were approved by the Kansas State University Institutional Animal Care and Use 

Committee (protocol numbers 3241 and 3703), Kansas Department of Wildlife, Parks, and 

Tourism (scientific collection permit numbers SC-042-2013, SC-079-2014, SC-001-2015, and 

SC-014-2016), and Colorado Parks and Wildlife (scientific collection license numbers 

13TRb2053, 14TRb2053, and 15TRb2053). Capture and handling techniques for plains and 

unknown Sharp-tailed Grouse were approved by the University of Wyoming Institutional 

Animal Care and Use Committee (protocol 20170324AP00266 [versions -01, -02, and -03]) and 

by the Wyoming Game and Fish Department (Chapter 33 permits 1098 and 1214). 

Genetic Methods 

We extracted DNA from blood and muscle samples using the Omega E.Z.N.A. Tissue DNA 

extraction kit (D3396; Omega Bio-Tek, Norcross, GA, USA). For muscle tissue, we finely 

chopped up ~30 g of muscle tissue and followed the manufactures protocol. For blood samples 

stored on FTA micro cards, we used approximately 0.25–0.50 cm2 of blood on the Whatman 

card, finely chopped the card and let it soak in Longmire’s lysis buffer (Longmire et al. 1997) for 

≥ 4 hours. Following lysis, we followed the manufactures protocol for the remainder of the 

extraction process.  

Microsatellite genotyping—Once DNA was extracted, we amplified nine microsatellite loci 

using polymerase chain reaction (PCR). The nine microsatellite loci we amplified were ADL230 

(Cheng and Crittenden 1994), BG16 (Piertney and Höglund 2001), LLSD7 (Piertney and Dallas 
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1997), LLST1 (Piertney and Dallas 1997), SG MS6.6 (Oyler-McCance and St. John 2010), SG 

MS6.8 (Oyler-McCance and St. John 2010), SG28 (Fike et al. 2015), TTD6 (Caizergues et al. 

2001), and TUT4 (Segelbacher et al. 2000). We conducted PCR in a 12.5 μL solution, including 

0.0025 nmoles forward primer, 0.0025 nmoles reverse primer, 0.0015 nmoles M13 primer, 10ng 

of DNA template, and 6.25 μL of GoTaq G2 Master Mix (Promega, Madison, WI, USA). We 

used the published PCR amplification protocols for each primer. 

Whole genome resequencing—We used low resolution whole genome resequencing using 

single strand sequencing technologies from the third-generation sequencing platform MinION 

(Oxford Nanopore Technologies, Oxford, UK). We used the native barcoding kit SQK-LSK109 

with barcoding expansions EXP-NBD104 and EXP-NBD114 for ligation sequencing on genomic 

DNA. We followed the manufactures protocols for library preparation and MinION platform 

sequencing. We sequenced the libraries on R9.4.1 FlowCells and Flongles. We conducted base 

calling using dorado v0.3.3 within the MinKNOW software set to super accurate base calling. 

We aligned sequence reads to the Lesser Prairie-Chicken genome (Black et al. 2023) using 

minimap2 (Li 2018), indexed sequence reads using samtools version 1.17 (Danecek et al. 2021), 

and used clair3 (Zheng et al. 2022) to call single nucleotide variants (i.e., SNVs, including 

insertions and deletions) at a read depth of ≥2X coverage. We used the merge tool within the 

bcftools version 1.13 (Danecek et al. 2021) to merge single nucleotide variants across all 

individuals and exported as a VCF file. After we merged all single nucleotide variants, we 

imported the VCF file into Program R version 4.4.1 (R Core Team 2024) and converted the VCF 

file to a GDS file using the SNPRelate package (Zheng et al. 2012). We then used the 

snpgdsLDpruning function within the SNPRelate package in Program R (Zheng et al. 2012, R 

Core Team 2024) to prune markers based on linkage disequilibrium, percent missingness, and 
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minor allele frequency. We used the composite method built into the snpgdsLDpruning function 

and set the missing rate to 33.33%, minor allele frequency to 0.5%, a pruning window of 50 KB, 

and the ld.threshold set to 0.4 resulting in 453 single nucleotide variants used in our analyses. 

Statistical Analysis 

General statistical methods—To evaluate if there were differences between our three focal 

populations of Sharp-tailed Grouse and an out group for our ecological characteristics (i.e., 

habitat), morphological characteristics, microsatellite loci, and SNVs datasets we conducted two 

main analyses: 1) discriminant analysis of principal components (DAPC; Jombart et al. 2010) 

and 2) a Random Forests classification model (Breiman 2001). The DAPC facilitated comparing 

different characteristics (e.g., environmental conditions, morphological measurements, 

microsatellite loci, or SNVs) among populations and to assign a probability of each individual 

bird or observation to each population based on those characteristics. We used the xvalDapc and 

dapc functions in the adegenet package in Program R (Jombart 2008, Jombart and Ahmed 2011, 

R Core Team 2024). Random Forests models have been used to classify subspecies using genetic 

data (Archer et al. 2017) but Random Forests models can also be used to classify other similar 

datasets. We used the randomForest package (Liaw and Weiner 2002) in Program R (R Core 

Team 2024) to run our Random Forests models. We ran Random Forests models with 10,000 

trees for each forest built and models were run with replacement. To understand the importance 

of variables (e.g., environmental conditions and morphological measurements) contributing to 

the habitat association and morphological Random Forests models, we standardized variable 

importance values so the top variable equaled 1 and the remaining variables were proportions 

derived by dividing by the top variable (Doherty et al. 2018). 
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Habitat association analyses—To compare ecological (habitat use) differences between 

populations, we used DAPC and Random Forests classification models to compare 

environmental conditions at eBird observation locations of focal populations. To obtain eBird 

observation locations across the occupied ranges Sharp-tailed Grouse and Lesser Prairie-

Chickens in the United States, we used eBird checklists (eBird 2023) with confirmed 

observations for each species. We removed duplicate observations from the database prior to 

analyzing eBird data. For Sharp-tailed Grouse observations, we categorized each location to a 

subspecies or population (Columbian Sharp-tailed Grouse, plains Sharp-tailed Grouse, and 

unknown Sharp-tailed Grouse) based on the published ranges of each subspecies (Spaulding et 

al. 2006, Galla and Johnson 2015) and we used all locations for Lesser Prairie-Chickens as our 

outgroup. We only used observations on checklists from January 2010–October 2023. We 

filtered checklist data according to data use recommendations for using eBird data (Johnson et al. 

2021, Strimas-Mackey et al. 2023a); this included limiting checklists to complete checklists, 

checklists with distances < 5 km, < 6 hours long, < 10 observers, and checklist speeds < 100 

kmph (Johnson et al. 2021, Strimas-Mackey et al. 2023a; see Figure 1 for map of observation 

locations for each population). To obtain environmental data at use locations, we used readily 

available remotely sensed environmental data. We obtained annual data (30-m resolution) for 

annual herbaceous vegetation (biomass and cover), perennial herbaceous vegetation (biomass 

and cover), bare ground, litter, coniferous forest canopy cover, deciduous forest canopy cover, 

mixed forest canopy cover, unclassified forest canopy cover, and shrub cover from the 

Rangeland Analysis Platform (RAP; Robinson et al. 2019, Allred et al. 2021, Jones et al. 2021). 

We obtained National Land Cover Database layers (NLCD; 30-m resolution; Jin et al. 2019) 

from 2011, 2013, 2016, 2019, and 2021; from each of these layers, we created multiple binary 
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landcover layers including croplands, developed lands, emergent wetland, pasture, and water. 

We obtained general climate data including 30-year average maximum temperature and 30-year 

average precipitation from PRISM data (800-m resolution; PRISM Climate Group 2014). We 

obtained topographic data from a 30-m resolution digital elevation model (DEM, USGS 2011). 

From the DEM, we calculated heat load index, terrain ruggedness index, and topographic 

position index using the hli, tri, and tpi functions in the spatialEco package in Program R (Riley 

et al. 1999, McCune and Keon 2002, McCune 2007, De Reu et al. 2013, Evans and Murphy 

2023, R Core Team 2024). We resampled all 30-m grain data to 800 m using the aggregate and 

project functions in the package terra (Hijmans 2024) in Program R version 4.4.1 (R Core Team 

2024) to enable comparison across all ecological covariates. Because eBird locations are not 

precise, we followed recommendations to use environmental variables averaged over a 1,500-m 

radius surrounding locations (Strimas-Mackey et al. 2023a). To accommodate the imprecise 

locations from eBird, we used a 1,600-m moving window analysis using the focalMat and focal 

functions in the terra package (Hijmans 2024) in Program R version 4.4.1 (R Core Team 2024) 

to get average available conditions within 1,600 m of each cell and extracted the average within 

each cell at each observation location. Once we extracted the environmental covariates to the 

eBird checklist locations, we ensured that the year for the environmental data was aligned with 

the year of the checklist (Jan–Dec) by aligning checklists year with year of environmental data 

(e.g., for checklists from Jan–Dec 2020 we used 2020 RAP). Because NLCD data was not 

available annually, we aligned checklists from 2010–2011 to 2011 NLCD data, checklists from 

2012–2014 to 2013 NLCD data, checklists from 2015–2017 to 2016 NLCD data, checklists from 

2018–2020 to 2019 NLCD data, and checklists from 2021–2023 to 2021 NLCD data. We then 

used a DAPC and a Random Forests model to compare environmental conditions between 



 67 

populations and assign a probability of each individual to each population based on habitat 

characteristics. To understand the differences in general habitat characteristics between 

populations, we used a Kruskal-Wallis test (α = 0.05) and a pairwise Wilcox test (α = 0.05) on 

the six most important environmental characteristics identified in the Random Forests model. 

Morphological analyses—To evaluate if there were differences in morphological characteristics 

between Columbian Sharp-tailed Grouse, plains Sharp-tailed Grouse, unknown Sharp-tailed 

Grouse, and Lesser Prairie-Chicken we used a Kruskal-Wallis test (α = 0.05) and a pairwise 

Wilcox test (α = 0.05) to evaluate which populations differed from each other. When evaluating 

morphological differences, we only used males from all populations because males and females 

differ in size. To evaluate if there were any differences between the four populations in the 

morphological spaces they occupied, we ran three different DAPCs models and three different 

Random Forests models. For both the DAPC analyses and the Random Forests models, the three 

models we ran were 1) an analysis on all four groups including mass, 2) an analysis on all four 

groups excluding mass, as mass can fluctuate during a season and between seasons, and 3) an 

analysis on only plains Sharp-tailed Grouse, unknown Sharp-tailed Grouse, and Lesser Prairie-

Chicken excluding mass. We included mass in one of our analyses because, generally, 

Columbian Sharp-tailed Grouse are generally described as being smaller while plains Sharp-

tailed Grouse are generally described as being larger (Connelly et al. 2024) and including mass 

would help evaluate this. We ran the final analysis on only these three populations because we 

could include more morphological characteristics that were collected on all three of those 

populations. Specifically, for the first model including mass (all four populations), we included 

tail length, wing cord length, tarsus + longest toe length, mass, and all pairwise comparisons for 

a total of ten covariates. For the second model excluding mass (all four populations) we included 
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tail length, wing cord length, tarsus + longest toe length, and all pairwise comparisons for a total 

of six covariates. For the final model (three populations: Lesser Prairie-Chicken, plains Sharp-

tailed Grouse, and unknown Sharp-tailed Grouse), we included wing cord length, culmen length, 

total head length, tarsus + longest toe length, tail length, and all pairwise combinations for a total 

of 15 covariates. 

Microsatellite analyses—We scored microsatellite fragments using Geneious Prime 2022.2.2 

software (https://www.geneious.com) to create an individual genetic profile for each individual. 

We conducted a standard assessment of microsatellite marker suitability for genetic analyses that 

included tests for Hardy-Weinberg Equilibrium (HWE) calculated using the hw.test function 

from the pegas package in Program R (Paradis 2010, R Core Team 2024), allelic richness for 

each population calculated using the allel.rich function in the PopGenReport package in 

Program R (Adamack and Gruber 2014, Gruber and Adamack 2015, R Core Team 2024), FST 

and FIS using the basic.stats function from the hierfstat package in Program R (Goudet and 

Jombart 2022, R Core Team 2024), and expected heterozygosity (HE) and observed 

heterozygosity (HO) using the summary function in the adegenet package in Program R (Jombart 

2008, Jombart and Ahmed 2011, R Core Team 2024). We checked for null alleles using the 

program MICRO-CHECKER (Van Oosterhout et al. 2004) and evaluated linkage disequilibrium 

using the test_LD function in the genepop package in Program R (Rousset 2008, R Core Team 

2024). 

Following the assessments of microsatellite suitability, we used a DAPC (Jombart et al. 

2010) and a Random Forests model to evaluate if there was differentiation between the 

populations based on microsatellite loci. We included all loci that fit the criteria that we outlined 

http://www.geneious.com/
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above. We only included genotype data for our in-group populations (i.e., Sharp-tailed Grouse, 

not Lesser Prairie-Chicken).   

Whole genome resequencing analyses—We calculated observed heterozygosity (HE), 

subpopulation heterozygosity (HS), and inbreeding coefficient (FIS) for each population using the 

gl.basic.stats function in the dartR package in Program R (Gruber et al. 2018, Mijangos et al. 

2022, R Core Team 2024). We calculated pairwise proportional genetic variance (FST) using the 

stamppFst function in the StAMPP package in Program R (Pembleton et al. 2013, R Core Team 

2024). To evaluate the subspecies classification of our populations using SNVs identified above, 

we used a DAPC analysis and a Random Forests classification model. We used these models to 

compare SNVs across individuals and assign the probability of identification of each individual 

to each population. Once common SNVs were identified across sequenced individuals, we 

removed duplicate SNVs from the dataset. We obtained sequencing data from individuals in all 

in-group populations (Columbian Sharp-tailed Grouse, plains Sharp-tailed Grouse, unknown 

Sharp-tailed Grouse) and our outgroup (Lesser Prairie-Chickens). We ran the DAPC and 

Random Forests model with SNVs identified to fit the criterion after pruning. For the Random 

Forests model, because there were missing values in the data set, we used the rfImpute function 

from within the randomForest package in Program R (Liaw and Weiner 2002, R Core Team 

2024) to impute missing values. We conducted the DAPC and Random Forests analyses on all of 

the populations and only the Sharp-tailed Grouse populations because our sample size for Lesser 

Prairie-Chickens was small (n = 2). 

RESULTS 

We obtained 812 eBird checklist locations with Columbian Sharp-tailed Grouse observations, 

7,951 eBird checklist locations with plains Sharp-tailed Grouse observations, 509 eBird checklist 
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locations with unknown Sharp-tailed Grouse observations, and 1,628 eBird checklist locations 

with Lesser Prairie-Chicken observations (

 

Figure A1Figure A1). We obtained morphological measurements from males for 219 Columbian 

Sharp-tailed Grouse, 64 plains Sharp-tailed Grouse, 165 unknown Sharp-tailed Grouse, and 223 

Lesser Prairie-Chicken. We obtained genotype results from nine microsatellite loci from 53 

Columbian Sharp-tailed Grouse, 32 plains Sharp-tailed Grouse, and 175 unknown Sharp-tailed 

Grouse. We identified 1,750 single nucleotide variants (SNVs) with <33.3% missing data; after 

pruning, we obtained 453 SNVs from 12 Columbian Sharp-tailed Grouse, 12 plains Sharp-tailed 

Grouse, 13 unknown Sharp-tailed Grouse, and 2 Lesser Prairie-Chickens to use for analysis. 

While Lesser Prairie-chicken provided discriminatory power as our outgroup (see Appendix A), 

here we only present results for our in-group populations of Sharp-tailed Grouse.  

Habitat associations—Using a DAPC analysis on environmental conditions surrounding 

observed locations, we found that the model was able to correctly predict 65.6% of Columbian 

Sharp-tailed Grouse, 98.8% of plains Sharp-tailed Grouse, and 87.2% of unknown Sharp-tailed 

Grouse (Table 2.1, Figure 2.2A). The largest proportion of the average membership probability 

for each population was identified as the original population of the observation (Table 2.2). The 

population with the lowest average membership probability for the population of origin was 
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Columbian Sharp-tailed Grouse, with an average membership probability of individuals of 

65.5% Columbian Sharp-tailed Grouse, 24.9% plains Sharp-tailed Grouse, and 9.5% unknown 

Sharp-tailed Grouse (Table 2.2). In general, Columbian Sharp-tailed Grouse occupied a principal 

component space that overlapped both plains and unknown Sharp-tailed Grouse; unknown and 

plains Sharp-tailed Grouse did not overlap in principal component space (Figure 2.3A). Our 

Random Forests model evaluating habitat characteristics for three Sharp-tailed Grouse 

populations was able to correctly classify 93.6% of Columbian Sharp-tailed Grouse, 100% of 

plains Sharp-tailed Grouse, and 98.0% of unknown Sharp-tailed Grouse (Table 2.5). The three 

habitat characteristics with the highest importance in the Random Forests model were percent 

cover of shrubs (1.00), terrain ruggedness index (0.27), and heat load index (0.22; Table 2.6 and 

Figure 2.6). 

Morphology—Using morphological measurements from the three Sharp-tailed Grouse 

populations, we found that there was a difference in average tail length between populations 

(𝜒2
2 = 23.37, P ≤ 0.001). Columbian (mean = 109.59 mm, SD = 4.55 mm) and unknown Sharp-

tailed Grouse (mean = 110.58 mm, SD = 5.92 mm) had the shortest tail lengths that did not differ 

from each other (P = 0.09) and plains Sharp-tailed Grouse had the longest tails (mean = 112.87 

mm, SD = 7.05 mm; Figure 2.4A). Wing cord length differed between populations (𝜒2
2 = 98.31, 

P ≤ 0.001). Unknown Sharp-tailed Grouse had the shortest wing cord length (mean = 209.58 

mm, SD = 4.02 mm), Columbian Sharp-tailed Grouse (mean = 211.53 mm, SD = 3.82 mm) had 

intermediate wing cord lengths, and plains Sharp-tailed Grouse had the longest wing cord lengths 

(mean = 216.59 mm, SD = 5.11 mm; Figure 2.4B). We found that tarsus + longest toe length 

differed between the populations (𝜒2
2 = 274.68, P ≤ 0.001). Columbian Sharp-tailed Grouse had 

the shortest tarsus + longest toe length (mean = 90.95 mm, SD = 2.41 mm), unknown Sharp-
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tailed Grouse (mean = 96.74 mm, SD = 2.91 mm) had intermediate tarsus + longest toe length, 

and plains Sharp-tailed Grouse had the longest tarsus + longest toe length (mean = 98.00 mm, 

SD = 2.74 mm; Figure 2.4C). We found that mass differed between the three populations (𝜒2
2 = 

180.15, P ≤ 0.001) with Columbian Sharp-tailed Grouse having the lowest mass (mean = 741.80 

g, SD = 35.03 g), unknown Sharp-tailed Grouse having intermediate mass (mean = 758.92 g, SD 

= 34.91 g), and plains Sharp-tailed Grouse had the greatest mass (mean = 930.05 g, SD = 40.77 

g; Figure 2.4D). 

Using a discriminant analysis of principal components (DAPC) on morphological 

characteristics including mass on all populations, we found that this model correctly predicted 

the population in 79.9% of all instances for Columbian Sharp-tailed Grouse, 96.8% of all 

instances for plains Sharp-tailed Grouse, and 60.0% of all instances for unknown Sharp-tailed 

Grouse (Table 2.1, Figure 2.2B). The largest proportion of the average membership probability 

for individuals in each population was identified as the original population of each individual 

(Table 2.2). The population with the lowest average membership probability for the population 

of origin was unknown Sharp-tailed Grouse, with an average membership probability of 

individuals of 42.6% Columbian Sharp-tailed Grouse, 0.2% plains Sharp-tailed Grouse, and 

57.2% unknown Sharp-tailed Grouse (Table 2.2). In general, the morphological spaces of 

Columbian Sharp-tailed Grouse and unknown Sharp-tailed Grouse occupied similar spaces while 

plains Sharp-tailed Grouse occupied their own principal components space (Figure 2.3B). Our 

Random Forests model evaluating four populations including mass was able to correctly classify 

93.6% of Columbian Sharp-tailed Grouse, 98.5% of plains Sharp-tailed Grouse, and 89.1% of 

unknown Sharp-tailed Grouse (Table 2.5). The three morphological characteristics of the highest 
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importance in the Random Forests model were tarsus + longest toe length (1.00), wing cord 

length to tarsus + longest toe length ratio (0.84), and mass (0.50; Table 2.7). 

When excluding mass from the DAPC analysis on all populations, we found that the 

model was able to correctly predict the population in 94.1% of all instances for Columbian 

Sharp-tailed Grouse, 58.7% of all instances for plains Sharp-tailed Grouse, and 80.6% of all 

instances for unknown Sharp-tailed Grouse (Table 2.1, Figure 2.5A). The largest proportion of 

the average membership probability for individuals in each population was identified as the 

original population of each individual (Table 2.2). The population with the lowest average 

membership probability for the population of origin was plains Sharp-tailed Grouse, with an 

average membership probability for individuals of 14.2% Columbian Sharp-tailed Grouse, 

50.7% plains Sharp-tailed Grouse, and 35.0% unknown Sharp-tailed Grouse (Table 2.2). In 

general, in this model excluding mass, plains Sharp-tailed Grouse and unknown Sharp-tailed 

Grouse occupied similar morphological spaces, while Columbian Sharp-tailed Grouse occupied a 

mostly unique morphological space (Figure 2.5B). Our Random Forests model evaluating four 

populations including mass correctly classified 91.3% of Columbian Sharp-tailed Grouse, 58.7% 

of plains Sharp-tailed Grouse, and 82.4% of unknown Sharp-tailed Grouse (Table 2.5). The three 

morphological characteristics of the highest importance in the Random Forests model were 

tarsus + longest toe length (1.00), the wing cord length to tarsus + longest toe length ratio (0.78), 

and wing cord length (0.40; Table 2.8). 

Microsatellite Genotyping—The number of alleles at each loci varied (7–23; Table 2.3). Allelic 

richness in each population varied, with the highest average allelic richness occurring in the 

plains Sharp-tailed Grouse population (mean = 8.43), followed by Columbian Sharp-tailed 

Grouse (mean = 8.13), and unknown Sharp-tailed Grouse had the average lowest allelic richness 
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(mean = 7.02; Table 2.3). Hardy-Weinberg exact tests indicated significant deviations from 

Hardy-Weinberg equilibrium expectations for several markers (Table 2.3). Deviations from 

Hardy-Weinberg equilibrium were expected given that our dataset includes individuals from 

multiple subspecies and populations that were separated by significant distances. Tests for 

linkage disequilibrium indicated linkage between several markers, however these markers were 

only significant in one population. In our Columbian Sharp-tailed Grouse population ADL230 

and LLSD7 showed linkage (P = 0.035) and ADL230 and SGMS06.8 showed linkage (P = 

0.006). For unknown Sharp-tailed Grouse, LLST1 and TUT4 showed linkage (P = 0.017). The 

markers LLST1 and TUT4 showed weak evidence of having null alleles present due to excess 

homozygotes for most allele classes as indicated by MICRO-CHECKER in our unknown Sharp-

tailed Grouse population, likely due to latent population structure and likely to not influence our 

results (Van Oosterhout et al. 2006). In exploratory analyses removing either LLST1 or TUT4, 

our results did not change.  

Using a DAPC analysis on genotype data from microsatellites, we found that the model 

was able to correctly predict the population 90.5% of the time for Columbian Sharp-tailed 

Grouse, 78.1% of the time for plains Sharp-tailed Grouse, and 98.3% of the time for unknown 

Sharp-tailed Grouse (Table 2.1; Figure 2.2C). The largest proportion of the average membership 

probability for individuals in each population was identified as the original population of each 

individual (Table 2.2). The population with the lowest average membership probability for the 

population of origin was plains Sharp-tailed Grouse, with an average membership probability for 

individuals of 5.5% Columbian Sharp-tailed Grouse, 77.6% plains Sharp-tailed Grouse, and 

16.9% unknown Sharp-tailed Grouse (Table 2.2). In general, the principal components space of 

Columbian Sharp-tailed Grouse, plains Sharp-tailed Grouse, and unknown Sharp-tailed Grouse 
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were unique, with each species occupying their own spaces (Figure 2.3C). Our Random Forests 

model evaluating 9 microsatellites across all individuals genotyped was able to correctly classify 

73.6% of Columbian Sharp-tailed Grouse, 31.2% of plains Sharp-tailed Grouse, and 98.3% of 

unknown Sharp-tailed Grouse (Table 2.5).  

Whole Genome Resequencing— Diversity (HO, HS, FIS) across our in-group (Columbian Sharp-

tailed Grouse, plains Sharp-tailed Grouse, and unknown Sharp-tailed Grouse) populations was 

low, but consistent across populations, with our out-group (Lesser Prairie-Chicken) showing 

lower diversity (Table 2.4). Pairwise genetic differentiation (FST) was low among our in-group 

populations, with greater differentiation between our in-group population and our out-group 

population (Table 2.4). Using a DAPC on low-resolution whole genome resequencing single 

nucleotide variant data, the model was able to correctly predict 91.7% of Columbian Sharp-tailed 

Grouse, 83.3% of plains Sharp-tailed Grouse, and 92.3% of unknown Sharp-tailed Grouse (Table 

2.1, Figure 2.2D). All populations had a high proportion of the average membership probability 

(>85.0%) for individuals in each population identified as the original population of each 

individual (Table 2.2). In general, all three populations of Sharp-tailed Grouse occupied a unique 

principal component space (Figure 2.4D). Our Random Forests model evaluating 453 SNVs 

across all Sharp-tailed Grouse populations was able to correctly classify 41.7% of Columbian 

Sharp-tailed Grouse, 41.7% of plains Sharp-tailed Grouse, and 46.2% of unknown Sharp-tailed 

Grouse (Table 2.5).  

DISCUSSION 

Historically, Sharp-tailed Grouse subspecies have been demarcated using geographic 

boundaries (e.g., Continental Divide or the Red River in Minnesota, North Dakota, and 

Manitoba), differences in habitat, and slight differences in morphology and plumage (Aldrich 
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and Duvall 1955, Connelly et al. 2024). We evaluated the subspecific status of a population of 

Sharp-tailed Grouse in south-central Wyoming using habitat, morphological, and genetic 

(microsatellite and genome-wide SNVs) characteristics. Our results suggest that the three 

populations of Sharp-tailed Grouse that we evaluated form three unique groups. This pattern is 

most evident when using habitat associations, microsatellite markers, and single nucleotide 

variants across the three Sharp-tailed Grouse populations. Differences between populations were 

less pronounced when evaluating morphological characteristics, however there were still 

differences between the populations when both including and excluding mass in the 

comparisons. Including Lesser Prairie-Chicken as an outgroup in our analysis (see Appendix A 

for results including outgroup) provided a strong discriminatory power and showed similar 

results, with our three populations of Sharp-tailed Grouse generally forming their own groups 

and Lesser Prairie-Chicken forming their own group as well. Overall, our results suggest that the 

Sharp-tailed Grouse population in south-central Wyoming is different from both the plains and 

Columbian Sharp-tailed Grouse subspecies and might represent a different subspecies.  

Typically, subspecies have been described using a single approach, ranging from 

ecological differences (Philips 1948, Wilson et al. 2010, Khimoun et al. 2013), morphological 

differences (Pivnička 1970, Owen and Webster 1983, Marantz and Patten 2010), and genetic 

differences (Funk et al. 2007, Archer et al. 2017, Ferrante et al. 2022). While many studies use a 

single approach, there are some that use multiple approaches to evaluate subspecies (e.g., Zink 

2015, Meiri et al. 2017, Walsh et al. 2017). We used multiple data types (e.g., habitat, 

morphology, and genetic) and analytical approaches (e.g., DAPC and Random Forests) to 

evaluate the Sharp-tailed Grouse population in south-central Wyoming with the results from the 

different data types and analytical approaches generally aligning. However, there were some 
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discrepancies depending on which analytical approach was used. The two analytical approaches 

(DAPC and Random Forests models) for morphological, microsatellite, and SNVs did not 

always agree, with the Random Forests models typically having poorer performances than 

DAPC models. Specifically, the Random Forests classification models had poorer performances 

when we used smaller sample sizes or included fewer variables in the analysis and the poorer 

performance is likely a result of not having adequate sample sizes or including enough predictor 

variables (Archer et al. 2017, Brieuc et al. 2018, Luan et al. 2020). For example, the Random 

Forests model evaluating SNVs performed poorly and we only had 12-13 samples per 

population. Conversely, with more information to discern differences among sample groups, our 

morphological Random Forest analysis was able to better discriminate among the three 

populations when we included mass as a covariate (note, all variables that included mass had 

intermediate importance in the Random Forest model; Table S2) had lower classification error 

than when we excluded mass from the model. 

The majority of the DAPC models correctly differentiated and identified the population 

of origin of >75% of all the individuals evaluated, except for morphology characteristics and 

habitat associations models. Morphological differences between the populations were less 

pronounced and differentiation depended on what variables were included in the analysis. When 

mass was included in the analysis, unknown Sharp-tailed Grouse were similar to Columbian 

Sharp-tailed Grouse; however, when mass was excluded from the analysis, unknown Sharp-

tailed Grouse were similar to plains Sharp-tailed Grouse. Further, when we included more 

morphological measurements, unknown Sharp-tailed Grouse were different from plains Sharp-

tailed Grouse (see Appendix A for results). This suggests that the number of morphological 

measurements is important and a study that includes more morphological characteristics for all 



 78 

populations will provide better insight into morphological differentiation. For the habitat 

associations model, the DAPC was able to correctly differentiate habitat use for the unknown 

subspecific population in south-central Wyoming from Columbian and plains Sharp-tailed 

Grouse habitat, however it did a poor job of differentiating Columbian Sharp-tailed Grouse from 

plains Sharp-tailed Grouse habitat. The inability of the DAPC model to differentiate Columbian 

Sharp-tailed Grouse habitat characteristics from plains Sharp-tailed Grouse habitat 

characteristics likely stems from Columbian Sharp-tailed Grouse occupying Conservation 

Reserve Program grasslands in portions of their range (Hoffman et al. 2015, Stevens et al. 2023); 

Conservation Reserve Program grasslands found within the Columbian Sharp-tailed Grouse 

range share characteristics with grasslands found throughout much of the plains Sharp-tailed 

Grouse range.  

Across their range, Sharp-tailed Grouse populations inhabit a variety of different habitats 

ranging from grasslands with no shrubs or trees to open clearings surrounded by predominately 

closed canopy forests, with occupied habitats generally differing among subspecies (Johnsgard 

2016, Connelly et al. 2024). Our results help confirm that there are differences in habitat use 

between some populations of Sharp-tailed Grouse, with Sharp-tailed Grouse in south-central 

Wyoming generally occupying different habitat conditions then Columbian and plains Sharp-

tailed grouse. The habitats that Sharp-tailed Grouse typically inhabit do not include continuous 

conifer forests, alpine areas, or high deserts, which are the predominate habitats found 

surrounding the area occupied by the unknown Sharp-tailed Grouse population. This large 

expanse of uninhabited areas surrounding the unknown Sharp-tailed Grouse population has 

resulted in the population being isolated from other populations of Sharp-tailed Grouse 

(Columbian and plains subspecies). Evidence suggests that Tympanuchus grouse can disperse 
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over large distances, with potential dispersal distances up to 120 km in some areas (Earl et al. 

2016, Roy and Gregory 2019), with these dispersal events occurring in human fragmented 

landscapes with patches of suitable habitat between them. The ranges of both the Columbian and 

plains Sharp-tailed Grouse are located farther from the maximum distance a Tympanuchus 

grouse has been observed to disperse (175 km and 130 km, respectively) with most of the 

distance between them representing unsuitable habitat, though a potential dispersal event cannot 

be ruled out. The isolation of the unknown Sharp-tailed Grouse population was likely not 

human-caused, unlike the fragmentation of Columbian Sharp-tailed Grouse in Idaho, Utah and 

Oregon (Miller and Graul 1980, Hoffman et al. 2015). Additional research is needed to evaluate 

the timeframe that the unknown Sharp-tailed Grouse population were isolated from other Sharp-

tailed Grouse populations.  

In our study, we used two different genetic approaches to discriminate populations: 

microsatellite loci and single nucleotide variants generated from low resolution whole genome 

resequencing. Results from both datasets analyzed using a DAPC indicated that the three 

populations of Sharp-tailed Grouse were different from each other, with few differences in 

discriminatory power between the two approaches. In other non-model systems, SNVs have 

shown more resolution to discriminate among populations than microsatellites, especially when 

populations are genetically depauperate (Galla et al. 2020, Zimmerman et al. 2020, Hauser et al. 

2021; but see also Forsdick et al. 2021); this power often comes from the quantity of data 

obtained from high throughput sequencing approaches. We did not see strong differences 

between microsatellites and SNVs here and we have considered two explanations for this pattern. 

First, the SNVs called here were produced at 2x read depth using low resolution resequencing 

Nanopore data on relatively few individuals, which may have resulted in fewer SNVs and 
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discriminatory power compared to microsatellites. Second, the microsatellite dataset here is 

robust, with a high number of possible alleles per locus, which may have allowed for substantial 

discriminatory power. We contend that both approaches were capable of discriminating 

populations in our analyses and therefore may be useful to others exploring this approach.  

Our results indicate that the population of Sharp-tailed Grouse in south-central Wyoming 

differs from Columbian and plains Sharp-tailed Grouse using ecological, morphological, and 

genetic approaches. To fully evaluate the subspecific status, analyses including evolutionary 

relationships will provide a better understanding of which populations of Sharp-tailed Grouse 

belong to which subspecies. A recent phylogenetic study indicated high nodal support for 

branching between many Sharp-tailed Grouse subspecies, including plains and Columbian, 

depending on the genomic markers used (e.g., autosomal, Z-linked, intergenic, and genic sites; 

Johnson et al. 2023). While the sample size was small for Sharp-tailed Grouse from south-central 

Wyoming (n = 2), there is support for differentiation from plains and Columbian Sharp-tailed 

Grouse in some—but not all—species trees. This complexity may be due to the recent 

evolutionary history of North American prairie grouse (i.e., incomplete lineage sorting), 

hybridization between taxa, and pre-zygotic barriers of sexual selection (Galla and Johnson 

2015). We recommend a more targeted phylogenomic study across Sharp-tailed Grouse, 

including adding samples from northwest Colorado (which is connected to the population in 

south-central Wyoming) and increased sample sizes for plain and Columbian Sharp-tailed 

Grouse from across their distributions to elucidate this complicated history. Finally, it should be 

noted that there was a historic population of Sharp-tailed Grouse in New Mexico that was 

classified as a separate subspecies (Tympanuchus phasianellus hueyi, Dickerman and Hubbard 

1994). The plumage description of these birds by Dickerman and Hubbard (1994) is similar to 
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what we observed in the population in south-central Wyoming (Lautenbach and Pratt, personal 

observation). The evolutionary history of this population remains unknown and could be 

assessed in relationship to historic and contemporary Sharp-tailed Grouse populations in the 

western United States, using museum specimens.   

Conservation Implications 

Our results may potentially change the current understanding of Sharp-tailed Grouse subspecies 

in western North America, which can impact how to manage them. Our results have particularly 

important implications for Columbian Sharp-tailed Grouse, a subspecies that has been petitioned 

for listing under the Endangered Species Act (USDI 2000, 2006). Historically the population in 

south-central Wyoming extending into northwestern Colorado was thought to be the Columbian 

subspecies. Excluding the estimated population size of Sharp-tailed Grouse in northwest 

Colorado and south-central Wyoming (approximately 8,000–10,000 birds; Hoffman 2001, Mong 

et al. 2017) reduces the estimated population of Columbian Sharp-tailed Grouse by about 10–

20% (Columbian Sharp-tailed Grouse population is estimated to be between 41,000–62,000; 

Gillette 2014, Chutter 2015, Schoeder et al. 2023). Not only do our results potentially change our 

understanding of population sizes, it also could change how we manage these populations, 

including habitat management and translocations. To maintain the genetic integrity of Columbian 

Sharp-tailed Grouse populations, our results indicate managers should not use the population in 

south-central Wyoming (and likely northwest Colorado) as a source population for reintroduction 

and population augmentation efforts of Columbian Sharp-tailed Grouse in places with small or 

extirpated populations (e.g., Nevada, Oregon, and Washington). Our analyses of habitat 

conditions suggest that there are some habitat differences between south-central 

Wyoming/northwestern Colorado and Columbian Sharp-tailed Grouse populations. Currently, 
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habitat management actions are applied uniformly between Columbian Sharp-tailed Grouse and 

populations of Sharp-tailed grouse in south-central Wyoming and northwest Colorado (Hoffman 

et al. 2015). Our results suggest a need to reevaluate habitat management approaches for Sharp-

tailed Grouse across the range of these species/sub-species in Wyoming, Idaho, and northwest 

Colorado.  
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TABLES 

Table 2.1. Number of variables, sample sizes, and assignment probabilities of discriminant 

analysis of principal components for populations of Columbian Sharp-tailed Grouse (STGRc; 

Idaho and Washington, 2005–2013), plains Sharp-tailed Grouse (STGRp; eastern Wyoming, 

2019), and unknown Sharp-tailed Grouse (STGRu; south-central Wyoming, 2017–2019). 

Analyses were run on habitat characteristics, morphological characteristics, 9 microsatellite loci, 

and single nucleotide variants (SNVs).  

  Sample size Assignment probability 

Analyses No. of variables STGRc STGRp STGRu STGRc STGRp STGRu 

Habitat 22 812 7,951 509 0.66 0.99 0.87 

Morphology 6a 219 63 165 0.80 0.97 0.60 

 10b 219 63 165 0.94 0.59 0.81 

Microsatellite 118c 53 32 175 0.88 0.78 0.98 

SNVs 453 12 12 13 0.92 0.83 0.92 
aMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe 

length (mm), and all pairwise comparisons. 

bMorphological analysis using mass (g), tail length (mm), wing cord length (mm), tarsus + 

longest toe length (mm), and all pairwise comparisons 

cTotal number of alleles across nine microsatellite loci.  



 100 

Table 2.2. Mean and median average membership probability of each individual assigned to 

each population of prairie-grouse evaluated using a discriminant analysis of principal 

components based on habitat characteristics, morphological characteristics, and single nucleotide 

variants for three populations of Sharp-tailed Grouse: Columbian Sharp-tailed Grouse (STGRc; 

Idaho and Washington, 2005–2013), plains Sharp-tailed Grouse (STGRp; eastern Wyoming, 

2019), and a population of Sharp-tailed Grouse with unknown subspecific status (STGRu, south-

central Wyoming, 2017–2019) in south-central Wyoming.  

 

  Mean (median) average membership 

probability of each individual 

Analyses Population STGRc STGRp STGRu 

Habitat STGRc 0.66 (0.96) 0.25 (0.01) 0.10 (0.00) 

 STGRp 0.01 (0.00) 0.99 (1.00) 0.00 (0.00) 

 STGRu 0.13 (0.00) 0.00 (0.00) 0.87 (1.00) 

Morphologicala STGRc 0.87 (0.95) 0.03 (0.01) 0.10 (0.04) 

 STGRp 0.14 (0.02) 0.51 (0.52) 0.35 (0.32) 

 STGRu 0.15 (0.04) 0.13 (0.06) 0.72 (0.84) 

Morphologicalb STGRc 0.69 (0.72) 0.00 (0.00) 0.31 (0.28) 
 STGRp 0.01 (0.00) 0.97 (1.00) 0.02 (0.00) 

 STGRu 0.43 (0.38) 0.00 (0.00) 0.57 (0.62) 

Microsatellite STGRc 0.91 (1.00) 0.02 (0.00) 0.07 (0.00) 

 STGRp 0.04 (0.00) 0.79 (0.96) 0.17 (0.01) 

 STGRu 0.01 (0.00) 0.02 (0.00) 0.97 (1.00) 

Single nucleotide variants STGRc 0.92 (1.00) 0.08 (0.00) 0.00 (0.00) 

 STGRp 0.04 (0.00) 0.89 (1.00) 0.07 (0.00) 

 STGRu 0.01 (0.00) 0.06 (0.00) 0.93 (1.00) 
aMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe 

length (mm), and all pairwise comparisons. 

bMorphological analysis using mass (g), tail length (mm), wing cord length (mm), tarsus + 

longest toe length (mm), and all pairwise comparisons 



 

 

Table 2.3. Population genetic summary statistics for 9 microsatellite loci from 53 Columbian Sharp-tailed Grouse (STGRc, Idaho, 

2018), 32 plains Sharp-tailed Grouse (STGRp, eastern Wyoming, 2019), and 175 unknown Sharp-tailed Grouse (STGRu, south-

central Wyoming, 2017–2019). We report the number of alleles (NA), allelic richness (AR) by populations, inbreeding coefficient 

(FIS), proportional genetic variance (FST), expected heterozygosity (HE), observed heterozygosity (HO), and Hardy-Weinberg 

Equilibrium p-value (HWE). 

Loci NA ARSTGRc ARSTGRp ARSTGRu FIS FST HO HE HWE 

ADL230 11 7.74 8.98 3.63 0.00 0.08 0.63 0.66 <0.001 

BG16 11 7.48 7.62 7.65 -0.03 0.06 0.81 0.82 0.107 

LLSD7 13 8.62 9.85 8.78 -0.04 0.01 0.85 0.81 0.022 

LLST1 7 5.69 4.00 4.11 0.21 0.06 0.45 0.66 <0.001 

SGMS06.6 23 13.00 13.52 12.42 -0.02 0.03 0.87 0.87 <0.001 

SGMS06.8 11 7.51 8.23 5.58 -0.06 0.03 0.81 0.75 0.247 

SG28 17 7.03 5.95 3.98 -0.02 0.02 0.22 0.22 1.000 

TUT4 15 10.17 9.99 10.95 0.13 0.03 0.67 0.89 <0.001 

TTD6 10 5.97 7.75 6.09 0.07 0.06 0.59 0.67 <0.001 

 



 

 

Table 2.4. Sample size (n), proportional genetic variance (FST), observed heterozygosity (HO), 

subpopulation heterozygosity (HS), and inbreeding coefficient (FIS) for 453 single nucleotide 

polymorphisms and insertions and deletions loci from 39 Tympanuchus samples (Lesser Prairie-

Chicken [LEPC; Kansas, 2013], Columbian Sharp-tailed Grouse [STGRc; Idaho, 2018], plains 

Sharp-tailed Grouse [STGRp; eastern Wyoming, 2019], and unknown Sharp-tailed Grouse 

[STGRu; south-central Wyoming, 2017–2019]). 

Subspecies n FST LEPC FST STGRc FST STGRp HO HS FIS 

LEPC 2 – – – 0.19 0.11 -0.74 

STGRc 12 0.06 – – 0.22 0.16 -0.39 

STGRp 12 0.00 0.02 – 0.22 0.17 -0.35 

STGRu 13 0.16 0.06 0.04 0.23 0.17 -0.38 
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Table 2.5. Pairwise comparisons and classification error of Random Forests classification for 

three populations of Sharp-tailed Grouse based on habitat characteristics, morphological 

characteristics, microsatellite loci, and single nucleotide variants (SNVs). Sharp-tailed Grouse 

populations evaluated are Columbian Sharp-tailed Grouse (STGRc; Idaho and Washington, 

2005–2013, 2018), plains Sharp-tailed Grouse (STGRp; eastern Wyoming, 2019), and unknown 

Sharp-tailed Grouse (STGRu; south-central Wyoming, 2017–2019).  

Analysis Population STGRc STGRp STGRu Classification error (%) 

Habitat STGRc 761 50 1 6.3 

 STGRp 4 7947 0 0.1 

  STGRu 8 1 500 1.8 

Morphologicala 
STGRc 206 1 12 5.9 

 STGRp 0 62 1 1.6 
 STGRu 17 1 147 10.9 

Morphologicalb 
STGRc 200 4 15 8.7 

 STGRp 6 36 21 42.9 
 STGRu 16 13 136 17.6 

Microsatellite loci STGRc 39 3 11 26.4 

 STGRp 3 10 19 68.8 

 STGRu 2 1 172 1.7 

SNVs STGRc 6 2 4 50.0 

  STGRp 3 5 4 58.3 
 STGRu 4 2 7 46.2 

aMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe 

length (mm), and all pairwise comparisons. 

bMorphological analysis using mass (g), tail length (mm), wing cord length (mm), tarsus + 

longest toe length (mm), and all pairwise comparisons 
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Table 2.6. (S1) Standardized variable importance for Random Forests model predicting prairie-

grouse populations based on habitat characteristics at observed locations (eBird), 2010–2023. 

Prairie-grouse populations evaluated were Columbian Sharp-tailed Grouse, plains Sharp-tailed 

Grouse, and a population of Sharp-tailed Grouse with unknown subspecific status. Variable 

importance values were standardized so the top variable equals 1 and the remaining variables are 

proportions derived by dividing by the top variable (Doherty et al. 2018). PRISM represents 30-

year average annual climate data (PRISM Climate Group 2014); RAP represents annual 

Rangeland Analysis Platform data (Robinson et al. 2019, Alred et al. 2021, Jones et al. 2021); 

NLCD represents the National Land Cover Database from 2011, 2013, 2016, 2019, and 2021 (Jin 

et al. 2019); canopy cover of different forest types was derived from both NLCD and RAP data 

layers. 

  
Variable Importance value 

Percent cover of shrubs (RAP) 1.00 

Terrain ruggedness index 0.27 

Heat load index 0.22 

Topographic position index 0.17 

Percent cover of perennial herbaceous vegetation (RAP) 0.16 

Canopy cover of deciduous forest (NLCD and RAP) 0.15 

Mean annual precipitation (PRISM) 0.13 

Percent cover of annual herbaceous vegetation (RAP) 0.12 

Annual herbaceous vegetation biomass (RAP) 0.11 

Croplands (NLCD) 0.11 

Mean annual maximum temperature (PRISM) 0.10 

Biomass of perennial herbaceous vegetation (RAP) 0.10 

Canopy cover of unclassified forest (NLCD and RAP) 0.09 

Canopy cover of all forest types (NLCD and RAP) 0.09 

Canopy cover of coniferous forest (NLCD and RAP) 0.09 

Percent cover of litter (RAP) 0.09 

Anthropogenic development (NLCD) 0.06 

Water (NLCD) 0.06 

Pasture lands (NLCD) 0.05 

Emergent wetlands (NLCD) 0.05 

Percent bare ground (RAP) 0.04 

Canopy cover of mixed forests (RAP) 0.03 
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Table 2.7. (S2) Standardized variable importance for Random Forests model predicting prairie-

grouse populations based on morphological characteristics (mass (g), tail length (mm), wing cord 

length (mm), tarsus + longest toe length (mm) [tarsus + toe length], and all pairwise 

comparisons). Prairie-grouse populations evaluated were Columbian Sharp-tailed Grouse (2005–

2013; Idaho and Washington), plains Sharp-tailed Grouse (2019; Wyoming), and a population of 

Sharp-tailed Grouse with unknown subspecific status (2017–2019; Wyoming). Variable 

importance values were standardized so the top variable equals 1 and the remaining variables are 

proportions derived by dividing by the top variable (Doherty et al. 2018). 

Variable Importance value 

Tarsus + toe length 1.00 

Wing cord length to tarsus + toe length ratio 0.84 

Mass 0.50 

Tarsus + toe length to mass ratio 0.42 

Wing cord length to mass ratio 0.39 

Tail length to mass ratio 0.21 

Tail length to tarsus + toe length ratio 0.14 

Wing cord length to tail length ratio 0.11 

Wing cord length 0.11 

Tail length 0.07 
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Table 2.8. (S3) Standardized variable importance for Random Forests model predicting prairie-

grouse populations based on morphological characteristics (tail length (mm), wing cord length 

(mm), tarsus + longest toe length (mm) [tarsus + toe length], and all pairwise comparisons). 

Prairie-grouse populations evaluated were Columbian Sharp-tailed Grouse (2005–2013; Idaho 

and Washington), plains Sharp-tailed Grouse (2019; Wyoming), and a population of Sharp-tailed 

Grouse with unknown subspecific status (2017–2019; Wyoming). Variable importance values 

were standardized so the top variable equals 1 and the remaining variables are proportions 

derived by dividing by the top variable (Doherty et al. 2018). 

Variable Importance value 

Tarsus + toe length 1.00 

Wing cord length to tarsus + toe length ratio 0.78 

Wing cord length 0.40 

Tail length to tarsus + toe length ratio 0.33 

Wing cord length to tail length ratio 0.24 

Tail length 0.20 
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FIGURES 

 

Figure 2.1. Sample locations for habitat association analysis (eBird checklist locations, 2010–

2023; colored circles) and genetic and morphological data (gray triangles). The polygons 

represent the estimated range for the Lesser Prairie-Chicken (WAFWA Lesser Prairie-Chicken 

Interstate Working Group 2022) and the estimated ranges for subspecies of Sharp-tailed Grouse 

(Columbian, plains, and a population with an unknown subspecies) in the United States of 

America (Spaulding et al. 2006, Galla and Johnson 2015). 
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Figure 2.2. Membership probability (admixture) plots for discriminant analysis of principal 

components for habitat characteristics (A), morphological characteristics of males including 

mass (B), microsatellite loci analysis (C), and single nucleotide variants (SNVs; D) for 

Columbian Sharp-tailed Grouse (STGRc; Idaho and Washington, 2005–2013, 2018), plains 

Sharp-tailed Grouse (STGRp; eastern Wyoming, 2019), and unknown Sharp-tailed Grouse 

subspecies (STGRu; south-central Wyoming, 2017–2019). Membership probability plot depicts 

the proportion of assignment to each population, with different colors representing the proportion 

of each population in each individual. Facets represent the original population of each 

observation (habitat) or individual (morphology, microsatellite loci, and SNVs).  
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Figure 2.3. Principal component plot from discriminant analysis of principal components for 

habitat characteristics (A), morphological characteristics of males including mass (B), 9 

microsatellite loci (C), and 453 single nucleotide variants (SNVs; D) for Columbian Sharp-tailed 

Grouse (STGRc; Idaho and Washington, 2005–2013, 2018), plains Sharp-tailed Grouse (STGRp; 

eastern Wyoming, 2019), and unknown Sharp-tailed Grouse subspecies (STGRu; south-central 

Wyoming, 2017–2019). Points represent individual observations (habitat) or individuals 

(morphology, microsatellite loci, and SNVs).  
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Figure 2.4. Comparison of raw morphometric measurements of males across four population of 

grouse: Lesser Prairie-Chicken (LEPC; Kansas and Colorado, 2013–2017), Columbian Sharp-

tailed Grouse (STGRc; Idaho and Washington, 2005–2013), plains Sharp-tailed Grouse (STGRp; 
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eastern Wyoming, 2019), and a Sharp-tailed Grouse with an unknown subspecific status 

(STGRu; south-central Wyoming, 2017–2019). Morphometric measurements include tail length 

(mm), wing cord length (wing length; mm), tarsus + longest toe length (tarsus length; mm), and 

mass (g). Superscript letters above each boxplot represent statistical differences calculated using 

a Kruskal-Wallis rank sum test, where populations with the same letter did not differ from each 

other. All photos © Jonathan Lautenbach. 
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Figure 2.5. Membership probability (admixture) plot (A) and principal component plot (B) for 

discriminant analysis of principal components (DAPC) for three morphometric measurements of 

males and all pairwise comparisons for Columbian Sharp-tailed Grouse (STGRc; Idaho and 

Washington, 2005–2013), plains Sharp-tailed Grouse (STGRp; eastern Wyoming, 2019), and a 

Sharp-tailed Grouse population of unknown subspecies (STGRu; south-central Wyoming, 2017–

2019). 
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Figure 2.6. Comparison of raw habitat characteristics at eBird checklist locations across four 

populations of grouse: Lesser Prairie-Chicken (LEPC), Columbian Sharp-tailed Grouse 

(STGRc), plains Sharp-tailed Grouse (STGRp), and a Sharp-tailed Grouse with unknown 
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subspecific status (STGRu) in south-central Wyoming (2010–2023). Habitat characteristics 

include the top six most important variables from a Random Forests classification model (see 

Table 2.6). Habitat characteristics include percent cover of shrubs (A), terrain ruggedness index 

(B), heat load index (C), topographic position index (D), percent cover of perennial herbaceous 

vegetation (E), and percent canopy cover of deciduous forests (F). Superscript letters above each 

boxplot represent statistical differences calculated using a Kruskal-Wallis rank sum test, where 

populations with the same letter did not differ from each other. 
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Landscape features and seasonal female habitat predicts lek-site selection, but not lek size 

of a Tympanuchus grouse 
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ABSTRACT  

The lek hotspot hypothesis predicts that leks will form in areas where males are more likely to 

encounter females, providing wildlife managers with a framework supporting the use of leks as 

the focus for prairie and shrubland grouse conservation and monitoring. The lek hotspot 

hypothesis also implies that the number of males attending leks (lek size) will be higher in areas 

where there are more females. We used sharp-tailed grouse (Tympanuchus phasianellus) to 

evaluate if lek locations and lek size were more influenced by lek-specific habitat features or by 

female habitat requirements during different life-history stages. First, we evaluated which 

landscape features influenced female habitat selection and mortality risk during different 

seasons: nesting (Apr–Jun), brood-rearing (Jun–Aug), early nonbreeding (Sep–Nov), and late 

nonbreeding (Dec–Mar) seasons in south-central Wyoming (n = 213 VHF-marked females; 

2017–2020). We found that habitat selection and mortality risk varied by season. Subsequently, 

we modeled lek locations and lek size relative to seasonal female habitat requirements (selection 
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and mortality risk) and landscape features to identify key variables explaining lek-site selection 

and lek size. Lek-site selection was based on a combination of landscape features and seasonal 

female habitat. Specifically, leks were located in areas with less rugged terrain and lower nest, 

brood, and late nonbreeding season mortality risks. We found that lek size was primarily 

influenced by landscape features, specifically lek sizes were larger in areas with less bare 

ground. Our findings suggest that leks were located in areas more frequented by females at a 

broad spatial scale (≥800 m), consistent with the lek hotspot hypothesis, however, at a finer scale 

(≤400 m), leks are selected based on landscape features. Our research supports continuing to use 

lek locations as focal points for habitat management for lekking grouse.  

INTRODUCTION 

Lek mating is a breeding system where males gather at communal display grounds, 

known as a lekking arena, to attract and mate with females (Wiley 1978). In North America, this 

system is commonly associated with prairie and shrubland grouse (family Phasianidae; 

Johnsgard 2002); however, lek-mating systems occur across multiple taxa including mammals, 

insects, and other birds (Höglund and Alatalo 1995). There are several hypotheses that seek to 

explain lek formation, including hotspot hypothesis (Bradbury and Gibson 1983, Beehler and 

Foster 1988, Bradbury et al. 1989a), the hotshot hypothesis (Beehler and Foster 1988), female 

preference hypothesis (Bradbury 1981), the kin selection hypothesis (Kokko and Lindström 

1996, Höglund 2003), the predation protection hypothesis (Wiley 1973, Gibson et al. 2002), and 

the blackhole hypothesis (Stillman et al. 1993). Of these hypotheses, the hotspot and predation 

protection hypotheses may help predict where leks form (Davies 1991, Gibson et al. 2002, Ryder 

et al. 2006), while the other hypotheses focus more on why leks form. The lek hotspot hypothesis 

states that males will form lekking arenas in areas with the highest probability of encountering 
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females (Bradbury and Gibson 1983, Davies 1991, Ryder et al. 2006), suggesting that habitats 

used by females may play an important role in the locations of lekking arenas. Additionally, the 

hotspot hypothesis suggests that lekking arenas will be located in areas that increase detectability 

of the lek by females (sexual advertisement; Alonso et al. 2012). The predation avoidance 

hypothesis suggests that males form leks to reduce predation risk and suggests that leks will be 

located in areas that reduce predation risk (Wiley 1973, Gibson et al. 2002, Aspbury and Gibson 

2004). Portions of the hotspot and predation avoidance hypotheses are not mutually exclusive, as 

landscape attributes that allow females to detect lekking arenas might also facilitate detection of 

lekking arenas by predators (Alonso et al. 2012).   

Prairie and shrubland grouse (Tympanuchus and Centrocercus; hereafter prairie grouse) 

are a group of lekking grouse found throughout much of northern North America. The locations 

of prairie grouse lekking arenas have been linked to the hotspot (Schroeder and White 1993, 

Gibson 1996, Gehrt et al. 2020) and predation avoidance hypotheses (Gibson et al. 2002, 

Ashbury and Gibson 2004), however there are few studies that evaluate both. Studies have 

associated the locations of prairie grouse lekking arenas with female migration patterns during 

the spring (Gibson 1996), nest-site locations and nesting habitat (Schroeder and White 1993, 

Gehrt et al. 2020), brood-rearing habitat (Gehrt et al. 2020), reduced predation risk by golden 

eagles (Aquila chrysaetos; Ashbury and Gibson 2004), and in relation to topographic features 

(Hovick et al. 2015b) that presumably increase detectability by females and decrease predation 

risk. In addition to breeding season habitat (e.g., lekking, nesting, and brood-rearing seasons), 

nonbreeding season habitats (fall and winter) might also play a role in how males determine 

where lekking arenas are located. Some species of prairie grouse (Tympanuchus spp.) are also 

known to lek in the fall (Sep–Nov; Hamerstrom and Hamerstrom 1951), a time when males 
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begin to establish territories on lekking arenas (Moyles and Boag 1981). Males may use the 

number of females in the areas surrounding known lekking areas during the fall area as a cue for 

selecting which lek sites they will attend in spring. Leks might also be located in areas 

surrounded by late nonbreeding habitat (Dec–Mar), because males start attending leks in March 

(Gratson 1988) when females are still occupying nonbreeding habitat. The multiple potential 

reasons trying to explain why lekking arenas are located where they are indicate that this is a 

complex process and that evaluating all these potential reasons might lead to a better 

understanding of the placement of lekking arenas on the landscape.    

Understanding why lek sites are located where they are is important for prairie grouse 

conservation, especially as current monitoring and management programs for prairie grouse 

focus on areas surrounding leks (Walsh et al. 2010, Hoffman et al. 2015, Hagen et al. 2016). 

Leks are important for monitoring populations because they are relatively fixed points that 

managers can visit annually and conduct surveys to count the number of individuals; in turn, 

managers evaluate population trends from these counts (Beck and Braun 1980, Connelly et al. 

2003, Walsh et al. 2010, Fedy and Aldridge 2011, Ross et al. 2019). Generally, this monitoring 

strategy assumes that long-term changes in the number of birds observed on leks are due to broad 

changes in habitat conditions surrounding leks, either generated through anthropogenic change or 

abiotic factors such as drought (Hess and Beck 2012, Ross et al. 2016a, b). On a local scale, lek 

locations help predict female greater prairie-chicken (T. cupido) breeding activity with most 

female greater prairie-chicken activity occurring within 5 km of known leks (Winder et al. 2015). 

Understanding how grouse respond to habitat characteristics during different seasons and how 

that influences lek locations and lek size will further our understanding of lek dynamics and the 

establishment of new leks.   
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In our study, we evaluated lek-site selection and lek size (i.e., number of birds on a lek) in 

relation to both landscape features and seasonal habitats. for sharp-tailed grouse (T. phasianellus) 

in south-central Wyoming, USA. We evaluated the influence of landscape features on both 

female habitat selection and mortality risk during nesting, brood-rearing, early nonbreeding (Sep 

1–Nov 30), and late nonbreeding (Dec 1–Mar 31). Our primary objective was to identify whether 

lek-site selection and lek size were more influenced by lek-specific habitat features or by 

seasonal female habitat requirements. To achieve this, we first defined two sub-objectives: 1) 

identify landscape features that influence female sharp-tailed grouse seasonal habitat selection 

and mortality risk during each season evaluated, and 2) identify landscape features influencing 

sharp-tailed grouse lek-site selection and lek size. Results from these two sub-objectives helped 

us develop models representing separate hypotheses explaining sharp-tailed grouse lek-site 

selection and lek size, evaluated separately: H1) lek-site selection and lek size were influenced 

by landscape features surrounding leks, and H2) lek-site selection and lek size were influenced 

by seasonal female habitat requirements. The first hypothesis suggests lek sites were selected 

primarily for habitat irrespective of seasonal female habitat requirements (contrary to the hotspot 

hypothesis) whereas the second hypothesis suggests lek sites were selected primarily for seasonal 

female habitat requirements (consistent with the hotspot hypothesis). Because male sharp-tailed 

grouse could select lek sites both because of nearby seasonal female habitat and for additional 

non-female-specific habitat characteristics we developed a third hypothesis: H3) lek-site 

selection and lek size were influenced by a combination of landscape features and seasonal 

female habitat requirements.  

METHODS 

Study Area 



 120 

Our study area was located in southwestern Carbon County, Wyoming, USA (41.194°N, -

107.324°E; 

 

Figure 3.1). The study area, defined by a 95% isopleth of the fixed-kernel density polygon of 

known leks in Carbon County, Wyoming, encompassed 2,960 km2 with elevation that ranged 

from 1900–3100 m above sea level. Ownership in our study area was composed of Bureau of 

Land Management (36.7%), U. S. Forest Service (23.3%), State of Wyoming (12.2%), and 

privately owned (27.7%) lands. During our study (2017–2020), the average annual high 

temperature was 13° C (30-year average = 12.4° C) and the average annual minimum 

temperature was -0.8° C (30-year average = -2.2° C). The average annual precipitation was 542 

mm (range: 494–601; 30-year average = 618 mm; National Centers for Environmental 

Information, NOAA, accessed 6/10/2021, https://www.ncdc.noaa.gov/cdo-web/). Dominant 

vegetation communities within our study area were sagebrush steppe, mixed-shrub communities, 

https://www.ncdc.noaa.gov/cdo-web/
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quaking aspen (Populus tremuloides) forest, mixed deciduous and coniferous forests, and mixed-

conifer forests. Sagebrush steppe was dominated by big sagebrush (Artemisia tridentata); mixed-

shrub communities were primarily composed of silver sagebrush (A. cana), big sagebrush, 

serviceberry (Amelanchier spp.), yellow rabbitbrush (Chrysothamnus viscidiflorus), antelope 

bitterbrush (Purshia tridentata), and snowberry (Symphoricarpos spp.); mixed deciduous and 

coniferous forests were primarily composed of quaking aspen, Engelmann spruce (Picea 

engelmannii) and lodgepole pine (Pinus contorta); and coniferous forests were primarily 

composed of Engelmann spruce and lodgepole pine. The primary land uses within our study area 

were cattle and sheep grazing, with some energy extraction, timber harvest, recreation, and 

irrigated hayfields. 

Field Methods 

We captured female sharp-tailed grouse at leks using walk-in funnel traps (Haukos et al. 

1990; Schroeder and Braun 1991) continuously from ~10 Apr–11 May 2017–2019. We radio-

tagged all captured females with 15-g necklace-mounted VHF transmitters (model RI-2B, 

Holohil, Carp, Ontario, Canada) and located individuals 2–4 times per week during the breeding 

season (~1 Apr–31 Aug) using triangulation at a distance of ~30–50 m. If we observed a female 

in the same location during two or more consecutive visits during May or June, we visually 

confirmed, or circled the bird within a few meters, to identify if the female was on a nest. Once 

we identified a nest, we monitored it 2–4 times per week from a distance of 50–100 m, until the 

female left the nest after it hatched or failed. We considered nests successful when ≥1 egg 

hatched; this was determined by examining eggshell and eggshell membranes in and near the 

nest after the female was no longer attending the nest. If a nest hatched, we continued to monitor 

each female for 7 weeks to assess brood mortality risk and habitat selection. To track brood 
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mortality risk, we conducted night brood checks when the brood was 1-week old, and then every 

two weeks until broods reached 7-weeks old. Night-time checks minimized error because chicks 

were actively being brooded at night making it more reliable to determine chick presence 

(determined visually or by presence of chick droppings in the roost the following day) without 

causing significant disturbance to the female and chicks (Pratt and Beck 2019, Smith et al. 2019). 

A brood was considered to have failed if chicks were no longer observed with the female or if a 

female mortality was detected. We assumed failure locations to be the location where we no 

longer detected chicks unless the distance between the last location with known chick presence 

and the location where the fate was determined was >500 m away. In the case where a female 

moved >500 m post brood failure, we used the previous location where chicks were still present 

as the location where the brood likely failed, as generally broods do not move long distances in a 

short timespan (1–3 days). Most brood failures were the result of female mortalities (58%; brood 

failure locations associated with female mortality were determined to be the location of the 

female mortality). We considered a brood successful if there was ≥1 chick present when the 

brood was 7-weeks old. We located birds by airplane once per month during the fall/winter (non-

breeding season; 15 Sep–31 Mar). If we were not able to locate individuals during a flight, we 

would continue to search for them in the next 2–3 subsequent flights; if, after subsequent flights, 

we were still not able to locate them, we considered them missing and right censored the 

individual in our survival analyses. 

We obtained lek locations and counts from the Wyoming Game and Fish Department 

(WGFD) and the Rawlins Field Office of the Bureau of Land Management (BLM). The WGFD, 

BLM, and other volunteers visited leks each year (2017–2019) to count the number of sharp-

tailed grouse at each lek. Each year, leks were visited once during the spring lekking season 
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(Mar–May). During visits, observers counted the number of birds attending leks regardless of 

sex because sexes can be difficult to differentiate due to poor visibility when leks are located in 

shrubby areas. For the few leks (<5) where all individuals could be reliably counted without 

flushing, leks were counted from a distance ≥50 m to minimize disturbance to lekking activities. 

For the majority of leks, which could not be reliably counted without flushing, leks were flushed 

once during each season and the number of individuals that flushed were counted. Therefore, lek 

counts used in analyses included both males and females and represent all birds present at the 

times of observations. We used all known lek locations that had ≥2 males attending the lek for at 

least two of the three years of our study. We evaluated lek size during each year of our study and 

we averaged the number of birds counted at leks each of the years of our study at each lek 

location and rounded to this to the nearest integer so we could use count models. We used 

average lek size in addition to annual lek size data to understand if there were any general trends 

related to lek size during our study. 

Available landscape features 

We used remotely sensed data to describe landscape features available in our study area. We 

evaluated seasonal habitats and lek locations and size in relation to vegetation cover, 

anthropogenic disturbances, and topographic features (TABLES 

Table 3.1). Data describing vegetation features were obtained from the Rangeland Condition 

Monitoring Assessment and Projection (RCMAP; Coulston et al. 2012, Xian et al. 2015, Rigge et 

al. 2019, 2020) and the National Land Cover Database (NLCD; Jin et al. 2019). We used the 

following rangeland fraction layers from 2016–2019: annual herbaceous percent cover, perennial 

herbaceous percent cover, herbaceous percent cover (combined annual and perennial herbaceous 

layers), percent bare ground, percent litter, percent cover of sagebrush (Artemisia sp.), percent 
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cover of all shrubs, percent cover of non-sagebrush shrubs, shrub height (cm), and percent 

canopy cover of trees (all downloaded from https://www.mrlc.gov/). We used NLCD coniferous 

forest and deciduous forest land cover types to derive coniferous forest and deciduous forest 

canopy cover from the RCMAP tree cover data. We separated out the canopy cover of different 

forest types (coniferous and deciduous forests) because sharp-tailed grouse are known to use 

some types of deciduous forests. For topographic features, we calculated heat load index (HLI; 

McCune and Keon 2002), terrain ruggedness index (TRI; Riley et al. 1999), and topographic 

position index (TPI; De Reu et al. 2014) from a digital elevation model (DEM; USGS 2011) 

using the hli, tri, and tpi functions within the spatialEco package in Program R 4.4.1 (Evans et 

al. 2021, R Core Development Team 2024). Heat load index represents an indirect measure of 

incident solar radiation calculated from a DEM, with zero representing the coolest areas and 1 

representing the warmest areas (McCune and Keon 2002). Terrain ruggedness index represents 

the roughness of a surface with lower values representing smoother areas and higher values 

representing very rough surfaces (Riley et al. 1999). Topographic position index represents the 

relative position on the landscape, with positive values representing hill tops and negative values 

representing valleys or other positions lower on the slope (De Reu et al. 2014). For all vegetation 

and topographic layers, we used a moving window analysis to estimate the mean value for each 

layer within 6 circular distance bins (100, 200, 400, 800, 1,600, and 3,200-m) using the focal and 

focalWeight functions in the terra package in Program R (Hijmans 2023). The moving window 

analysis calculates the mean values for each cell within the distance of each distance bin. The 

combination of the moving window analysis and raw vegetation and topographic layers resulted 

in 7 distance bins to evaluate: 30 m (raw vegetation and topographic variables), 100 m, 200 m, 

400 m, 800 m, 1,600 m, and 3,200 m. We evaluated two different anthropogenic features: 
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distance to oil and natural gas infrastructure and distance to all roads. We extracted oil and gas 

infrastructure (e.g., well pads, pipelines, settling ponds, etc.) and all road cells from the NLCD 

cover data and calculated the Euclidean distance to these features (Euclidean distance tool, 

spatial analyst toolbox, ArcGIS 10.5; ESRI Inc., 2016, Redlands, CA). 

 For each season that we evaluated habitat selection and mortality risk for, we used 

a different subset of variables mentioned above. For nest site selection and nest mortality risk, we 

used vegetation layers from the previous year (e.g., for a bird nest located in 2017, we used 

vegetation layers from 2016). We used vegetation layers from the previous year because they 

would better represent the residual vegetation that was present when the birds were selecting nest 

sites. For nest selection and mortality risk, we did not include the individual layers of annual and 

perennial herbaceous vegetation as we hypothesized that sharp-tailed grouse would be unable to 

decipher the difference between these during the dormant season; however, we did include total 

herbaceous vegetation (sum of annual and perennial herbaceous vegetation). We did not evaluate 

the 1,600 m and 3,200 m scales for nesting and brood-rearing seasons because we hypothesized 

that female sharp-tailed grouse were likely not selecting these habitats at those scales. For the 

brooding and early nonbreeding season (1 Sep–30 Nov) we used all vegetation, topographic, and 

anthropogenic variables from the year of the locations. During the early and late (1 Dec–31 Mar) 

nonbreeding seasons we did not evaluate the 30-m and 100-m scales as the accuracy of our 

locations during the nonbreeding season was between 50 m and 100 m and including these finer 

scales would not properly represent our data. Because the majority of our study area was covered 

in snow during the late nonbreeding season, we excluded annual and herbaceous vegetation 

cover, non-sagebrush shrub cover, and total shrub cover; for the final models predicting late 

nonbreeding season habitat selection and mortality risk we included only one of the following 
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covariates: bare ground, herbaceous vegetation cover, and litter because any of these might 

represent spaces between shrubs. For bare ground, herbaceous vegetation, and litter during the 

late non-breeding season, we selected the variable with the lowest Akaike’s Information 

Criterion adjusted for small sample sizes (AICc; Burnham and Anderson 2002). For the late 

nonbreeding season, we used vegetation covariates from growth year of the vegetation. For 

example, if a location was from March 2018, we used vegetation data from 2017 because 

vegetation growth had not started yet in 2018. For a complete list of variables and scales used for 

modeling in each season, see TABLES 

Table 3.1. 

For lek-site selection and lek size, we only included variables that we thought might 

influence leks. These included bare ground and herbaceous vegetation that might be selected for 

because they represented open ground; coniferous and deciduous forest canopy cover because we 

thought these might be avoided and they represented generally higher elevations in our study 

area; sagebrush cover because this was the dominant cover type in our study area; total shrub 

cover as leks might not be only in sagebrush; distance to oil and gas infrastructure and distance 

to roads because we wanted to know if anthropogenic features influenced leks; and all three 

topographic variables because topography has been found to influence prairie grouse lek 

locations in other studies (McKenna et al. 2012, Hovick et al. 2015, Connelly et al. 2024). 

Because we were not quantifying if leks moved less than 30 m (none of the leks moved more 

than 10 m during our study, J. D. Lautenbach, personal observation) we did not include the 30-m 

scale in either our lek-site selection or lek size analyses. Because leks in our study did not move, 

we conducted our lek-site selection analyses on the average vegetation conditions during our 

study. We conducted our lek size analysis for annual lek size (2017–2019) in addition to average 
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lek size (Appendix B1: Table B1). For annual lek counts we used the prior year’s vegetation 

conditions as these are likely what was available when male sharp-tailed grouse started attending 

the leks in late February/early March (e.g., for 2017 lek counts we used 2016 vegetation 

conditions and seasonal female habitat selection/mortality risk models predicted to 2016 

vegetation data). For results on annual lek size, see Appendix C. 

Statistical Analysis 

Variable selection and model development. For all analyses, we transformed all 

covariates on the z-scale and back transformed them for plotting. For modeling seasonal habitat 

selection, seasonal mortality risk, lek-site selection, and lek size in relation to landscape features, 

we first screened each of the vegetation, topographic, and anthropogenic features separately 

(TABLES 

Table 3.1) ) to identify the distance bin and relationship (linear or linear + quadratic) that most 

impacted the process (selection, mortality risk, or size). We tested both linear and quadratic 

(linear + quadratic) relationships for each scale of landscape features and a null model; we 

ranked these models using Akaike’s Information Criterion adjusted for small sample sizes (AICc) 

and selected the model with the best fit to proceed in our modeling process (Burnham and 

Anderson 2002). Once the scale and relationship of each covariate was identified, we prevented 

strong collinearity between covariates by removing covariates with the highest variance inflation 

factors until all covariates had variance inflation factors less than three (Zuur et al. 2010); when 

all covariates had a variance inflation factor less than 3, all covariates had |r| ≤ 0.65. Pearson’s 

correlation matrices for each season can be found in Appendix B: Tables B2–B24. Once 

correlated variables were removed, we developed a global model that included all non-correlated 

variables at their most predictive spatial scales. We used the dredge function from the MuMIn 
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package in Program R (Bartoń 2023) to evaluate all possible subsets of the global model and 

selected the model with the lowest AICc (Burnham and Anderson 2002). To help prevent over-

fitting to our data sets, we limited the number of variables in each model to one variable per 

every 10 events (mortality events for survival models, individuals by season for selection 

models, and individual leks for lek-site selection and lek size models) by limiting the number of 

variables allowed within the dredge function in the MuMIn package (Bartoń 2023). 

Seasonal habitat selection. We evaluated seasonal habitat selection by sharp-tailed 

grouse using a use vs. availability study design by modeling resource selection functions (RSF; 

Manly et al. 2002) during four seasons: nesting (nest location), brood-rearing (from hatch to 7-

weeks post hatch), female early nonbreeding (1 Sep–30 Nov), and female late nonbreeding (1 

Dec–31 Mar). To evaluate availability, we generated 40 times the number of random points as 

used points (Northrup et al 2013) within an estimated 99.9% fixed-kernel density polygon 

calculated from the used locations during each season using the kernelUD function in the 

package adehabitatHR in Program R (Calenge 2006). We extracted vegetation, anthropogenic, 

and topographic features for each season (outlined in TABLES 

Table 3.1) for used and random locations. We used a binomial generalized linear model 

with a ‘cloglog’ link function to develop our seasonal RSF models; we used the ‘cloglog’ link 

within our models because of the imbalanced dataset (40 random points per used location; Fisher 

1922, Alves et al. 2023). We followed the steps outlined in the ‘Variable selection and model 

development’ section to generate a top model. We generated a predictive surface from the top 

model from each season. For each predictive surface, we placed the predicted response values in 

five relative probability bins based on quantiles: 0.0–0.2 (1, low probability), 0.2–0.4 (2, 

moderate-low probability), 0.4–0.6 (3, moderate probability), 0.6–0.8 (4, moderate-high 
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probability), and 0.8–1.0 (5, high probability; see 

 

Figure 3.1 for an example). We used a k-fold cross-validation to assess the validity of 

each of our RSF models using cross-validated Spearman’s-rank correlations (rs; Boyce et al. 

2002); we calculated overall rs 100 times and averaged the values to get an averaged rs and 

models with higher average rs values corresponded to better predictive performance (Boyce et al. 

2002). 

Seasonal mortality risk models. To quantify the mortality risk of female sharp-tailed 

grouse during different seasons, we evaluated the influence of landscape features on the 

mortality risk of nests, broods, and adult females during the early and late nonbreeding seasons 

using the Andersen-Gill formulation of the Cox proportional hazards model (hereafter: 

Andersen-Gill models; Cox 1972, Andersen and Gill 1982). For nesting and brood-rearing 

seasons, we calculated daily mortality risk for nests and broods; for early and late nonbreeding 
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seasons, we calculated weekly mortality risk. To calculate hazard ratios using Andersen-Gill 

models, we extracted vegetation, anthropogenic, and topographic features (see TABLES 

Table 3.1) around each grouse location during each life stage (nest, brood, and non-

breeding). We followed the steps outlined in the ‘Variable selection and model development’ 

section to generate a top model. We used the coxph function in the package survival in Program 

R (Therneau and Grambsch 2000, Therneau 2024) to develop the Andersen-Gill models. We 

used our final model to generate a predictive surface of daily or weekly mortality risk. We 

rescaled the predicted models based on 5 quantiles, with the lowest quantile (0.0–0.2) 

representing low mortality risk and the highest quantile (0.8–1.0) representing the highest 

mortality risk; intermediate quantiles (0.2–0.4, 0.4–0.6, and 0.6–0.8) represent moderate-low 

mortality risk, moderate mortality risk, and moderate-high mortality risk, respectively. To 

evaluate the fits of our models, we used the overall C statistic (Pencina and D’Agostino 2004); 

we calculated overall C 100 times and averaged the values to get an averaged overall C. We 

considered values of averaged overall C between 0.5 and 0.7 to have moderate discrimination, 

values between 0.7 and 0.8 to have acceptable discrimination, values ≥0.8 to have excellent 

discrimination, and values ≤ 0.5 indicated that the model predicted the outcome no better than 

random (Smith et al. 2014). We used Andersen-Gill models to estimate overall nest survival for 

the incubation period (25 days), overall brood survival (to 49 days), early nonbreeding season 

survival, late nonbreeding survival, and cumulative nonbreeding survival (1 Sep–31 Mar) using 

the survfit and coxph functions in the survival package in Program R (Therneau and Grambsch 

2000, Therneau 2024). 

Lek-site selection. We evaluated lek-site selection by sharp-tailed grouse using a use vs. 

availability study design by modeling resource selection functions (RSF; Manly et al. 2002). To 
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evaluate availability at the second-order scale (Johnson 1980), we generated 120 times the 

number of random points as lek locations (Northrup et al. 2013) within an estimated 95% fixed-

kernel density polygon calculated from lek locations using the kernelUD function in the package 

adehabitatHR in Program R (Calenge 2006). For lek-site selection, we averaged landscape 

features (outlined in TABLES 

Table 3.1) and seasonal female habitat covariates (female habitat selection and mortality 

risk) across the years of our study (2017–2019) and extracted them to our lek locations and 

random points; seasonal female habitat covariates were extracted at the point scale and within 

100, 200, 400, 800, 1,600, and 3,200-m distance bins. We followed the steps outlined in the 

‘Variable selection and model development’ section to generate a top model for both lek-site 

selection related to landscape features (Hypothesis 1) and lek-site selection related to seasonal 

female habitat selection and mortality risk (Hypothesis 2); for seasonal female habitat selection 

and mortality risk, we did not test for the relationship (linear and linear + quadratic) of the 

variable and only evaluated the linear term. Once we identified the top models predicting lek-site 

selection relative to landscape features (Hypothesis 1) and seasonal female habitat (Hypothesis 

2), we developed a final set of models to identify which of our three hypotheses best predicted 

lek-site selection. The test of our first hypothesis, which stated that lek sites were selected 

primarily irrespective of female-specific habitat, was represented by the top landscape features 

model. The test of our second hypothesis, which stated that lek sites were selected primarily 

relative to seasonal female habitat selection and mortality risk, was represented by the top 

seasonal female habitat selection and mortality risk model. Finally, the test of our third 

hypothesis, which stated that lek sites were selected relative to both seasonal female habitat and 

landscape features, was represented by combining the seasonal female habitat selection/mortality 
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model and the landscape features models. We compared model support for each hypothesis using 

AICc and considered the model with the lowest AICc to be the best predicting model (Burnham 

and Anderson 2002) and considered the hypothesis related to that model to be the hypothesis best 

explaining lek-site selection. If models had ΔAICc within 2, we considered them to be 

competitive and present results from those models (Burnham and Anderson 2002). 

Lek size. We evaluated the lek size of sharp-tailed grouse using a Poisson generalized 

linear regression model. We evaluated lek size on two different temporal scales: annual lek size 

and mean lek size across the three years of our study (2017–2019) rounded to the nearest integer. 

We extracted annual and averaged landscape features (outlined in TABLES 

Table 3.1) and seasonal female habitat covariates (habitat selection and mortality risk) 

surrounding lek locations; seasonal female habitat covariates were extracted at the point scale 

and within 100, 200, 400, 800, 1,600, and 3,200-m scales. We followed the steps outlined in the 

‘Variable selection and model development’ section to generate a top model for both lek size 

related to landscape features (Hypothesis 1) and lek size related to seasonal female habitat 

selection and mortality risk (Hypothesis 2); for seasonal female habitat selection and mortality 

risk we did not test for the relationship (linear and linear + quadratic) of the variable and only 

evaluated the linear term. Once we identified the top models predicting lek size relative to 

landscape features (Hypothesis 1) and seasonal female habitat (Hypothesis 2), we developed a 

final set of models to identify which of our three hypotheses best predicted lek size. The test of 

our first hypothesis, which stated that lek size was determined by landscape features surrounding 

the lek, was represented by the top landscape features model. The test of our second hypothesis, 

which stated that lek size was determined by seasonal female habitat selection and mortality risk, 

was represented by the top seasonal female habitat selection and mortality risk model. Finally, 
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the test of our third hypothesis, which stated that lek size was determined by both seasonal 

female habitat and landscape features, was represented by combining the seasonal female habitat 

selection/mortality model and the landscape features models. We compared model support for 

each hypothesis using AICc; we considered models within ΔAICc of 2 to be competitive and thus 

we present results from those models (Burnham and Anderson 2002). We compared the models 

for each year and average lek counts separately and present results from each model. For results 

on annual lek size, see Appendix C. 

RESULTS 

We located 162 total nests, including 52 failed nests (n = 134 females), and we tracked 108 total 

broods, 29 of which failed (n = 98 females; 10 females had a successful nest during two different 

years of our study) for a total of 888 brood locations. During the early nonbreeding season, we 

radio-tracked 95 females (19 mortality events) totaling 123 bird-seasons and 350 locations. 

During the late nonbreeding season, we tracked 83 females (37 mortality events) totaling 104 

bird-seasons and 421 locations. We estimated overall nest survival during the 25-day incubation 

period as 0.73 (95% CI = 0.66, 0.80). The estimated overall brood survival to 49 days was 0.64 

(95% CI = 0.55, 0.74). The estimated overall early nonbreeding survival was 0.88 (95% CI = 

0.82, 0.94). We estimated overall late nonbreeding survival as 0.78 (95% CI = 0.70, 0.87). We 

estimated cumulative nonbreeding season survival (across early and late) as 0.68 (95% CI = 

0.60, 0.77). We obtained lek count information from 24 leks throughout our study area. The 

mean number of individual grouse attending leks during our study was 16.6 (SE: 1.90; median: 

14.5; range: 3–33; Appendix B: Table B1).  

Seasonal Habitat Selection 
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Our top model predicting nest-site selection indicated that female sharp-tailed grouse selected 

nest sites with less bare ground, moderate to moderate-high herbaceous vegetation cover 

(maximum selection probability at 54.7% canopy cover, range 0.8–83.3%), moderate to 

moderate-high heat loads, moderate sagebrush cover (maximum selection probability at 17% 

cover, range 0–33%), moderate-high shrub cover (maximum selection probability at 29.5%, 

cover range: 3.4–40.8%), neutral topographic positions, and less rugged terrain relative to 

available conditions (Table 3.2, Appendix B: Figure B1). Cross validation indicated our final 

nest site selection model was an acceptable fit to the data (rs = 0.77, P < 0.001, n = 100). Our top 

model predicting brood habitat indicated that female sharp-tailed grouse areas with less bare 

ground, less canopy cover of coniferous forest, low canopy cover of deciduous forest (maximum 

selection probability at 7.3% canopy cover, range 0.0–56.5%), moderate sagebrush cover 

(maximum selection probability at 14.2% cover, range 0.0–31.6%), moderate-high shrub cover 

(maximum selection probability at 29.4%, cover range: 3.5–41.38%), higher topographic 

positions, and less rugged terrain relative to available conditions during the brood-rearing season 

(Table 3.2, Appendix B: Figure B2). Cross validation indicated our final brood site selection 

model was an acceptable fit to our data (rs = 0.90, P < 0.001, n = 100). Our top model predicting 

early non-breeding season habitat selection indicated that female sharp-tailed grouse selected 

areas with less bare ground, increased heat loads, moderate-high cover of perennial herbaceous 

vegetation (maximum selection probability at 47.2%, cover range: 5.9–53.0%), higher cover of 

sagebrush, moderate shrub heights (maximum selection at 63.6 cm, range: 0.1–109.8 cm), less 

rugged terrain, and neutral to neutral-high topographic positions relative to available conditions 

during the early nonbreeding season (Table 3.2, Appendix B: Figure B3). Cross validation 

indicated our final early non-breeding site selection model was an acceptable fit to our data (rs = 
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0.88, P < 0.001, n = 100). Our top model predicting late non-breeding season habitat indicated 

that female sharp-tailed grouse selected areas with less bare ground, less deciduous forest canopy 

cover, areas closer to oil and gas infrastructure, moderate sagebrush cover (maximum selection 

at 12.0% canopy cover, range: 0.0–19.0%), moderate-high shrub heights (maximum selection at 

67.2 cm, range: 0.0–91.6 cm), and moderate-high topographic positions relative to available 

conditions during the late nonbreeding season (Table 3.2, Appendix B: Figure B4). Cross 

validation indicated our final model predicting female sharp-tailed grouse habitat selection 

during the late nonbreeding season was an acceptable fit to our data (rs = 0.92, P < 0.001, n = 

100).  

Seasonal Mortality Risk 

Our top model predicting sharp-tailed grouse nest mortality risk indicated that hazards to sharp-

tailed grouse nest mortality risk were highest with intermediate herbaceous vegetation cover 

(mortality risk was greatest at 51.3% cover, range: 33.4–72.5%), mortality risk decreased as 

shrub height increased, and mortality risk was lowest at lower topographic positions (Table 3.3, 

Appendix B: Figure B5). Cross validation indicated our final model predicting nest mortality risk 

had moderate discrimination ability (Overall C = 0.56). Our top model predicting sharp-tailed 

grouse brood mortality risk indicated that hazards to sharp-tailed grouse brood mortality risk 

decreased as canopy cover of deciduous forest decreased and hazards were minimized at 

intermediate cover of perennial herbaceous vegetation (mortality risk was lowest at 48.3% cover, 

range: 27.7–62.0%; Table 3.3, Appendix B: Figure B6). Cross validation indicated our final 

model predicting brood mortality risk had moderate discrimination ability (Overall C = 0.68). 

Our top model predicting sharp-tailed grouse mortality risk during the early nonbreeding season 

indicated that hazards to sharp-tailed grouse mortality risk during the early nonbreeding season 
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increased as the cover of perennial herbaceous vegetation increased and hazards decreased as 

topographic positions increased (Table 3.3, Appendix B: Figure B7). Cross validation indicated 

our final model predicting early nonbreeding mortality risk had acceptable discrimination ability 

(Overall C = 0.78). Our top model predicting mortality risk of female sharp-tailed grouse during 

the late nonbreeding season indicated that hazards to sharp-tailed grouse mortality risk during the 

late nonbreeding season decreased as bare ground cover decreased, decreased at lower heat 

loads, decreased as sagebrush cover decreased, and were lowest at lower topographic positions 

(Table 3.3, Appendix B: Figure B8). Cross validation indicated our final model predicting 

nonbreeding mortality risk had moderate discrimination ability (Overall C = 0.68).  

Lek-site Selection 

Our top model predicting lek-site selection based on landscape features indicated that sharp-

tailed grouse lek sites were located in areas within greater herbaceous vegetation cover within 

200 m, greater shrub cover within 3,200 m, and less rugged terrain relative to available (Table 

3.4; Appendix B: Figure B9). Our top model predicting sharp-tailed grouse lek locations based 

on seasonal female habitat conditions indicated that sharp-tailed grouse leks were located in 

areas with lower brood mortality risk, lower nest mortality risk, and in areas with a higher 

proportion of selected late nonbreeding habitat relative to available (Table 3.4; Appendix B: 

Figure B10). Our top model evaluating lek-site selection relative to landscape features and/or 

seasonal female habitat was the model that included a combination of both landscape features 

and seasonal female habitat (H3). Nest mortality risk within 400 m and percent cover of 

herbaceous vegetation within 200 m were negatively correlated (r = -0.81) and late nonbreeding 

season habitat selection within 3,200 m and shrub cover within 3,200 m were positively 

correlated (r = 0.87); we did not include correlated terms in the same model and included four 
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variations of our third hypothesis (Table 3.5, H3a–H3d). The top model predicting sharp-tailed 

grouse lek-site selection (H3d) indicated that sharp-tailed grouse leks were located in areas with 

less rugged terrain relative to available, lower brood mortality risk relative to available, lower 

nest mortality risk relative to available, and in areas with a higher proportion of selected late 

nonbreeding habitat relative to available (Table 3.4, Figure 3.2). 

Lek Size 

We modeled lek size as averaged lek size (2017–2019) and annual lek size (see Appendix S2 for 

annual lek size results). Our top model predicting average lek size based on landscape features 

indicated that lek sizes were larger in areas with less bare ground and lek size was larger at the 

highest and lowest heat load indices at lek sites (Table 3.6, Figure 3.3). Our top model predicting 

average lek size based on seasonal habitats indicated that lek sizes were larger in areas with 

higher early nonbreeding season mortality risk within 400 m, lek size was larger at leks 

surrounded by more early nonbreeding season habitat within 800 m, and lek size was larger at 

leks surrounded by lower nest mortality risk within 800 m (Table 3.6, Appendix B: Figure B11). 

Our top model evaluating overall sharp-tailed grouse lek size in relation to landscape features 

and/or seasonal female habitat was our landscape features model (H1; Table 3.7). Our top model 

for average lek size based on landscape features (H1) indicated that lek sizes were larger at leks 

surrounded by less bare ground and lek size was larger at the highest and lowest heat load 

indices (Table 3.6, Figure 3.3).  

DISCUSSION  

Identifying the mechanisms that explain lek-site selection and lek size have important 

conservation implications, as many management plans for prairie grouse species are focused on 

areas surrounding leks (Giesen and Connelly 1993, Walsh et al. 2010, Hagen et al. 2004, 2016, 
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Hoffman et al. 2015). We found that seasonal habitat selection and mortality risk of female 

sharp-tailed grouse were influenced by vegetation, topographic, and anthropogenic features. Our 

results for sharp-tailed grouse lek-site selection supported our third hypothesis, where lek size 

was influenced by a combination of landscape features and seasonal female habitat selection and 

mortality. For sharp-tailed grouse lek size, our results indicated that features influencing lek size 

varied by year, with some years (average lek size and lek size in 2018) showing support for our 

first hypothesis (landscape features influencing lek size) and other years (lek size in 2017 and 

2019) demonstrating support for our third hypothesis (combination of landscape features and 

seasonal female habitat selection and mortality risk). Our results suggest a complex relationship 

between lek dynamics (locations and size) and the habitat surrounding leks. This complex 

relationship with lekking sites and their environment provides some support for sharp-tailed 

grouse lek occurrence being related to the lek hotspot hypothesis, however it also suggests that 

the mechanisms that influence precise lek locations might be more nuanced. 

 The lek hotspot hypothesis predicts that leks will be located in areas where males are 

more likely to encounter females (Bradbury and Gibson 1983, Beehler and Foster 1988, 

Bradbury et al. 1989a). When evaluating lek site selection in relation to seasonal female habitat 

and mortality risk, our results indicate that lek sites were in areas with lower brood mortality risk 

within 3,200 m, lower nest mortality risk within 400 m, and in areas with more late nonbreeding 

season habitat within 3,200 m (correlated with early nonbreeding season mortality risk and 

brood, nest, and early nonbreeding season habitat selection). Leks are probably located in areas 

with more late nonbreeding habitat because females are still occupying late nonbreeding habitat 

during late February/early March when males start to attend leks (Gratson 1988), that might 

represent a transition between nonbreeding habitat and nesting habitat. This is similar to greater 
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sage-grouse (Centrocercus urophasianus) lek sites, which have been found to be located in areas 

used by females during migration between nonbreeding and nesting habitat (Gibson 1996). We 

hypothesize that nest and brood mortality risk may influence lek locations because these areas 

are likely to produce more juveniles, and therefore, while young males are a part of a brood they 

might perceive the areas they are in as good habitat. More research is needed to evaluate the 

dispersal of juvenile sharp-tailed grouse and to identify if males and/or females remain/return to 

their natal areas where they were raised to evaluate this hypothesis. Within our study, female 

sharp-tailed grouse selected nest sites in areas with less rugged terrain, similar to how sharp-

tailed grouse lek sites are selected relative to landscape features. Sharp-tailed grouse lekking 

sites in Saskatchewan, Canada were also located in less rugged terrain (Burda et al. 2022).  

 Prairie grouse leks are typically located on broad hilltops, areas with shorter vegetation, 

and in less rugged areas (Connelly et al. 2024, Hagen and Giesen 2020, Johnson et al. 2020). Our 

results indicated that at finer scales (≤400 m distance bins), sharp-tailed grouse in our study area 

were selecting lek sites with less rugged terrain, more herbaceous vegetation cover within 200 m, 

and more shrub cover within 3,200 m. Sites with less rugged terrain are less likely to impede 

sound waves as they propagate across the landscape (McKenna et al. 2012), however more 

research is needed to see if topography influences the propagation of sharp-tailed grouse calls. 

Sharp-tailed grouse leks in our study were located in areas with more herbaceous vegetation 

cover within 200 m, likely because our study area was dominated by shrub cover and areas with 

more herbaceous vegetation provide better opportunities for females to view and compare males 

on leks. Similarly, leks of prairie grouse in other areas are located in areas with sparse/shorter 

vegetation than the surrounding areas (Hagen and Giesen 2020, Johnson et al. 2020, Connelly et 

al. 2024). We hypothesize that our observed lek-site selection for increased shrub cover within 
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3,200 m was due to this being the primary habitat for nesting opportunities and we observed 

selection for increased shrub cover in all seasons. In our study, we did not observe direct 

selection for hilltops (higher topographic positions) typical of prairie grouse (Hagen and Giesen 

2020, Johnson et al. 2020, Connelly et al. 2024); however, this was likely due to the elevational 

gradient at our study site with slopes generally increasing gradually until a steep valley is 

reached and some of the leks being located on broad hill tops while others were located on flatter 

locations along a hillside. 

Lek size is commonly used to track trends in population changes (Ross et al. 2016b, 

Edmunds et al. 2018, Baines and Aebischer 2023) and differences in lek size may be a result of 

landscape features and female traffic patterns around leks (higher female traffic equals larger 

leks; Bradbury et al. 1989b). We found mixed support for lek size being related to landscape 

features and seasonal female habitat selection and mortality risk. Overall, we found that average 

lek size was most influenced by landscape features. However, when evaluating lek size on an 

annual basis, we found that annual lek size was influenced by a combination of landscape 

features and seasonal female habitat (2017 and 2019) and only landscape features (2018). There 

was inconsistency between the years, likely due to small sample sizes and missing data in some 

of the years (i.e., we were unable to visit all leks each year). We recommend continued research 

to evaluate the relationship between annual lek sizes and the landscape features and seasonal 

female habitat surrounding them. We found that sharp-tailed grouse lek size in relation to 

landscape features did have consistency between years and for averaged lek counts, with all 

analyses indicating that lek sizes were largest with the highest and lowest heat load indices at lek 

sites. Lek sites were generally located in areas with warmer heat load indices (HLI values ranged 

from 0.68–76) and the relation of lek sizes to heat load indices indicates that leks with higher and 
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lower heat loads were larger (within the HLI range of occupied leks). Our overall findings that 

sharp-tailed grouse lek size was more related to landscape features then seasonal female habitat 

are in contrast with lesser prairie-chickens (Tympanuchus pallidicinctus), where larger leks are 

located in areas with a greater proportion of nesting habitat surrounding them (Gehrt et al. 2020). 

In greater sage-grouse, daily male lek attendance was correlated with female traffic patterns, 

with more males attending leks where more females occurred, resulting in fluctuating lek sizes 

within a season (Bradbury et al. 1989b). We note that the lek counts that we used might include 

some females because male and female sharp-tailed grouse can be difficult to distinguish from a 

distance and many of the leks in our study area were counted using flush counts.   

Habitat selection for female sharp-tailed grouse varied by season. However, there were 

some similarities as they selected areas with less bare ground during all seasons. Additionally, 

female sharp-tailed grouse selected less rugged terrain than available during the nesting, brood-

rearing, and early nonbreeding seasons, similar to lek-site selection. Selection patterns of 

sagebrush and shrub cover were similar during the nesting and brood-rearing seasons, where they 

selected areas with greater sagebrush and shrub cover, consistent with other studies on sharp-

tailed grouse in mountain shrub communities (Klott and Lindzey 1990, Goddard et al. 2009). 

These similar uses of landscape features indicate that there is some overlap in habitat needs 

among seasons. The similarities between nesting and brood rearing habitats suggest that there is 

a close relationship between nesting and brood-rearing habitats and is likely related to brood 

locations being close to nesting locations (especially within 1–2 weeks of hatching). This link is 

further supported by a mismatch in selection for herbaceous vegetation cover at nest site that 

resulted in increased nest mortality risk while reducing brood mortality risk, suggesting a 

tradeoff in nest placement for nest survival and future brood survival. Our results also suggest 
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that during the early nonbreeding season female sharp-tailed grouse demonstrate a potential 

tradeoff between foraging opportunities in areas of greater perennial herbaceous cover (which 

they select for) and survival, because mortality risk was higher in areas with greater herbaceous 

cover. Contrary to some of our findings of a mismatch between selected habitat and mortality 

risk, prairie-chickens select nesting and brood-rearing habitat that results in greater survival 

(Matthews et al. 2013, Lautenbach 2015, Lautenbach et al. 2019). Our lack of findings 

demonstrating that selected habitats increased survival may be because of the scale we evaluated 

vegetation. We recommend that future studies interested in understanding tradeoffs within 

seasons evaluate vegetation conditions using a combination of remotely sensed data and field 

surveys. 

We observed minimal relationships between anthropogenic features and female habitat, 

lek-site selection, and lek size. We found that females selected late nonbreeding habitat closer to 

oil and gas infrastructure than available, potentially because oil and natural gas infrastructure 

were built in late nonbreeding habitat. Within our study area, oil and gas infrastructure was 

limited and typically occurred in lower elevations and lower elevation areas typically received 

less snow, so selection for areas closer to oil and natural gas might actually be selection for areas 

with less snow cover. Lek size in 2019 was related to oil and natural gas infrastructure, with lek 

size increasing as distance to oil and natural gas infrastructure increased. Throughout our study 

area, roads occurred at low densities and in many locations were limited to small, unimproved 

roads that were not identified in the NLCD data layers we used. Previous studies on lekking 

grouse have found relationships between anthropogenic disturbances and grouse survival and 

habitat selection (Hagen et al. 2011, Dinkins et al. 2014, Hovick et al. 2014, Plumb et al. 2019, 

Lawrence et al. 2021) and lek locations and attendance (Gregory and Beck 2014, Green et al. 
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2017, Burda et al. 2022). The density of anthropogenic disturbances in our study area were 

probably too low and too concentrated in certain areas to demonstrate any major influences on 

habitat selection, mortality risk, lek-site selection, and lek size. 

In our study area, sharp-tailed grouse lek-site selection was influenced by a combination 

of landscape features and seasonal female habitat selection and mortality risk. In particular, lek-

site selection was positively related to late nonbreeding habitat selection (leks were in areas with 

more late nonbreeding habitat) and negatively related to nest mortality risk (leks were in areas 

with lower nest mortality risk). Our results and results from studies of other prairie grouse 

species put forward that leks are generally surrounded by breeding habitat (Schroeder and White 

1993, Aulicky 2020, Gehrt et al. 2020), suggesting that current management practices being 

focused on areas surrounding leks are appropriate. Our findings support the lek hotspot 

hypothesis in that sharp-tailed grouse leks were located in areas with lower brood mortality risk, 

lower nest mortality risk, and more late nonbreeding season habitat. 

CONSERVATION IMPLICATIONS 

Management decisions for prairie grouse often center on lek locations (Giesen and Connelly 

1993, Hagen et al. 2004, 2016). Our results support these actions in that sharp-tailed grouse leks 

in south-central Wyoming occurred in areas with higher probability of late nonbreeding season 

habitat selection and lower nest mortality risk. Leks were located in areas important for both the 

nonbreeding season and nesting seasons, therefore, searching for leks in areas with no previously 

identified leks that fit these conditions could provide valuable insight on where sharp-tailed 

grouse occur. Continued monitoring and searching for sharp-tailed grouse leks may provide 

insight into habitat conditions surrounding them.    
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TABLES 

Table 3.1. List of variables, their abbreviations (abbr.), and the distance bins used in habitat models (resource selection and mortality risk models) 

and lek-site selection and lek size modeling for sharp-tailed grouse (Tympanuchus phasianellus) in south-central Wyoming, 2017–2020.   

   Distance-bins included in analyses (m) 

Category Variable Abbr. Nesting Brooding 
Early non-

breeding 

Late non-

breeding 

Lek-site 

selection 
Lek size 

Vegetation 
Annual herbaceous 

vegetation covera 
annherb – 30e–800f 100–3200g – – – 

 Bare grounda bare 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Conifer canopy coverb conifer 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Deciduous canopy 

coverb 
deciduous 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Herbaceous vegetation 

covera 
herb 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Litter covera litter 30e–800f 30e–800f 100–3200g 100–3200g – – 

 Non-sagebrush shrub 

covera 
nonsage 30e–800f 30e–800f 100–3200g – – – 

 Perennial herbaceous 

vegetation covera 
perherb – 30e–800f 100–3200g – – – 

 Sagebrush (Artemisia 

sp.) covera 
sage 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Shrub height (cm)a shrubht 30e–800f 30e–800f 100–3200g 100–3200g – – 

 Total shrub covera totshrub 30e–800f 30e–800f 100–3200g – 100–3200g 100–3200g 

Anthropogenic Distance to all roadsc droads 30e 30e 30e 30e 30e 30e 

 Distance to oil and gas 

infrastructurec 
doil 30e 30e 30e 30e 30e 30e 
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Topographic Heat load indexd hli 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Terrain ruggedness 

indexd 
tri 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

 Topographic position 

indexd 
tpi 30e–800f 30e–800f 100–3200g 100–3200g 100–3200g 100–3200g 

Note: En dashes (–) represent variables that were not included in a model. 

aDerived from rangeland fractional component data set (Xian et al. 2015, Rigge et al. 2019, 2020) 

bDerived from 30-m forest canopy cover layers (Coulston et al. 2012) 

cDerived from National Land Cover Database layers, only calculated at the 30 m scale 

dDerived from digital elevation model (USGS 2011) 

e30 represents the base spatial grain size and therefor does not contain data averaged using a moving window.  

fDistance bins include 30 m, 100 m, 200 m, 400 m, and 800 m 

gDistance bins include 30 m, 100 m, 200 m, 400 m, 800 m, 1,600 m, and 3,200 m.  



 

 

Table 3.2. Covariates, standardized beta coefficients (β), standard errors (SE), and 95% CIs for 

variables from the top binomial logistic regression models for each season evaluated (nesting, 

brood-rearing, early nonbreeding, and late nonbreeding) for sharp-tailed grouse (Tympanuchus 

phasianellus) habitat selection in Carbon County, Wyoming, USA, 2017–2020. 

Life history stage Covariate Distance bin β SE 95% CI 

Nesting bare 100 -6.83* 0.80 (-9.30, -5.36) 
 bare2 100 1.79* 0.27 (1.37, 2.22) 
 herb 200 2.72* 0.62 (1.61, 4.03) 
 herb2 200 -1.25* 0.39 (-2.07, -0.57) 
 hli 800 0.69* 0.14 (0.43, 0.97) 
 hli2 800 -0.46* 0.12 (-0.71, -0.25) 
 sage 30 1.02* 0.18 (0.68, 1.38) 
 sage2 30 -0.51* 0.12 (-0.75, -0.28) 
 shrub 800 0.81* 0.13 (0.30, 1.43) 
 shrub2 800 -0.35* 0.17 (-0.71, -0.28) 
 tpi 800 0.40* 0.13 (0.16, 0.66) 
 tpi2 800 -0.24* 0.11 (-0.47, -0.05) 
 tri 100 -1.38* 0.27 (-1.97, -0.90) 
 tri2 100 -0.50* 0.27 (-1.08, -0.01) 

Brood-rearing bare 800 -4.38* 0.24 (-4.86, -3.81) 
 conif 800 -7.29* 1.06 (-9.52, -5.38) 
 decid 800 0.26* 0.10 (0.06, 0.46) 
 decid2 800 -0.47* 0.10 (-0.68, -0.28) 
 sage 100 0.89* 0.08 (0.73, 1.06) 
 sage2 100 -0.63* 0.06 (-0.74, -0.52) 
 shrub 800 1.77* 0.16 (1.47, 2.08) 
 shrub2 800 -0.76* 0.09 (-0.94, -0.59) 
 tpi 100 0.35* 0.07 (0.22, 0.47) 
 tri 200 -1.66* 0.11 (-1.89, -1.46) 
 tri2 200 -0.45* 0.10 (-0.65, -0.26) 

Early nonbreeding bare 1,600 -1.02* 0.26 (-1.54, -0.51) 
 bare2 1,600 0.45* 0.06 (0.26, 0.57) 
 hli 3,200 0.23* 0.06 (0.11, 0.35) 
 perherb 3,200 2.12* 0.29 (1.59, 2.73) 
 perherb2 3,200 -0.75* 0.18 (-1.12, -0.42) 
 sage 3,200 0.37* 0.13 (0.11, 0.63) 
 shrubht 400 1.84* 0.24 (1.39, 2.34) 
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 shrubht2 400 -0.49* 0.10 (-0.69, -0.30) 
 tpi 200 0.64* 0.08 (0.49, 0.81) 
 tpi2 200 -0.16* 0.04 (-0.25, -0.08) 
 tri 3,200 -0.15 0.08 (-0.30, 0.01) 

Late nonbreeding bare 400 -1.45* 0.23 (-1.90, -1.00) 

 bare2 400 0.32* 0.06 (0.16, 0.41) 

 decid 3,200 -0.32* 0.11 (-0.54, -0.10) 

 doil 30 -0.15 0.09 (-0.32, 0.01) 

 sage 3,200 0.68* 0.13 (0.41, 0.94) 

 sage2 3,200 -0.64* 0.10 (-0.84, -0.46) 

 shrubht 400 1.55* 0.20 (1.17, 1.96) 

 shrubht2 400 -0.36* 0.08 (-0.53, -0.21) 

 tpi 400 0.47* 0.06 (0.35, 0.60) 

 tpi2 400 -0.07* 0.03 (-0.13, -0.02) 

Note: An asterisk (*) denotes beta (β) coefficient whose 95% CI does not overlap zero.   
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Table 3.3. Covariates, standardized beta coefficients (β), standard errors (SE), and 95% CIs for 

variables from the top Andersen-Gill mortality risk models for each season evaluated (nesting, 

brood-rearing, early nonbreeding, and late nonbreeding) for sharp-tailed grouse (Tympanuchus 

phasianellus) mortality risk based on landscape features in Carbon County, Wyoming, USA, 

2017–2020.   

Life history stage Covariate Distance bin β SE 95% CI 

Nesting herb 100 4.21* 1.80 (0.68, 7.73) 
 herb2 100 -2.71* 1.11 (-4.88, -0.54) 
 shrubht – -0.50 0.29 (-1.08, 0.07) 
 tpi 800 1.53* 0.19 (0.06, 0.79) 

Brood-rearing decid 800 -1.08 * 0.44 (-1.95, -0.21) 
 perherb 400 -3.04* 0.79 (-4.58, -1.50) 
 perherb2 400 1.33* 0.40 (0.54, 2.12) 

Early nonbreeding perherb 1,600 2.03* 0.56 (0.94, 3.12) 

 tpi 100 -0.63 0.24 (-1.10, -0.17) 

Late nonbreeding bare 3,200 0.80 0.25 (0.30, 1.29) 

 hli 3,200 0.50 0.23 (0.06, 0.95) 
 sage 100 0.43 0.19 (0.05, 0.81) 
 tpi 3,200 0.31 0.17 (-0.03, 0.64) 

Note: An asterisk (*) denotes beta (β) coefficient whose 95% CI does not overlap zero.   
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Table 3.4. Covariates, standardized beta coefficients (β), standard errors (SE), and 95% CIs for 

the top binomial logistic regression models predicting lek-site selection based on landscape 

features (H1), seasonal female habitat (H2), and a combination of landscape features and 

seasonal female habitat (H3) in Carbon County, Wyoming, USA, 2017–2020.   

Hypothesis Covariate Distance Bin β SE 95% CI 

H1–Landscape features herb 200 0.97* 0.27 (0.03, 0.10) 
 shrub 3,200 1.63* 0.35 (0.18, 0.43) 
 tri 200 -2.29* 0.57 (-3.51, -1.28) 

H2–Seasonal female 

habitat 
broodmort 3,200 -1.00* 0.32 (-1.63, -0.34) 

 nestmort 400 -1.66* 0.41 (-2.50, -0.90) 

 latenbRSF 3,200 0.86* 0.49 (0.02, 1.94) 

H3a–Combination tri 200 -2.71* 0.55 (-3.85, -1.73) 

 broodmort 3,200 -0.94* 0.27 (-1.47, -0.39) 

 nestmort 400 -1.24* 0.37 (-1.98, -0.57) 

 latenbRSF 3,200 1.29* 0.52 (0.38, 2.44) 

Notes: Broodmort represents mean brood mortality risk, nestmort represents mean nest mortality 

risk, and latenbRSF represents mean relative probability of late nonbreeding habitat selection. 

An asterisk (*) denotes beta (β) coefficient whose 95% CI does not overlap zero. 
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Table 3.5. Model selection results for binomial logistic regression models predicting sharp-tailed 

grouse (Tympanuchus phasianellus) lek-site selection as predicted by landscape features (H1), 

seasonal female habitat (H2), and a combination of seasonal habitat and landscape features (H3), 

Carbon County, Wyoming, USA, 2017–2020. 

Hypothesis Model Ka ΔAICc
b wi

c 

H3d 
tri200 + broodmort3200 + nestmort400 + 

latenbRSF3200 5 0.00 0.95 

H3b shrub3200 + tri200 + broodmort3200 + nestmort400 5 5.96 0.05 

H3c 
herb200 + tri200 + broodmort3200 + 

latenbRSF3200 
5 11.69 0.00 

H3a herb200 + shrub3200 + tri200 + broodmort3200 5 15.77 0.00 

H1 herb200 + shrub3200 + tri200 4 17.63 0.00 

H2 broodmort3200 + nestmort400 + latenbRSF3200 4 45.26 0.00 

– Null 1 92.20 0.00 

Notes: There are four H3 models because shrub3200 and latenbRSF3200 were correlated (|r| = 

0.87) and herb200 and nestmort400 were correlated (|r| = 0.81); therefore, we did not include any 

correlated terms in the same model and tested all possibilities of the models. Broodmort3200 

represents mean brood mortality risk within 3,200 m of a lek, nestmort400 represents mean nest 

mortality risk within 400 m of a lek, and latenbRSF3200 represents mean relative probability of 

late nonbreeding habitat selection within 3,200 m of a lek. 

aNumber of parameters 

bLowest AICc
 value = 187.80 

cAICc weight 
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Table 3.6. Covariates, standardized beta coefficients (β), standard errors (SE), and 95% CIs for 

variables included in the top Poisson regression models predicting the average lek size of sharp-

tailed grouse (Tympanuchus phasianellus) as predicted by landscape features (H1), seasonal 

habitat (H2), and seasonal habitat and landscape features (H3) in Carbon County, Wyoming, 

USA, 2017–2020. 

Hypothesis Covariate Distance Bin β SE 95% CI 

H1–Landscape 

features 
bare 400 -0.44* 0.18 (-0.81, -0.10) 

 hli 200 0.52* 0.13 (0.25, 0.77) 
 hli2 200 2.33* 0.34 (1.67, 3.00) 

H2–Seasonal habitat earlynbmort 400 0.32* 0.12 (0.10, 0.55) 
 earlynbRSF 800 0.45* 0.13 (0.19, 0.71) 

 nestmort 800 -0.23 0.13 (-0.48, 0.02) 

H3–Combination bare 400 -0.73* 0.23 (-1.19, -0.29) 

 hli 200 0.56* 0.15 (0.26, 0.86) 

 hli2 200 2.54* 0.15 (1.67, 3.41) 

 earlynbmort 400 -0.18 0.14 (-0.46, 0.10) 

 earlynbRSF 800 -0.24 0.18 (-0.60, 0.11) 

 nestmort 800 -0.25 0.14 (-0.53, 0.03) 

Notes: Earlynbmort represents early nonbreeding season mortality risk; earlynbRSF represents 

early nonbreeding season habitat selection; nestmort represents nest mortality risk. An asterisk 

(*) denotes beta (β) coefficient whose 95% CI does not overlap zero.   
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Table 3.7. Model selection results for Poisson regression models predicting sharp-tailed grouse 

(Tympanuchus phasianellus) lek size based on landscape features (H1), seasonal habitat (H2), 

and a combination of seasonal habitat and landscape features (H3) for average lek counts, 

Carbon County, Wyoming, USA, 2017–2020. 

Model Hypothesis Ka ΔAICc wi
b 

bare400 + hli200 + hli2002 H1 4 0.00c 0.95 

bare400 + hli200 + hli2002 + earlynbmort400 

+ earlynbRSF800 + nestmort800 

H3 6 5.90 0.05 

earlynbmort400 + earlynbRSF800 + 

nestmort800 

H2 3 39.39 0.00 

Null – 1 59.37 0.00 

Notes: Earlynbmort represents early nonbreeding season mortality risk; earlynbRSF represents 

early nonbreeding season habitat selection; nestmort represents nest mortality risk. 

aNumber of parameters 

bAICc weight  

cLowest AICc
 value = 164.76 
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FIGURES 

 

Figure 3.1. Map of study area and known active lek locations (n = 24; white circles) for sharp-

tailed grouse (Tympanuchus phasianellus) in Carbon County, Wyoming, USA 2017–2020. Leks 

are plotted on the relative probability of lek-site selection as predicted by terrain ruggedness 

index within 200 m, brood mortality risk within 3,200 m, nest mortality risk within 400 m, and 

late nonbreeding season habitat selection within 3,200 m. Cooler colors represent lower 

probabilities and warmer colors represent higher probabilities of selection. 
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Figure 3.2. Partial effects plots (± 95% CI) for binomial logistic regression model predicting 

sharp-tailed grouse (Tympanuchus phasianellus) lek-site selection as predicted by terrain 

ruggedness index within 200 m (a), mean brood mortality risk within 3,200 m (b), mean nest 

mortality risk within 400 m (c), and mean relative probability of late nonbreeding habitat 

selection (1 Dec–31 Mar) within 3,200 m (d), Carbon County, Wyoming, USA, 2017–2020. For 

mean brood and nest mortality risk, 1 represents low nest mortality risk and 5 represents high 

mortality risk. For mean relative probability of late nonbreeding season selection within 3,200 m, 

1 represents low probability of selection and 5 represents high probability of selection.  
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Figure 3.3. Partial effects plots (± 95% CI) for Poisson linear regression models predicting the 

average size of sharp-tailed grouse (Tympanuchus phasianellus) leks (2017–2019) as predicted 

by mean percent bare ground within 400 m (a) and mean heat load index within 200 m (b), 

Carbon County, Wyoming, USA, 2017–2020. 
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ABSTRACT 

Understanding the demography of populations is crucial when making management decisions, 

including habitat management and harvest regulation. Harvest regulations typically focus on 

maintaining a viable population and are based on population surveys and models. It is thus 

imperative to understand the potential implications of existing and potential hunting seasons on 

population growth and size. Little is known about the population demography of sharp-tailed 

grouse (Tympanuchus phasianellus) in southcentral Wyoming, which are currently not hunted 

but under consideration for hunting in the future. To understand the population demographics of 

sharp-tailed grouse in southcentral Wyoming, we developed a stage-based, Bayesian integrated 

population model (IPM) and evaluated the instantaneous mortality risk for adult female and 

juvenile sharp-tailed grouse. We used the IPM to understand the potential impacts of reducing 

adult annual survival and juvenile overwinter survival (a proxy for harvest). We developed a 

population viability analysis using the IPM to understand extinction (no males remaining) and 
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quasi-extinction (≤100 males remaining) probabilities under various survival reduction rates. Our 

IPM estimated demographic vital rates from radio-telemetry data (2017–2020), nest and brood 

monitoring data (2017–2019), juvenile overwinter survival data (2017–2020), and annual lek 

count data (2015–2022). We found that the sharp-tailed grouse population in southcentral 

Wyoming was declining (λ = 0.87), and most demographic rates were similar to or higher than 

other populations of sharp-tailed grouse. Under no survival reduction, the population had a ~70% 

chance the population would have <100 males after 10 years. Results from the population 

viability analysis demonstrated that as the survival rates decreased, the population growth rate 

decreased, and the extinction and quasi-extinction probabilities increased. The instantaneous risk 

of mortality was lowest for adults and highest for juveniles during the fall (Sep–Nov). Our 

results demonstrate that the population of sharp-tailed grouse in southcentral Wyoming is 

declining. Future research on the population of sharp-tailed grouse in southcentral Wyoming 

should be focused on ways to increase population growth in this area to better inform 

management to help increase population growth. Our results also highlight the importance of 

understanding population dynamics prior to implementing a hunting season and demonstrate that 

potential hunting seasons should consider the timing of harvest relative to biologically important 

seasons and try to minimize the impacts of hunting on population size and growth. 

KEYWORDS harvest effects, integrated population model, population viability analysis, sharp-

tailed grouse, survival, telemetry, Tympanuchus phasianellus, Wyoming 

INTRODUCTION 

Managing wildlife populations requires an understanding of population dynamics, often 

understood through the use of demographic models and population viability analyses (PVA; 

Shaffer 1981, Gilpin and Soule´ 1986, Bessinger and Westphal 1998). Population viability 
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analyses are useful tools to help understand the potential impacts of management decisions on 

populations of conservation concern (e.g., Mills et al. 1996, Saunders et al. 2018, Dyck et al. 

2023), including harvest management (Taylor et al. 2006, Mills 2013). Harvest regulations are 

often decided using adaptive harvest management plans to adjust for different environmental 

conditions and other uncertainties (Walters 1986, Williams and Johnson 1995, Conroy 2021). 

Historically, harvest for upland game birds (order Galliformes) in North America were regulated 

through season length, bag limits, and possession limits with limited consideration for adaptive 

management strategies until recently (Dahlgren et al. 2021).  

 Most upland game bird populations across North America have been hunted in some 

form since the continent was settled by Europeans, either for subsistence or sport (Leopold 

1933). Hunting regulations for upland game birds have changed over the past century and 

adapted to better understandings of population dynamics, with regulations generally becoming 

more conservative (Dinkins et al. 2021) with current suggestions for harvest rates being less than 

10% for some declining upland game bird species (Connelly et al. 2000, Sedinger et al. 2010, 

Reese and Connelly 2011, Breisjøberget et al. 2018). Population surveys provide important 

information about population trajectories and aid in conservation and harvest regulation 

decisions (Sands and Pope 2010). Upland game bird populations are monitored using a variety of 

methods, including territorial male counts (Blackford 1958, Gullion 1966, DeMaso et al. 1992), 

roadside counts (Bennett and Hendrickson 1938, Kozicky et al. 1952), aerial surveys (Shupe et 

al. 1987, McDonald et al. 2014), hunter surveys (Leopold 1933, Amman and Ryel 1963), wing 

collection (Allison 1963, Dalke et al. 1963), and lek counts (Beck and Braun 1980, Cannon and 

Knopf 1981). Due to declining populations detected through population monitoring and 

modeling, some management agencies have eliminating hunting seasons all together (Schroeder 
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et al. 2000a, b; Haukos et al. 2016, Dinkins et al. 2021). The hunting seasons for Gunnison sage-

grouse (Centrocercus minimus), lesser prairie-chicken (Tympanuchus pallidicinctus), and some 

populations of sharp-tailed grouse (T. phasianellus) and greater sage-grouse (C. urophasianus) 

have been closed over concerns that the populations were declining (Schroeder et al. 2000a, b; 

Reese and Connelly 2011, Haukos et al. 2016, Dinkins et al. 2021); however, the decisions to 

close these hunting seasons was not attributed to hunter harvest contributing to the decline of the 

populations (Schroeder et al. 2000a, b; Reese and Connelly 2011, USFWS 2014, Haukos et al. 

2016).  

 Sharp-tailed grouse are found throughout much of northern North America, from as far 

south as Nebraska and Colorado north to Alaska and the Northwest Territories (Connelly et al. 

2024). Studies on the impacts of hunting on sharp-tailed grouse populations are limited, but 

studies evaluating the impact of harvest on them and closely related species suggest that harvest 

is partially compensatory to natural mortality (Robel et al. 1972, Hamerstrom and Hamerstrom 

1973, Bergerud 1988). Despite being relatively abundant with relatively stable populations 

across most of its range, the sharp-tailed grouse is also not hunted in different portions of their 

range (Miller and Graul 1980, Schroeder et al. 2000b, Connelly et al. 2024). Sharp-tailed grouse 

hunting in Washington was closed in 1998 due to low population sizes (Schroeder et al. 2000b), 

likely the results of habitat loss and degradation. In southcentral Wyoming, there has not been an 

established sharp-tailed grouse hunting season since at least the late 1970s (Miller and Graul 

1980), with no evidence that there has ever been an established hunting season for this 

population. The population adjacent to the southcentral Wyoming population in northwestern 

Colorado has an established hunting season for “mountain” sharp-tailed grouse 

(https://cpw.widen.net/s/l2fgsjk9cr/colorado-small-game--waterfowl-brochure). Prior to 

https://cpw.widen.net/s/l2fgsjk9cr/colorado-small-game--waterfowl-brochure
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implementing a hunting season, it is important to understand the demographic factors that 

influence population growth and the potential impacts that harvest might have on those factors.  

Within Wyoming, there has been a growing interest in implementing a hunting season on 

sharp-tailed grouse in southcentral Wyoming (T. Mong, Wyoming Game and Fish Department, 

personal communication). The objectives of our study were to evaluate the population 

demography of sharp-tailed grouse in southcentral Wyoming and evaluate how population 

growth would change as a result of reduced adult annual survival and juvenile overwinter 

survival (hereafter reduced survival). We evaluated how the growth rate for this population 

changed in response to reduced survival. Because this population has not been hunted, we were 

unable to directly evaluate the impacts of hunting on population growth and because hunting 

directly affects adult annual survival and juvenile overwinter survival. To accomplish this goal, 

we developed a stage-based integrated population model (IPM) in a Bayesian framework that 

evaluated demographic rates, population growth, and population size under a no hunting 

scenario. Lastly, we used the IPM that we developed in a population viability analysis 

framework to evaluate the effect of reduced survival on the population growth of sharp-tailed 

grouse in southcentral Wyoming.  

STUDY AREA 

Our study area was located in western Carbon County, Wyoming, USA (41.194°N, -107.324°E) 

and encompassed ~2,900 km2 with elevation that ranged from 1900–3100 m above sea level. 

Ownership in our study area was composed of Bureau of Land Management (36.7%), U. S. 

Forest Service (23.3%), State of Wyoming (12.2%), and privately owned (27.7%) lands. The 

primary land use within our study area was livestock grazing, with some energy extraction, 

timber harvest, recreation, and irrigated hayfields. During our study (2015–2022), the average 
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annual high temperature was 12.0° C (range = 5.8–16.0° C; 30-year [1993–2022] average = 

14.3° C), the average annual minimum temperature was -3.8° C (range = -8.1–-1.0° C; 30-year 

[1993–2022] average = -2.1° C), and the average annual precipitation was 180.1 mm (range = 

65–322 mm; 30-year [1993–2022] average = 278.9 mm; National Centers for Environmental 

Information, NOAA, accessed 3/13/2025, https://www.ncdc.noaa.gov/cdo-web/). Common 

mammal species that occurred in our study area included coyote (Canis latrans), elk (Cervus 

canadensis), mountain lion (Puma concolor), mule deer (Odocoileus hemionus), pronghorn 

(Antilocapra americana), red fox (Vulpes vulpes), and Wyoming ground squirrel (Urocitellus 

elegans). Common avian species that occurred within our study area included American 

goshawk (Astur atricapillus), Brewer’s sparrow (Spizella breweri), common raven (Corvus 

corax), golden eagle (Aquila chrysaetos), greater sage-grouse, green-tailed towhee (Pipilo 

chlorurus), sage thrasher (Oreoscoptes montanus), and vesper sparrow (Pooecetes gramineus). 

Dominant vegetation communities within our study area were mixed-conifer forests, mixed 

deciduous and coniferous forests, mixed-shrub communities, quaking aspen (Populus 

tremuloides) forest, and sagebrush (Artemisia spp.) steppe. Mixed deciduous and coniferous 

forests were primarily composed of Engelmann spruce (Picea engelmannii), lodgepole pine 

(Pinus contorta), and quaking aspen. Coniferous forests were primarily composed of Engelmann 

spruce and lodgepole pine. Mixed-shrub communities were primarily composed of antelope 

bitterbrush (Purshia tridentata), big sagebrush (A. tridentata), serviceberry (Amelanchier spp.), 

silver sagebrush (A. cana), snowberry (Symphoricarpos spp.), and yellow rabbitbrush 

(Chrysothamnus viscidiflorus). Sagebrush steppe was dominated by big sagebrush, bunchgrasses, 

and forbs. 
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METHODS 

Field methods 

We captured female sharp-tailed grouse at leks using walk-in funnel traps (Haukos et al. 1990, 

Schroeder and Braun 1991) continuously from ~10 April to 11 May 2017–2019. We radio-

tagged all captured females with 15-g necklace-mounted VHF transmitters (model RI-2B, 

Holohil, Carp, Ontario, Canada) and located individuals 2 to 4 times per week during the late 

spring and summer (30 Apr to 31 Aug) using triangulation at a distance of ~30 to 50 m. If we 

observed a female sharp-tailed grouse in the same location twice during May or June, we 

visually confirmed, or circled the bird within a few meters, if on a nest. Once we identified a 

nest, we monitored it 2 to 4 times per week from a distance of 50 to 100-m, until the female left 

the nest after it hatched or failed. We considered nests successful when ≥1 egg hatched; this was 

determined by examining eggshell and eggshell membranes in and near the nest after the female 

was no longer attending the nest. To obtain clutch size, we counted the number of eggs in each 

nest when the female was not present at the nest (i.e., on a foraging break) or after the nest had 

hatched. We were not able to get reliable counts from nests if they failed, given that eggs were 

not present or eggs shells were crushed. If a nest hatched, we continued to monitor each female 

for 7 weeks to assess brood mortality risk and habitat selection. To track brood mortality risk, we 

conducted brood checks at night when the brood was 1-week old, and then every two weeks until 

broods reached 7-weeks of age. During the brood-check at 7-weeks, we flushed the broods and 

counted the number of chicks present and attempted to capture as many of the chicks as possible. 

Upon capture of chicks, we fitted 10-g necklace mounted VHF transmitters (model RI-2B, 

Holohil, Carp, Ontario, Canada) to chicks weighing ≥250 g to ensure that the transmitter was no 

more than 2.5% of the chicks’ mass. Night-time checks minimized error because chicks were 
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actively being brooded at night making it more reliable to determine chick presence (determined 

visually or by presence of chick droppings in the roost the following day) without causing 

significant disturbance to the female and chicks (Pratt and Beck 2019, Smith et al. 2019). A 

brood was considered to have failed if chicks were no longer observed with the female or if a 

female mortality was detected. During the fall, winter, and early spring (1 Sep to 30 Apr) we 

located birds by airplane once per month. If we were unable to locate individuals during a flight, 

we searched for them on subsequent flights; if, after subsequent flights, we were still unable to 

locate them, we would consider them missing and they were right censored in survival analyses. 

We obtained lek count data from the Wyoming Game and Fish Department (WGFD) and 

the Rawlins Field Office of the Bureau of Land Management (BLM; 2015 to 2022). The WGFD, 

BLM, and other volunteers visited known leks each year to count the number of sharp-tailed 

grouse at each lek. Each year, leks were visited once during the spring lekking season (Mar–

May). For the few leks (<5) where all individuals could be reliably counted without flushing, 

leks were counted from a distance ≥50 m to minimize disturbance to lekking activities. For the 

majority of leks, which could not be reliably counted without flushing, leks were flushed once 

during each season and all flushed sharp-tailed grouse were counted, similar to methods 

described in Gillette et al. (2015). Sharp-tailed grouse are not sexually dimorphic and can be 

difficult to sex on leks and while in flight. Therefore, our counts of sharp-tailed grouse on leks 

likely included both males and females. However, we assumed that all birds counted on leks 

were males because we had no way of discerning how many females were included in the lek 

counts. 

Statistical Analyses 

Demographic subcomponents 
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We developed sub-models for each of the demographic processes that we evaluated. 

Demographic sub-models included: breeding season survival (1 Apr to 14 Aug; BSS) and annual 

survival (1 Apr to 31 Mar; AnnS); nest initiation rate of first and second nests (Nest1, Nest2); 

clutch size of first and second nests (cls1, cls2), daily survival of first and second nests (N.surv1, 

N.surv2); egg hatchability (h); chick survival to 49 days post hatch (cs); and juvenile overwinter 

survival (js, 1 Sep to 31 Mar). All sub-models except juvenile survival included a random effect 

of female age on demographic parameters. 

We used telemetry data to estimate the monthly (months were defined as 4-week periods) 

survival for yearling (second year) and adult (after second year) females. Because we estimated 

quad-weekly survival, we defined a month as 28 days long to ensure equal length time periods 

across the year, and therefore a year was 13 months long. We monitored females 2-3 times per 

week during the breeding season (Apr–Aug) and we monitored each female once per month 

during the nonbreeding season (Sep–Mar; see descriptions above). Censoring occurred when the 

bird survived to the next breeding season, the transmitter failed, or the individual went missing 

and could not be relocated. We modeled survival using a random effects survival model (shared 

frailty model) with a constant, baseline log-hazard for every month of the study (Halstead et al. 

2012), similar to Mathews et al. (2021). We included a temporal parameter (month) to allow us 

to calculate annual survival (AnnS, 1 Apr–31 Mar) and breeding season survival (BSS; 1 Apr–31 

Aug). We fit survival models with a random effect for age (β) where we included yearlings 

(second year) and adults (after second year) and a random effect for year (κ). The unit (monthly) 

hazard (UH) took the form: 

𝑈𝐻𝑖,𝑗 =  𝑒𝛼+ 𝛽𝑎+ 𝜅𝑦      (1) 
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where subscripts i, j, a, and y reference individual, month, age, and year, respectively. The 

intercept (α) represents the baseline log hazard. For age, the log hazard ratio is interpreted as the 

change of logged magnitude in risk for each group relative to all other groups (Hernán 2010, 

Mathews et al. 2021). We estimated the cumulative hazard (CH) and survival functions as: 

𝐶𝐻𝑖 =  ∑ 𝑈𝐻𝑖,1:𝑗

𝑇

𝑗=1

 

𝑆𝑖 =  𝑒−𝐶𝐻𝑖       (3) 

where T represents the maximum number of months that an individual was monitored. We 

subsequently modeled survival as the probability of the Bernoulli process where the random 

variable Y indicated if an individual was dead or alive (0 and 1, respectively) between intervals. 

𝑌𝑖 ~ Bernoulli(𝑆𝑖)       (4) 

We derived posterior distributions for AnnS (T = 13 months) and BSS (T = 5 months) for each 

age class included in the study. 

For first nest initiation (Nest1), we used informative priors from the Beta distribution for 

each age class: 

𝑁𝑒𝑠𝑡1𝑎𝑠𝑦 ~ Beta(97, 5)        (5) 

𝑁𝑒𝑠𝑡1𝑠𝑦 ~ Beta(90, 12)      (6) 

where asy and sy represent adults and yearling age classes, respectively. These informative priors 

indicate that the probability of initiating a first nest is higher for adult females than yearling 

females, but the probability of initiating first nests is still relatively high for both age classes. We 

used informative priors for first nest initiation because we could not be certain that we detected 

all first nest attempts on the landscape, as some nests likely failed during the egg laying period. 

Second nests attempts are typically easier to detect because second nests typically have fewer 

(2) 
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eggs leading to a shorter laying period and they typically are initiated shortly after a failed nest 

making them easier to predict when they will be initiated. Therefore, we estimated the 

probability of initiating a second nest following a Binomial distribution for all age classes 

combined. The probability of initiating a second nest took on the form: 

𝑅𝑁 ~ Binomial(𝑓𝑛1, 𝑛𝑖2)      (7) 

Logit(𝑁𝑒𝑠𝑡2) =  𝛼       (8) 

where fn1 represents the number of failed first nests, RN represents the number of individuals 

that attempted to renest, and Nest2 is the apparent probability of second nest initiation. The logit-

transformed probability was described by the intercept (α). Because we used informative priors 

for first nest initiation and did not have enough renests each year, we did not include annual 

variation as a component of nest initiation. 

We modeled the expected clutch size of first (cls1) and second nests (cls2) using a 

Poisson distribution and it took the form: 

𝑐𝑙𝑢𝑡𝑐ℎ1𝑖 ~ Poisson(𝑐𝑙𝑠1𝑖)      (9) 

𝐿𝑜𝑔(𝑐𝑙𝑠1𝑖) =  𝛼 +  𝜃𝑦      (10) 

where i and y represent nest and year, respectively, and clutch1i represents observed clutch sizes. 

We described expected clutch size (cls1) by a linear combination of the intercept (α) and the 

random effect of year (θ). We calculated clutch size for second nests (cls2)  using the same 

equations that were used for first nest clutch size. 

 We modeled first (N.surv1) and second (N.surv2) nest survival using a shared frailty 

model, similar to how we modeled adult survival (eqs. 1–4), over a 24-day incubation period 

(Johnsgard 1973, Hoffman 2001, Barker et al. 2023). We did not include the egg laying period in 

our analysis because we could not be certain that we detected all nests that our marked female 
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grouse in our study initiated prior to incubation starting. We used a random effect for female ID 

and female age to account for females that had nests during multiple years and different nest 

survival probabilities for adult and yearling females.  We modeled second nest survival similar to 

first nest survival, except we did not include random effects for age because we had a small 

sample size. 

 We modeled egg hatchability (h) using eggshell remains from successful nests with no 

signs of scavenging. We modeled hatchability using a Binomial distribution where the number of 

eggs laid represented the number of trials and the number of hatched eggs represented the 

number of successes. We modeled hatchability with a random effect for year (θ) and the model 

took the form: 

ℎ𝑒 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑐𝑙𝑠, ℎ)                   (11) 

Logit(ℎ) =  𝛼 + 𝜃𝑦      (12) 

where y represents the year of the nest and he represents the number of eggs hatched, and cls 

represents the initial clutch size of the nest. The logit-transformed probability of egg hatchability 

was described by the linear combination of the intercept (α) and the random effect of year (θ). 

We assumed that egg hatchability was the same for first and second nesting attempts. 

We modeled chick survival (cs) from brood count data when broods were 7-weeks of age 

using a Binomial distribution. The initial number of chicks (number of trials) was considered to 

be the number of eggs that hatched, whereas the number of chicks that survived were the number 

of chicks at 49-days (number of successes). We modeled chick survival similar to equations 11 

and 12. The logit-transformed probability of chick survival included the intercept and a random 

effect for year. We assumed that chick survival was similar between age classes because we had 

a relatively small sample size for each age class. 
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We modeled juvenile overwinter survival (js) from monthly telemetry data using a shared 

frailty model, similar to how we modeled adult survival (Eqs. 1–4). For this model we included a 

random effect for year. We modeled monthly juvenile overwinter survival from 1 September to 

31 March. We assumed that juvenile overwinter survival was similar between male and female 

juveniles.  

Integrated population model framework 

To understand the population dynamics and the potential influence of hunting on sharp-tailed 

grouse in southcentral Wyoming, we developed a Bayesian integrated population model (IPM). 

We used this model to estimate the demographic subcomponents outlined above, productivity, 

population growth rates, and abundance of sharp-tailed grouse in southcentral Wyoming (Schaub 

and Abadi 2011, Kéry and Schaub 2012). We developed a lek-based IPM, similar to Mathews et 

al. (2021). Within our population model, we assumed that there was a 1:1 sex ratio on the 

landscape and every grouse counted on a lek was a male (i.e., every grouse counted on a lek was 

a male and there was a corresponding female not occurring at the lek), there was a 1:1 sex ratio 

at fledging, breeding began at age one, and there was no immigration into the population. 

Previous research on sharp-tailed grouse and other Tympanuchus species indicates an 

approximate 1:1 sex ratio on the landscape (Robel et al. 1972, Giesen 1999) and this ratio is used 

in population models for Tympanuchus grouse (Cummings et al. 2017, Ross et al. 2018, 

Mathews et al. 2021). There is potentially immigration into the focal population of sharp-tailed 

grouse in southcentral Wyoming from an adjacent population in Colorado, however, we also 

observed emigration from our focal population to the adjacent population in Colorado, 

potentially negating any immigration from the population in Colorado. Because we did not have 
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a way to identify the rates of immigration and emigration, we assumed that they were equal and 

used a closed population model.  

We used a stage-based pre-breeding season model, which decomposed population 

dynamics into a state process based on breeding season survival, annual survival (see above), and 

annual recruitment. Annual recruitment (R) took the form: 

𝑅a,y = {(𝑁𝑒𝑠𝑡1𝑎 × 𝑐𝑙𝑠1 × 𝑁. 𝑠𝑢𝑟𝑣1𝑎,𝑦 × ℎ𝑦 × 𝑐𝑠𝑦 × 𝑗𝑠𝑦) + 

                          ([1 − 𝑁𝑒𝑠𝑡1𝑎] × 𝑁𝑒𝑠𝑡2 × 𝑐𝑙𝑠2 × 𝑁. 𝑠𝑢𝑟𝑣2 × ℎ𝑦 × 𝑐𝑠𝑦 × 𝑗𝑠𝑦)}/2 

where the subscripts a and y represent age class and year of study, respectively. We assumed an 

even sex ratio of chicks, as this has been found to be true at hatch in another population of sharp-

tailed grouse (Mathews et al. 2018). 

We used a time-series analysis via Markovian processes to model annual sharp-tailed 

grouse lek counts (Baumgart 2011, Mathews et al. 2021). We used a Normal distribution to 

model the observation process allowing demographic estimates to inform apparent abundance 

(Mathews et al. 2021). We linked lek counts (see above) in year y to male abundance (Nmale,y): 

   𝐶𝑦 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑚𝑎𝑙𝑒,𝑦 , 𝜎𝐶
2)     (14) 

where 𝜎𝐶
2 represented the observation error, which we assigned a Uniform prior distribution 

between 0 and 100. We calculated the finite rate of population change on an annual basis by 

dividing the total population size in year y + 1 by the total population size in year y: 

   𝜆̂𝑦 =
𝑁𝑚𝑎𝑙𝑒,𝑦+1

𝑁𝑚𝑎𝑙𝑒,𝑦
        (15) 

Lek counts in year y represent the survival and recruitment of year y – 1, therefore lek counts and 

corresponding 𝜆̂ were staggered and we averaged all population change metrics from 2016 to 

2022 (Mathews et al. 2021). Additionally, we calculated the geometric mean of the log-

transformed annual 𝜆̂𝑦 estimates to understand historical population changes. To understand the 

(13) 
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contributions of demographic processes to annual variation in population growth (𝜆̂𝑦), we 

correlated population growth with yearling and adult breeding season survival probability, 

yearling and adult annual survival probability, yearling and adult nest survival probability, chick 

survival probability, and juvenile overwinter survival probability (Schaub et al. 2013, Tempel et 

al. 2014, Saunders et al. 2018, Schaub and Kéry 2021). 

Population viability analysis 

We used a population viability analysis (PVA) based on the integrated population model 

described above to understand the effects of reduced adult annual survival and juvenile over 

winter survival on sharp-tailed grouse. We simulated the population 10 years into the future for 

the PVA. We used a PVA to estimate the probability of absolute extinction (no males remain in 

the population) and quasi-extinction (≤100 males) after 10 years. We choose the quasi-extinction 

rate of ≤100 males because, assuming a 1:1 sex ratio on the landscape, this results in 200 

individuals in the population, which is considered a minimum viable population size for the 

persistence of sharp-tailed grouse populations (Toepfer et al. 1990, Milligan et al. 2018). 

To reduce adult annual survival and juvenile overwinter survival, we derived survival 

reduction rates based on published results from Sandercock et al. (2011). Sandercock et al. 

(2011) found that willow ptarmigan (Lagopus lagopus) had annual survival rates of 0.54, similar 

to annual survival rates for sharp-tailed grouse (Gillette 2014, Milligan et al. 2020b, Mathews et 

al. 2021), and that survival rates of willow ptarmigan populations were reduced by hunter harvest 

at 15% and 30% harvest compared to the population without harvest. To understand how lower 

and intermediate harvest rates, and therefore intermediate reductions in survival (e.g., 5%, 10%, 

20%, and 25% harvest), might influence survival, we used a linear model in Program R 4.4.1 (R 

Core Team 2024) to fit a quadratic equation to the published survival rates for no harvest, 15% 



 184 

harvest, and 30% harvest and used this equation to estimate survival rates at 5%, 10%, 20%, and 

25% harvest. Once we had estimated the survival rates at intermediate harvest, we divided the 

predicted survival rates by the survival rates when there was no harvest on willow ptarmigan 

from Sandercock et al. (2011) to get the reduction in survival (Reduction). The Reduction rates 

that we used were 0% (no survival reduction), 2.3%, 6.6%, 13.0%, 21.4%, 31.9%, and 44.4% 

reduction in survival. Because we did not know exactly how hunting would impact survival, we 

allowed the influence of hunting (SurvReduction) on survival to vary for both adult annual and 

juvenile overwinter survival. We used a Normal distribution with a mean of Reduction and a 

standard deviation of 0.005 and truncated at 0 and 1: 

  𝑆𝑢𝑟𝑣𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 1/(0.005 ∗ 0.005) )𝑇(0,1)        (16) 

We only decreased adult annual and juvenile overwinter survival during the prospective analyses 

and not during the retrospective analysis by multiplying the respective survival rate by 

SurvReduction. 

Model fitting 

We conducted modeling using Bayesian Markov Chain Monte Carlo (MCMC) sampling in the 

program JAGS V4.3.2 (Plummer 2003), implemented using Program R and the R package 

jagsUI (Kellner 2024). We report all results as the median posterior estimate and 95% credible 

intervals (CI) unless otherwise noted. We ran three independent chains for 800,000 iterations 

following a 200,000 iteration burn-in and thinned chains by five. Model convergence was 

assessed using the Rhat (𝑅̂) statistic (Gelman and Hill 2006) and we visually inspected the 

chains. We observed convergence (𝑅̂ ≤ 1.1) for all parameter estimates. 

Timing of mortality 
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To evaluate seasonal timing of mortality, we calculated hazards functions using smoothing spline 

functions (DelGiudice et al. 2006, Winder et al. 2018). To calculate hazard functions, we used 

the sshzd function from the gss package in Program R (Gu 2014). This allowed us to evaluate 

when adult females (yearlings and adults) and juveniles encounter natural hazard risks during the 

year (1 Apr–31 Mar; adult females) and over winter (1 Sep–31 Mar; juveniles) for potentially 

harvested populations. 

RESULTS 

Our IPM estimated that the population of sharp-tailed grouse in Carbon County, Wyoming 

declined from 824 males (95% credible interval [CI] = 744–919) in 2015 to a low of 174 (CI = 

133–215) in 2020 and then increased to 308 (CI = 243–384) in 2022 (
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Figure 4.1). Our population estimates from the IPM roughly tracked the observed lek counts, 

though the modeled population was generally higher than the observed counts (

 

Figure 4.1). Annual population growth (𝜆̂𝑦) varied from 0.49–1.51 with a geometric mean of 

0.87 (CI = 0.84–0.90) from 2016 to 2022. In the prospective analysis without hunting, the 

estimated population 10 years into the future was 16 males (TABLES 

Table 4.1); the geometric mean of population growth in the prospective model was 0.65 

(TABLES 

Table 4.1). Mean annual estimates of annual survival and breeding season survival of yearling 

females were slightly higher than annual survival and breeding season survival of adult females 

from 2017 to 2020 (Table 4.2). Estimated annual nest survival of yearling females was higher 

than nest survival of adult females from 2017 to 2019 (Table 4.2). Mean annual estimates of 

chick survival varied from 0.19 to 0.40, with a geometric median of 0.28 from 2017 to 2019 

(Table 4.2). The mean annual estimates of juvenile over-winter survival during our study varied 

from 0.53 to 0.64 with a geometric median of 0.59 (Table 4.2) from 2017 to 2020. We found that 

population growth (𝜆̂𝑦) was positively correlated with yearling and adult female breeding season 

and annual survival (r = 0.77; CI = -0.48–1.00); the correlation coefficient and credible intervals 

were similar for all adult and yearling survival parameters. Chick survival was also positively 
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correlated with population growth (r = 0.64; CI = -0.38–1.00). Population growth was negatively 

correlated with nest survival (yearling and adult; r = -0.23; CI = -1.00–0.99) and juvenile over-

winter survival (r = -0.45; CI = -1.00–0.94), though the credible intervals overlapped zero and 

ranged from nearly -1.00–1.00.  

Population viability analysis 

When adult annual survival and juvenile overwinter survival were reduced, the predicted 

population growth rates (λ) during 2023–2033 decreased as the rate at which survival was 

reduced increased (TABLES 

Table 4.1, Figure 4.2), and suggested that the population was declining under all scenarios, 

though the credible intervals for population growth under no survival reduction to 12.96% 

survival reduction overlapped 1.0 due to model uncertainty (TABLES 

Table 4.1). The projected populations under each survival reduction rate approached zero after 

10 years (TABLES 

Table 4.1, Figure 4.2). After 10 years, there was an estimated 33.9% chance that the population 

will go extinct without a reduction in survival (TABLES 

Table 4.1, Figure 4.3A) and the probability of extinction increased as the reduction in survival 

increased, with a maximum of 81.5% probability of extinction under the 44.44% reduction in 

survival scenario (TABLES 

Table 4.1, Figure 4.3A). The quasi-extinction rate (≤100 males) was 72.7% under reduction in 

survival and increased as the reduction in survival increased (TABLES 

Table 4.1, Figure 4.3B), with a maximum of 99.6% probability of quasi-extinction after 10 years 

with a 44.44% reduction in survival (TABLES 

Table 4.1, Figure 4.3B). 
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Timing of mortality 

To evaluate the patterns of mortality to adult female and juvenile sharp-tailed grouse, we 

calculated hazard functions across the year, with the year starting on 1 April. We found that the 

instantaneous risk of mortality was highest for adult females during the early breeding season 

(weeks 6–14, 29 Apr–7 Jul) with other peaks in instantaneous risk to mortality occurring during 

the late breeding season (weeks 18–25, 29 Jul–22 Sep) and the late nonbreeding season (weeks 

43–50, 20 Jan–17 Mar; Figure 4.4). The lowest instantaneous risk of mortality for adults 

occurred during the early nonbreeding season (weeks 27–42, 30 Sep–19 Jan). For juveniles, 

instantaneous risk of mortality was greatest during the early nonbreeding season (weeks 27–42, 

30 Sep–19 Jan).  

DISCUSSION 

There is limited research on the population demography of sharp-tailed grouse in southcentral 

Wyoming, and to our knowledge, there has not been an official, regulated hunting season for 

sharp-tailed grouse in southcentral Wyoming since at least the late 1970s (Miller and Graul 

1980). We sought to evaluate the population demography of sharp-tailed grouse in southcentral 

Wyoming and to understand the potential influence of reduced adult annual survival and juvenile 

overwinter survival on population growth. We found that the population of sharp-tailed grouse in 

southcentral Wyoming declined from 2015–2022, with a mean population growth of 0.87 over 

the duration of our study. Population growth during this period was most correlated with the 

annual survival of yearling and adult females. Projected population growth rates indicated a 

declining population, with projected future populations predicted to have an approximate 30% 

chance of extinction and an approximate 72% chance of quasi-extinction (≤100 males remaining 

in the population) after 10 years. Under predicted scenarios where adult annual survival and 
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juvenile overwinter survival were reduced, we found that extinction and quasi-extinction 

probabilities increased as the rate at which survival was reduced increased. The predicted 

population growth rate, extinction probability, and quasi-extinction for survival reduction rates 

less than 6.7% were similar, but all analyses still resulted in declining populations. 

 We found that the population of sharp-tailed grouse in southcentral Wyoming was 

declining during our study. We only evaluated sharp-tailed grouse population growth in 

southcentral Wyoming for a relatively short period (2015 to 2022) and grouse populations are 

historically cyclical over time, experiencing growth pulses and declines (Moss and Watson 2001, 

Williams et al. 2004b, Fedy and Doherty 2011). Because of the cyclical nature of grouse 

populations, we may have only evaluated the southcentral Wyoming population during a 

downturn in population growth and this may need to be evaluated over a longer period. We 

observed a slight population increase in the final year of our study (2022), suggesting that the 

population may have reached the low of a cycle and was starting to recover. Because of the 

nature of the simulated models that we used, there is significant uncertainty in them with credible 

intervals of most projected population growth rates overlapping 1 and we do not know the exact 

causes for the decline. However, population growth in our retrospective analysis was correlated 

with adult, yearling survival, and chick survival. To help better manage this population, it is 

important that future research helps to identify management actions that could improve adult, 

yearling, and chick survival.  
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During our study, trends in the estimated population size and lek counts generally were 

similar, with the estimated population size being higher than the cumulative lek counts (

 

Figure 4.1). We hypothesize that this is because there was missing lek count data because 

within our study area, some leks were inaccessible during years with deep snow. Additionally, 

lek counts in our study area were only conducted once per year per lek, this might result in 

inaccurate lek sizes as male attendance on leks varies during the lekking season (Emmons and 

Braun 1984, Drummer et al. 2011, Wann et al. 2019). Finally, we likely do not know the 

locations of all the leks within our study area because much of the area is inaccessible by 

established roads and the area is characterized by high shrub cover, making it difficult to identify 

new leks (Smith et al. 2016). Because of this, it would be beneficial for agencies using lek counts 

to guide management and harvest recommendations to conduct multiple lek counts during the 

spring lekking season and to establish a consistent lek count protocol and to search for additional 

leks every 2 to 4 years to ensure a complete survey of the population of interest.  

Factors that are most influential on population growth in grouse populations vary 

depending on the species and population, yet has frequently been attributed to breeding success 

and adult female survival (Johnson and Braun 1999, Hagen et al. 2009, Taylor et al. 2012, 

Gillette 2014, Sullins 2017). We found that population growth was positively correlated with 
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adult and yearling survival and chick survival, though the credible intervals overlapped zero, 

which is congruent with other populations of grouse (Johnson and Braun 1999, Hagen et al. 

2009, Taylor et al. 2012, Gillette 2014). Population growth was negatively correlated with nest 

survival and juvenile overwinter survival with the credible intervals for both ranging from -1 to 

1. The consistent overlap of zero with correlation suggests that we do not have enough data to 

understand which factors were most correlated with population growth, likely related to  only 

having three years of demographic data. However, our estimated demographic rates were similar 

to other studies evaluating sharp-tailed grouse populations in the adjacent population of Colorado 

(Barker et al, 2022, 2023).  Our observed nest survival of 0.85 and 0.76 for yearlings and adults, 

respectively, which was higher than observed apparent nest success or modeled nest survival 

rates from other portions of the sharp-tailed grouse range (range: 0.29–0.62; Gillette 2014, Burr 

et al. 2017, Proett et al. 2019, Milligan et al. 2020a). Additionally, we observed similar or lower 

adult annual survival rates (yearlings = 0.45, adults = 0.33) compared with other studies on 

sharp-tailed grouse (range 0.28–0.86; Gillette 2014, Milligan et al. 2018, 2020b, Mathews et al. 

2021; for additional sources see Table 2 in Milligan et al. 2018). 

 Identifying factors that might be influenced by harvest regulations is important to 

understand prior to implementing a hunting season. Hunting seasons for grouse typically occur 

during the fall and early winter (September through December), with hunters harvesting both 

adults and juveniles. We observed opposite trends for risks of mortality for adults and juvenile 

sharp-tailed grouse during the nonbreeding season (1 Sep–31 Mar) in our study area. We found 

that juveniles had the highest risk of mortality during fall and early winter, while adults had their 

lowest risk of mortality for annual survival during this same period, suggesting that hunter 

harvest during the fall might be more compensatory for juveniles and more additive for adults. 
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Juvenile grouse likely have a higher risk of mortality during the early nonbreeding season 

because they are naïve as they are just starting to become independent from the brood female that 

raised them (Hannon and Marting 2006). In areas where sharp-tailed grouse have been hunted, 

juvenile-to-adult harvest ratios varied, but were close to 1:1 in some populations (Robel et al. 

1972, Giesen 1999, Stevens et al. 2023). Adult risk of mortality was greatest during the first half 

of the breeding season (29 Apr–7 Jul), similar to greater prairie-chickens in Kansas (Winder et 

al. 2014). During the first part of the breeding season, females are visiting leks, laying eggs and 

incubating nests, and attending broods, therefore, decreased survival during these periods is 

common in similar species (Hagen et al. 2007, Augustine and Sandercock 2011, Winder et al. 

2014, Milligan et al. 2020b). 

Because sharp-tailed grouse are located in spatially and temporally predictable patterns 

(Smith et al. 2016, Lautenbach et al. 2022) and are known to lek in the fall (Hamerstron and 

Hamerstrom 1951), this may make males attending leks more susceptible to harvest (Chen et al. 

2023). Within sharp-tailed grouse, fall lekking is when many juvenile and adult males begin 

establishing territories on leks (Myles and Boag 1981). The timing and duration of fall lekking is 

a little less known, but it typically occurs from September through October with males visiting 

leks throughout the winter (Myles and Boag 1981). Sharp-tailed grouse hunting seasons across 

much of North America overlap with fall lekking, potentially facilitating hunters to target known 

leks. Many of the known leks within the population of sharp-tailed grouse in southcentral 

Wyoming were located along or near roads (improved and unimproved; J. Lautenbach, personal 

observation) and might be easy for hunters to locate and target their hunting efforts, potentially 

reducing the size of leks and potentially greatly reducing numbers of sharp-tailed grouse during 

some years. Therefore, identifying the timing of peak fall lekking and implementing hunting 
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outside of this period might reduce the potential influence of hunting on leks in populations 

where leks are easy for hunters to access. 

  The sharp-tailed grouse population in southcentral Wyoming is declining and our 

population viability analyses demonstrate that the population has a 72% chance of having fewer 

than 100 males after 10 years, suggesting that the population will likely fall below the minimum 

population size for population persistence (Toepfer et al. 1990, Hoffman et al. 2015, Milligan et 

al. 2018). Population growth was most correlated with adult, yearling, and chick survival and the 

instantaneous risk of mortality to adult females suggests that hunting would be additive to adult 

female mortality. Prior to implementing a hunting season, it is important to understand all 

potential impacts of harvest on populations, including seasonal mortality risk, important 

biological events (e.g., fall lekking), and factors limiting population growth. If a hunting season 

is implemented on a previously non-hunted population, this would provide a great opportunity to 

better understand the influence of hunting on population dynamics and could be studied through 

banding, telemetry, and/or wing collection (Hagen et al. 2018). 

MANAGEMENT IMPLICATIONS  

The population of sharp-tailed grouse was declining during our study. We found that population 

growth in our population was most correlated with adult annual survival and chick survival. 

Identifying management objectives that improve habitat conditions that benefit adult annual 

survival and chick survival will help grow the population. We found that the instantaneous risk 

of mortality. Harvest during the fall would likely be additive for adults, however this is when 

mortality risk for juveniles is highest, suggesting that a fall harvest could be partially 

compensatory for juveniles. If a hunting season is implemented on a previously non-harvested 

population, managers should consider the timing of the hunting season relevant to important life-



 194 

history stages (e.g., annual survival, fall lekking, etc.) and try to minimize the impacts of hunting 

on population size and growth.  
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TABLES 

Table 4.1. Estimates of posterior median (50th percentile) population growth (λ) and 95% credible intervals (CI), posterior median 

(50th percentile) population size (N) and 95% credible intervals (CI), absolute extinction probability, and quasi-extinction probability 

(≤100 males) for sharp-tailed grouse in southcentral Wyoming after the population was projected 10 years into the future when adult 

annual survival and juvenile overwinter survival were reduced (survival reduction rate) based on estimates from Sandercock et al 

(2011).  

Survival reduction 

rate 
λ N 

Absolute extinction 

probability 

Quasi-extinction 

probability 

0% 0.65 (0.47–1.21) 16 (0–4612) 0.28 0.71 

2.26% 0.63 (0.47–1.18) 13 (0–3747) 0.30 0.74 

6.58% 0.60 (0.47–1.12) 8 (0–2368) 0.33 0.79 

12.96% 0.56 (0.47–1.04) 3 (0–1182) 0.38 0.86 

21.40% 0.51 (0.47–0.93) 1 (0–414) 0.47 0.92 

31.90% 0.48 (0.47–0.79) 0 (0–98) 0.62 0.98 

44.44% 0.48 (0.47–0.64) 0 (0–13) 0.81 1.00 

 



 

 

Table 4.2. Posterior median estimates (50% quantile) of various demographic parameters and 

95% credible intervals (CI) for sharp-tailed grouse in southcentral Wyoming using an integrated 

population model; estimates are based on data telemetry data collected from female sharp-tailed 

grouse fitted with radio-transmitters from 2017–2020. 

      95% CI 

Parameter Agea 50% 2.5% 97.5% 

Annual Survival (AnnS) Yearling female 0.45 0.35 0.55 

 Adult female 0.33 0.27 0.41 

Breeding season survival (BSS) Yearling female 0.73 0.66 0.79 

 Adult female 0.65 0.60 0.70 

Nest initiation; first nest (Nest1)b Yearling female 0.90 0.83 0.94 

 Adult female 0.96 0.91 0.99 

Nest initiation; second nest (Nest2) Combined 0.17 0.08 0.30 

Clutch size; first nest (cls1) Combined 9.93 9.40 10.48 

Clutch size; first nest (cls2) Combined 8.77 6.59 11.38 

Nest survival; first nest (N.surv1) Yearling female 0.85 0.74 0.92 

 Adult female 0.76 0.68 0.83 

Nest survival; first nest (N.surv2) Combined 0.97 0.56 1.00 

Egg hatchability (h) Combined 0.88 0.86 0.90 

Chick survival (cs) Combined 0.28 0.25 0.31 

Juvenile survival (js) Combined 0.59 0.51 0.67 

 

a Age designations represent that vital rates were estimated for “Yearling female” and “Adult 

female” age classes; a “Combined” designation represents vital rates that were pooled across age 

classes. 

b First nest initiation was derived from an informative prior with a Beta distribution with a mean 

of 90 and a standard deviation of 12 for yearlings and a mean of 97 and a standard deviation of 5 

for adults. 
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FIGURES 

 

Figure 4.1. Estimated retrospective (years 1–8, 2015–2022; before vertical dashed line) and 

prospective (years 9–18; after vertical dashed line) population size (blue line) and raw total 

number of males counted on leks (black) for sharp-tailed grouse in southcentral Wyoming. Gray 

shaded area represents 95% credible intervals. 
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Figure 4.2. Estimated retrospective (years 1–8, 2015–2022; before vertical dashed line) and 

prospective (years 9–18; after vertical dashed line) population size for sharp-tailed grouse in 

southcentral Wyoming under different survival reduction rates simulated by reducing adult 

annual survival and juvenile over-winter survival when predicted 10 years into the future 

(survival reduction approach). Simulated survival reduction rates were 2.3% (A), 6.6% (B), 

13.0% (C), 21.4% (D), 31.9% (E), and 44.4% (F) reductions in survival. Gray shaded areas 

represent 95% credible intervals.  
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Figure 4.3. Cumulative absolute extinction (A) and quasi-extinction (≤100 males; B) 

probabilities from a Bayesian population viability analysis for sharp-tailed grouse in southcentral 

Wyoming predicted 10 years into the future under different survival reduction rates simulated by 

reducing adult annual survival and juvenile over-winter survival when predicted 10 years into the 

future. Simulated survival reduction rates were no reduction in survival (control), 2.3%, 6.6%, 

13.0%, 21.4%, 31.9%, and 44.4% reductions in survival.   
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Figure 4.4. Bi-weekly hazard functions for adult female (solid black) and juvenile (blue dashed) 

sharp-tailed grouse in southcentral Wyoming, USA, 2017–2020. The horizontal axis was scaled 

to weekly hazards to minimize confusion. Juvenile overwinter survival starts at week 22 because 

that is when our juvenile overwinter season started and is approximately when juvenile sharp-

tailed grouse become independent from females. Confidence intervals were omitted for clarity. 
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APPENDIX A 

Results from Chapter 2 including Lesser Prairie-Chicken as an out group 

INTRODUCTION 

Appendix A reports results for the discriminatory analysis including Lesser Prairie-Chicken 

(Tympanuchus pallidicinctus) as an outgroup when evaluating the relationship of three 

populations of Sharp-tailed Grouse: Columbian Sharp-tailed Grouse (T. phasianellus 

columbianus), plains Sharp-tailed Grouse (T. phasianellus jamesi), and a population of unknown 

subspecific status in south-central Wyoming (hereafter unknown Sharp-tailed Grouse). Please see 

the Methods section in the main manuscript for a description of the methods used. Note, we do 

not include results for microsatellite analyses in this Appendix because we did not collect data on 

microsatellite loci for Lesser Prairie-Chickens. 

RESULTS 

Habitat— A discriminant analysis of principal components (DAPC) on habitat conditions 

surrounding observed locations correctly predicted 100.0% of Lesser Prairie-Chicken 

observations, 66.0% of Columbian Sharp-tailed Grouse observations, 97.8% of plains Sharp-

tailed Grouse observations, and 83.7% of unknown Sharp-tailed Grouse observations (Table 1, 

Figure A1C). Average membership probabilities for Lesser Prairie-Chicken, plains Sharp-tailed 

Grouse, and unknown Sharp-tailed Grouse observations were relatively high (1.00, 0.98, and 

0.85, respectively) while Columbian Sharp-tailed Grouse were intermediate (0.66; Table A2). 

Average membership probabilities for Columbian Sharp-tailed Grouse were 0.25 plains Sharp-

tailed Grouse and 0.09 unknown Sharp-tailed Grouse (Table A2). In general, Lesser Prairie-

Chickens occupied their own principal components space while the principal components space 

of Columbian Sharp-tailed Grouse overlapped both plains and unknown Sharp-tailed Grouse; 
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unknown and plains Sharp-tailed Grouse did not overlap in principal components space (Figure 

A4D). Our Random Forests model evaluating habitat conditions for Lesser Prairie-Chickens and 

three Sharp-tailed Grouse populations correctly classified 100% of Lesser Prairie-Chickens, 

93.3% of Columbian Sharp-tailed Grouse, 100% of plains Sharp-tailed Grouse, and 98.4% of 

unknown Sharp-tailed Grouse (Table A5). The three habitat characteristics with the highest 

importance in the Random Forests model were mean annual maximum temperature (1.00), shrub 

cover (0.55), and precipitation (0.21; Table A4). 

When evaluating the species distribution models for the populations, we observed a 

similar relationship to the DAPC analysis, with Columbian Sharp-tailed Grouse habitat occurring 

in portions of unknown and plains Sharp-tailed Grouse with no overlap of habitat between plains 

Sharp-tailed Grouse, unknown Sharp-tailed Grouse, and Lesser Prairie-Chickens (Figure 1).  

Morphology—Using morphological measurements from the four populations, we found that 

there was a difference in average tail length between populations (𝜒3
2 = 372.26, P ≤ 0.001), with 

Lesser Prairie-Chickens having the shortest tail (mean = 89.28 mm, SD = 9.90 mm), Columbian 

(mean = 109.59, SD = 4.55 mm) and unknown Sharp-tailed Grouse (mean = 110.58 mm, SD = 

5.92 mm) had intermediate tail lengths that did not differ from each other (P = 0.09), and plains 

Sharp-tailed Grouse had the longest tails (mean = 112.87 mm, SD = 7.05 mm; Figure 2.2A). 

Wing cord length differed between populations (𝜒3
2 = 88.85, P ≤ 0.001) with unknown Sharp-

tailed Grouse having the shortest wing cord (mean = 209.58 mm, SD = 4.02 mm), Lesser Prairie-

Chicken (mean = 211.89 mm, SD = 6.52) and Columbian Sharp-tailed Grouse (mean = 211.53 

mm, SD = 3.82 mm) having intermediate wing cord lengths that did not differ from each other (P 

= 0.32), and plains Sharp-tailed Grouse had the longest wing cord lengths (mean = 216.59 mm, 

SD = 5.11 mm; Figure 2.2B). We found that tarsus + longest toe length differed between the 
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populations (𝜒3
2 = 88.85, P ≤ 0.001) with Columbian Sharp-tailed Grouse having the shortest 

tarsus + longest toe length (mean = 90.95 mm, SD = 2.41 mm) followed by Lesser Prairie-

Chickens (mean = 92.30 mm, SD = 5.95), unknown Sharp-tailed Grouse (mean = 96.74, SD = 

2.91 mm), and plains Sharp-tailed Grouse had the longest tarsus + longest toe length (mean = 

98.00 mm, SD = 2.74 mm; Figure 2.2C). We found that mass differed between the four 

populations (𝜒3
2 = 194.57, P ≤ 0.001) with Columbian Sharp-tailed Grouse having the lowest 

mass (mean = 741.80 g, SD = 35.03 g), Lesser Prairie-Chicken (mean = 760.02 g, 46.55 g) and 

unknown Sharp-tailed Grouse (mean = 758.92 g, SD = 34.91 g) having intermediate mass that 

did not differ from each other (P = 0.98), and plains Sharp-tailed Grouse had the greatest mass 

(mean = 930.05 g, SD = 40.77 g; Figure 2.2D). 

Using a discriminant analysis of principal components (DAPC) on morphological 

characteristics including mass on all populations, we found that this model correctly predicted 

the population 84.2% of the time for Lesser Prairie-Chickens, 93.2% of the time for Columbian 

Sharp-tailed Grouse, 96.8% of the time for plains Sharp-tailed Grouse, and 81.8% of the time for 

unknown Sharp-tailed Grouse (Table A1, Figure A1A). Average membership probabilities for 

Lesser Prairie-Chicken and plains Sharp-tailed Grouse individuals were relatively high (0.81 and 

0.96, respectively), while average membership probabilities for Columbian Sharp-tailed Grouse 

and unknown Sharp-tailed Grouse individuals were intermediate (0.75 and 0.65; Table A2). 

Average membership probabilities for Columbian Sharp-tailed Grouse were 0.04 Lesser Prairie-

Chicken and 0.21 unknown Sharp-tailed Grouse (Table A2). Average membership probabilities 

for unknown Sharp-tailed Grouse were 0.04 Lesser Prairie-Chicken and 0.30 Columbian Sharp-

tailed Grouse (Table A2). In general, the morphological spaces of Columbian Sharp-tailed 

Grouse and unknown Sharp-tailed Grouse occupied similar spaces while Lesser Prairie-Chickens 



 218 

and plains Sharp-tailed Grouse occupied their own spaces (Figure A2A). Our Random Forests 

model evaluating four populations including mass correctly classified 87.4% of Lesser Prairie-

Chickens, 88.1% of Columbian Sharp-tailed Grouse, 95.2% of plains Sharp-tailed Grouse, and 

84.9% unknown Sharp-tailed Grouse (Table A3). The three morphological factors with the 

highest importance in the Random Forests model when including mass were the wing cord 

length to tail length ratio (1.00), tarsus + longest toe length (0.91), and wing cord length to tarsus 

+ longest toe length ratio (0.76; Table A5). 

When excluding mass from the DAPC analysis on all populations, we found that this 

model correctly predicted the population 83.9% of the time for Lesser Prairie-Chickens, 94.5% 

of the time for Columbian Sharp-tailed Grouse, 41.3% of the time for plains Sharp-tailed Grouse, 

and 77.0 % of the time for unknown Sharp-tailed Grouse (Table A1, Figure A3A). Average 

membership probabilities for Lesser Prairie-Chicken individuals were relatively high (0.80), 

while average membership probabilities for Columbian Sharp-tailed Grouse, plains Sharp-tailed 

Grouse, and unknown Sharp-tailed Grouse individuals were intermediate to low (0.74, 0.40, and 

0.59, respectively; Table A2). Average membership probabilities for Columbian Sharp-tailed 

Grouse were 0.03 Lesser Prairie-Chicken, 0.05 plains Sharp-tailed Grouse, and 0.18 unknown 

Sharp-tailed Grouse (Table A2). Average membership probabilities for plains Sharp-tailed 

Grouse were 0.05 Lesser Prairie-Chicken, 0.19 Columbian Sharp-tailed Grouse, and 0.36 

unknown Sharp-tailed Grouse (Table A2). Average membership probabilities for unknown 

Sharp-tailed Grouse were 0.04 Lesser Prairie-Chicken, 0.25 Columbian Sharp-tailed Grouse, and 

0.12 plains Sharp-tailed Grouse (Table A2). In general, in this model excluding mass, plains 

Sharp-tailed Grouse and unknown Sharp-tailed Grouse occupied similar morphological spaces 

(Figure A3B), while Columbian Sharp-tailed Grouse occupied a mostly unique morphological 



 219 

spaces, and Lesser Prairie-Chickens occupied their own space (Figure A3A). Our Random 

Forests model evaluating four populations while excluding mass correctly classified 87.4% of 

Lesser Prairie-Chickens, 88.1% of Columbian Sharp-tailed Grouse, 52.4% of plains Sharp-tailed 

Grouse, and 76.4% of unknown Sharp-tailed Grouse (Table A3). The three morphological factors 

with the highest importance in the wing cord length to tail length ratio (1.00), tarsus + longest toe 

length (0.93), and tail length (0.74; Table A6). 

When evaluating morphological differences between Lesser Prairie-Chicken, plains 

Sharp-tailed Grouse, and unknown Sharp-tailed Grouse using 15 covariates, we found that the 

model correctly predicted the population 92.8% of the time for Lesser Prairie-Chickens, 71.4% 

of the time for plains Sharp-tailed Grouse, and 74.3% of the time for unknown Sharp-tailed 

Grouse (Table A1, Supplemental Figure A4A). Average membership probabilities for Lesser 

Prairie-Chicken individuals were relatively high (0.91), while average membership probabilities 

for plains Sharp-tailed Grouse and unknown Sharp-tailed Grouse individuals were intermediate 

to low (0.68, and 0.67, respectively; Table A2). Average membership probabilities for plains 

Sharp-tailed Grouse were 0.10 Lesser Prairie-Chicken, 0.68 plains Sharp-tailed Grouse, and 0.22 

unknown Sharp-tailed Grouse (Table A2). Average membership probabilities for unknown 

Sharp-tailed Grouse were 0.14 Lesser Prairie-Chicken, 0.19 plains Sharp-tailed Grouse, and 0.67 

unknown Sharp-tailed Grouse (Table A2). In general, from this model on 3 populations using 15 

covariates, Lesser Prairie-Chickens occupied their own morphological spaces while plains 

Sharp-tailed Grouse and unknown Sharp-tailed Grouse mostly occupied their own space, 

however there was some overlap (Figure A4B). Our Random Forests model evaluating 15 

covariates on three populations correctly classified 92.8% of Lesser Prairie-Chickens, 79.4% of 

plains Sharp-tailed Grouse, and 83.4% of unknown Sharp-tailed Grouse (Table A3). The three 
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morphological factors with the highest importance in the expanded morphological covariates 

Random Forests model were the wing cord length to tail length ratio (1.00), tail length (0.81), 

and the tail length to total head length ratio (0.80; Table A7). 

Microsatellite Genotyping—We did not collect microsatellite loci from Lesser Prairie-Chicken 

samples; therefore, we do not have any microsatellite loci results including Lesser Prairie-

Chickens. 

Whole Genome Resequencing—Using a DAPC analysis on low-resolution whole genome 

resequencing single nucleotide variants (SNVs) data, the model correctly predicted 100.0% of 

Lesser Prairie-Chicken, 66.7% of Columbian Sharp-tailed Grouse, 33.3% of plains Sharp-tailed 

Grouse, and 76.9% of unknown Sharp-tailed Grouse (Table 1, Figure A1B). The average 

membership probabilities for Lesser Prairie-Chicken individuals was high (1.00), while average 

membership probabilities for Columbian Sharp-tailed Grouse, plains Sharp-tailed Grouse, and 

unknown Sharp-tailed Grouse individuals were low (0.56, 0.39, and 0.49, respectively; Table 

A2). In general, Lesser Prairie-Chicken occupied a unique principal components space while 

Columbian, plains, and unknown Sharp-tailed Grouse generally shared a principal components 

space (Figure A2B). Our Random Forests model evaluating 453 single nucleotide variants across 

all sequenced individuals correctly classified 0.0% of Lesser Prairie-Chickens, 50.0% of 

Columbian Sharp-tailed Grouse, 33.3% of plains Sharp-tailed Grouse, and 53.9% of unknown 

Sharp-tailed Grouse (Table A3). Population genetic statistics for single nucleotide variants are 

reported in Table 4.   

 



 

 

Table A1. Number of variables, sample sizes, and assignment probabilities of discriminant analysis of principal components on 

habitat characteristics, morphological characteristic, and single nucleotide variants (SNVs) for populations of Lesser Prairie-Chicken 

(LEPC), Columbian Sharp-tailed Grouse (STGRc), plains Sharp-tailed Grouse (STGRp), and a population with unknown subspecific 

status of Sharp-tailed Grouse in south-central Wyoming (STGRu). Habitat data (eBird observation locations) from Colorado, Idaho, 

Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, Utah, Washington, and 

Wyoming, 2010–2023. Morphological data were collected in Kansas and Colorado (LEPC; 2013–2017), Idaho and Washington 

(STGRc; 2005–2013), and Wyoming (STGRp, 2019; STGRu, 2017–2019). Single nucleotide variant data were collected on 

individuals sampled from Kansas (LEPC, 2013), Idaho (STGRc, 2018), and Wyoming (STGRp 2019; STGRu, 2017–2018). Empty 

cells (—) represent populations that were not included in that particular analysis. 

  Sample size Assignment probability  

Analyses 

Number of 

variables LEPC cSTGR pSTGR uSTGR LEPC cSTGR pSTGR uSTGR 

Habitat 22 1,576 812 7,951 509 1.00 0.66 0.98 0.84 

Morphology 6a 222 219 63 165 0.84 0.95 0.41 0.77 

 10b 222 219 63 165 0.84 0.93 0.97 0.82 

 15c 210 — 63 74 0.93 — 0.71 0.74 

SNVs 453 2 12 12 13 1.00 0.67 0.33 0.77 
aMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe length (mm), and all pairwise 

comparisons. 
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bMorphological analysis using mass (g), tail length (mm), wing cord length (mm), tarsus + longest toe length (mm), and all pairwise 

comparisons 

 

cMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe length (mm), culmen length, total head 

length, and all pairwise combinations 



 

 

Table A2. Mean and median average membership probability of each individual assigned to 

each population of prairie-grouse evaluated using a discriminant analysis of principal 

components based on habitat characteristics, morphological characteristics, and single nucleotide 

variants (SNVs) for 4 populations of prairie-grouse: Lesser Prairie-Chicken (LEPC), Columbian 

Sharp-tailed Grouse (STGRc), plains Sharp-tailed Grouse (STGRp), and a population of Sharp-

tailed Grouse with unknown subspecific status (STGRu) in south-central Wyoming. Habitat data 

(eBird observation locations) from Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New 

Mexico, North Dakota, Oklahoma, South Dakota, Texas, Utah, Washington, and Wyoming, 

2010–2023. Morphological data were collected in Kansas and Colorado (LEPC; 2013–2017), 

Idaho and Washington (STGRc; 2005–2013), and Wyoming (STGRp, 2019; STGRu, 2017–

2019). Single nucleotide variant data were collected on individuals sampled from Kansas (LEPC, 

2013), Idaho (STGRc, 2018), and Wyoming (STGRp 2019; STGRu, 2017–2018). 

  Mean (median) average membership probability of individs. 

Analyses Population LEPC STGRc STGRp STGRu 

Habitat LEPC 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

 STGRc <0.01 (0.00) 0.66 (0.96) 0.25 (0.01) 0.09 (0.00) 

 STGRp 0.01 (0.00) 0.02 (0.00) 0.98 (1.00) <0.01 (0.00) 

 STGRu <0.01 (0.00) 0.15 (0.00) <0.01 (0.00) 0.85 (1.00) 

Morphologicala LEPC 0.80 (0.99) 0.11 (0.01) 0.02 (0.00) 0.07 (0.01) 

 STGRc 0.03 (0.01) 0.74 (0.78) 0.05 (0.03) 0.18 (0.16) 

 STGRp 0.05 (0.01) 0.19 (0.14) 0.40 (0.38) 0.36 (0.35) 

 STGRu 0.04 (0.01) 0.25 (0.21) 0.12 (0.08) 0.59 (0.64) 

Morphologicalb LEPC 0.81 (0.99) 0.10 (0.01) 0.01 (0.00) 0.08 (0.00) 

 STGRc 0.04 (0.01) 0.75 (0.80) 0.00 (0.00) 0.21 (0.18) 

 STGRp 0.01 (0.00) 0.01 (0.00) 0.96 (1.00) 0.02 (0.00) 

 STGRu 0.04 (0.01) 0.30 (0.27) 0.00 (0.00) 0.65 (0.70) 

Morphologicalc LEPC 0.91 (1.00) — 0.02 (0.00) 0.06 (0.00) 

 STGRp 0.10 (0.01) — 0.68 (0.91) 0.22 (0.07) 

 STGRc 0.14 (0.04) — 0.19 (0.07) 0.67 (0.76) 

SNVs LEPC 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

 STGRc 0.00 (0.00) 0.56 (0.54) 0.24 (0.24) 0.20 (0.14) 

 STGRp 0.00 (0.00) 0.23 (0.12) 0.39 (0.36) 0.38 (0.34) 

 STGRu 0.00 (0.00) 0.16 (0.09) 0.35 (0.33) 0.49 (0.52) 
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aMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe 

length (mm), and all pairwise comparisons. 

bMorphological analysis using mass (g), tail length (mm), wing cord length (mm), tarsus + 

longest toe length (mm), and all pairwise comparisons 

cMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe 

length (mm), culmen length, total head length, and all pairwise combinations 



 

 

Table A3. Pairwise comparisons and classification error (%) of Random Forests classification for four populations of prairie-grouse 

based on habitat characteristics, morphological characteristics, and single nucleotide variants. Populations evaluated were Lesser 

Prairie-Chicken (LEPC), Columbian Sharp-tailed Grouse (STGRc), plains Sharp-tailed Grouse (STGRp), and unknown Sharp-tailed 

Grouse (STGRu). Habitat data (eBird observation locations) from Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New 

Mexico, North Dakota, Oklahoma, South Dakota, Texas, Utah, Washington, and Wyoming, 2010–2023. Morphological data were 

collected in Kansas and Colorado (LEPC; 2013–2017), Idaho and Washington (STGRc; 2005–2013), and Wyoming (STGRp, 2019; 

STGRu, 2017–2019). Single nucleotide variant data were collected on individuals sampled from Kansas (LEPC, 2013), Idaho 

(STGRc, 2018), and Wyoming (STGRp 2019; STGRu, 2017–2018). 

Analysis  LEPC STGRc STGRp STGRu Classification error (%) 

Habitat LEPC 1,576 0 0 0 0.0 

 STGRc 0 757 54 1 6.8 

 STGRp 1 7 7943 0 0.1 

 STGRu 0 8 1 500 1.8 

Morphologicala LEPC 194 15 0 13 12.6 
 STGRc 14 193 0 12 11.9 
 STGRp 2 0 60 1 4.8 
 STGRu 11 13 1 140 15.2 

Morphologicalb LEPC 194 14 0 14 12.6 
 STGRc 11 193 3 12 11.9 
 STGRp 4 5 33 21 47.6 
 STGRu 10 14 15 126 23.6 
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Morphologicalc LEPC 194 – 3 12 7.2 
 STGRp 9 – 50 4 20.6 

  STGRu 5 – 7 62 16.2 

Single nucleotide variants LEPC 0 1 0 1 100.0 

 STGRc 0 6 3 3 50.0 

 STGRp 0 3 5 4 58.3 

 STGRu 0 4 3 6 53.8 
aMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe length (mm), and all pairwise 

comparisons. 

bMorphological analysis using mass (g), tail length (mm), wing cord length (mm), tarsus + longest toe length (mm), and all pairwise 

comparisons 

cMorphological analysis using tail length (mm), wing cord length (mm), tarsus + longest toe length (mm), culmen length, total head 

length, and all pairwise combinations 

 



 

 

Table A4. Standardized variable importance for Random Forests model predicting prairie-grouse 

populations based on habitat characteristics at observed locations (eBird), 2010–2023. Prairie-

grouse populations evaluated were Lesser Prairie-Chicken, Columbian Sharp-tailed Grouse, 

plains Sharp-tailed Grouse, and a population of Sharp-tailed Grouse with unknown subspecific 

status. Variable importance values were standardized so the top variable equals 1 and the 

remaining variables are proportions derived by dividing by the top variable (Doherty et al. 2018). 

PRISM represents 30-year average annual climate data (PRISM Climate Group 2014); RAP 

represents rangeland analysis platform data (Robinson et al. 2019, Alred et al. 2021, Jones et al. 

2021); and NLCD represents the National Land Cover Database from 2011, 2013, 2016, 2019, 

and 2021 (Jin et al. 2019). 

  Variable Importance Value 

Mean maximum annual temperature (PRISM) 1.00 

Percent cover of shrubs (RAP) 0.55 

Mean annual precipitation (PRISM) 0.21 

Terrain ruggedness index 0.16 

Emergent wetland (NLCD) 0.14 

Perennial herbaceous vegetation biomass (RAP) 0.11 

Heat load index 0.11 

Percent cover of litter (RAP) 0.10 

Annual herbaceous vegetation biomass (RAP) 0.09 

Percent cover of perennial herbaceous vegetation (RAP) 0.08 

Water (NLCD) 0.07 

Percent cover of annual herbaceous vegetation (RAP) 0.07 

Canopy cover of coniferous forests (RAP) 0.07 

Topographic position index 0.07 

Canopy cover of deciduous forests (RAP) 0.07 

Croplands (NLCD) 0.06 

Unclassified forests canopy cover (RAP) 0.05 

Canopy cover of all forest types (RAP) 0.05 

Percent bare ground (RAP) 0.05 

Pasture lands (NLCD) 0.05 

Anthropogenic development (NLCD) 0.04 

Canopy cover of mixed forests (RAP) 0.02 
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Table A5. Standardized variable importance for Random Forests model predicting prairie-grouse 

populations based on morphological characteristics (mass (g), tail length (mm), wing cord length 

(mm), tarsus + longest toe length (mm) [tarsus + toe length], and all pairwise comparisons). 

Prairie-grouse populations evaluated were Lesser Prairie-Chicken (2013–2017; Kansas and 

Colorado), Columbian Sharp-tailed Grouse (2005–2013; Idaho and Washington), plains Sharp-

tailed Grouse (2019; Wyoming), and a population of Sharp-tailed Grouse with unknown 

subspecific status (2017–2019; Wyoming). Variable importance values were standardized so the 

top variable equals 1 and the remaining variables are proportions derived by dividing by the top 

variable (Doherty et al. 2018).  

Variable Importance value 

Wing cord length to tail length ratio 1.00 

Tarsus + toe length 0.91 

Wing cord length to tarsus + toe length ratio 0.76 

Tail length 0.71 

Tail length to mass ratio 0.66 

Tail length to tarsus + toe length ratio 0.53 

Mass 0.52 

Tarsus + toe length to mass ratio 0.40 

Wing cord length:mass 0.40 

Wing cord length 0.16 
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Table A6. Standardized variable importance for Random Forests model predicting prairie-grouse 

populations based on morphological characteristics (tail length (mm), wing cord length (mm), 

tarsus + longest toe length (mm) [tarsus + toe length], and all pairwise comparisons). Prairie-

grouse populations evaluated were Lesser Prairie-Chicken (2013–2017; Kansas and Colorado), 

Columbian Sharp-tailed Grouse (2005–2013; Idaho and Washington), plains Sharp-tailed Grouse 

(2019; Wyoming), and a population of Sharp-tailed Grouse with unknown subspecific status 

(2017–2019; Wyoming). Variable importance values were standardized so the top variable 

equals 1 and the remaining variables are proportions derived by dividing by the top variable 

(Doherty et al. 2018).  

Variable Importance value 

Wing cord length to tail length ratio 1.00 

Tarsus + toe length 0.93 

Tail length 0.74 

Wing cord length to tarsus + toe length ratio 0.72 

Tail length to tarsus +toe length ratio 0.71 

Wing cord length 0.41 

 

  



 230 

Table A7. Standardized variable importance for Random Forests model predicting prairie-grouse 

populations based on morphological characteristics (tail length (mm), wing cord length (mm), 

tarsus + longest toe length (mm; tarsus + toe), culmen length, total head length, and all pairwise 

combinations). Prairie-grouse populations evaluated were Lesser Prairie-Chicken (2013–2017; 

Kansas and Colorado), plains Sharp-tailed Grouse (2019; Wyoming), and a population of Sharp-

tailed Grouse with unknown subspecific status (2017–2019; Wyoming). Variable importance 

values were standardized so the top variable equals 1 and the remaining variables are proportions 

derived by dividing by the top variable (Doherty et al. 2018).  

Variable Importance value 

Wing cord length to tail length ratio 1.00 

Tail length 0.81 

Tail length to total head length ratio 0.80 

Tail length to culmen length ratio 0.63 

Tail length to tarsus +toe length ratio 0.46 

Total head length 0.45 

Total head length to tarsus +toe length ratio 0.43 

Wing cord length 0.34 

Wing cord length to total head length ratio 0.32 

Tarsus +toe length 0.32 

Total head length to culmen length ratio 0.30 

Wing cord length to tarsus +toe length ratio 0.26 

Culmen length 0.20 

Culmen length to tarsus +toe length ratio 0.19 

Wing cord length to culmen length ratio 0.17 
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Figure A1. Membership probability (admixture) plots for discriminant analysis of principal 

components for habitat characteristics (A), morphological characteristics (mass, wing cord 

length, tarsus + longest toe length, tail length, and all pairwise combinations; B), single 

nucleotide variants (SNVs; C), and for Lesser Prairie-Chicken (LEPC), Columbian Sharp-tailed 

Grouse (STGRc), plains Sharp-tailed Grouse (STGRp), and unknown Sharp-tailed Grouse 

subspecies (STGRu). Membership probability plot depicts the proportion of assignment to each 

population, with different colors representing the proportion of each population in each 

individual. Facets represent the original population of each individual (morphology and SNVs) 

or observations (habitat). Habitat data (eBird observation locations) from Colorado, Idaho, 

Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, Oklahoma, South Dakota, 

Texas, Utah, Washington, and Wyoming, 2010–2023. Morphological data were collected in 

Kansas and Colorado (LEPC; 2013–2017), Idaho and Washington (STGRc; 2005–2013), and 

Wyoming (STGRp, 2019; STGRu, 2017–2019). Single nucleotide variant data were collected on 

individuals sampled from Kansas (LEPC, 2013), Idaho (STGRc, 2018), and Wyoming (STGRp 

2019; STGRu, 2017–2018). 
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Figure A2. Principal components plots from discriminant analysis of principal components for 

habitat characteristics (A), morphological characteristics (mass, wing cord length, tarsus + 

longest toe length, tail length, and all pairwise combinations; B), and 453 single nucleotide 

variants (SNVs; C) for Lesser Prairie-Chicken (LEPC; blue), Columbian Sharp-tailed Grouse 

(STGRc; greenish-gold), plains Sharp-tailed Grouse (STGRp; yellow-orange), and unknown 

Sharp-tailed Grouse subspecies (STGRu; red). Habitat data (eBird observation locations) from 

Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, Oklahoma, 

South Dakota, Texas, Utah, Washington, and Wyoming, 2010–2023. Morphological data were 

collected in Kansas and Colorado (LEPC; 2013–2017), Idaho and Washington (STGRc; 2005–

2013), and Wyoming (STGRp, 2019; STGRu, 2017–2019). Single nucleotide variant data were 

collected on individuals sampled from Kansas (LEPC, 2013), Idaho (STGRc, 2018), and 

Wyoming (STGRp 2019; STGRu, 2017–2018). Points represent individuals (morphology and 

SNVs) or individual observations (habitat). 
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Figure A3. Membership probability (admixture) plot (A) and principal components plot (B) 

from discriminant analysis of principal components (DAPC) for morphological characteristics 

excluding mass (wing cord length, tarsus + longest toe length, tail length, and all pairwise 

combinations) for Lesser Prairie-Chicken (LEPC), Columbian Sharp-tailed Grouse (STGRc), 

plains Sharp-tailed Grouse (STGRp), and unknown Sharp-tailed Grouse (STGRu). 

Morphological data were collected in Kansas and Colorado (LEPC; 2013–2017), Idaho and 

Washington (STGRc; 2005–2013), and Wyoming (STGRp, 2019; STGRu, 2017–2019).  
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Figure A4. Membership probability (admixture) plot (A) and principal components plot (B) 

from discriminant analysis of principal components (DAPC) for expanded morphological 

characteristics (total head length, culmen length, wing cord length, tarsus + longest toe length, 

tail length, and all pairwise combinations) for Lesser Prairie-Chicken (LEPC), plains Sharp-

tailed Grouse (STGRp), and unknown Sharp-tailed Grouse (STGRu). Morphological data were 

collected in Kansas and Colorado (LEPC; 2013–2017) and Wyoming (STGRp, 2019; STGRu, 

2017–2019).  
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APPENDIX B 

Supplemental tables and figures for the Chapter 3. 

Table B1. 2017–2019 annual lek counts and averaged lek count over the three years of the study, 

Carbon County, Wyoming, USA, 2017–2019. Numbers in parentheses are the rank of the lek 

size; leks with an en dash (–) represent leks that were not counted/visited during that year; zero’s 

represent leks that were visited but no birds were observed on the lek. 

Lek ID 2017 lek count 2018 lek count 2019 lek count Average lek count 

10 2 (1) 4 (1) 0 (1) 2 (1) 

22 3 (2) 4 (1) 3 (3) 3 (2) 

7 6 (3) 5 (4) 4 (5) 5 (3) 

1 9 (5) 7 (5) 4 (5) 7 (4) 

23 – (–) 8 (6) 6 (9.5) 7 (4) 

14 21 (16) 4 (1) 1 (2) 9 (6) 

3 6 (3) 10 (8) 15 (14) 10 (7) 

6 12 (6) 16 (14) 5 (7.5) 11 (8) 

15 17 (10) 12 (9) 4 (5) 11 (8) 

24 17 (10) 12 (9) 5 (7.5) 11 (8) 

9 17 (10) 13 (12) 7 (11) 12 (11) 

12 13 (8) – (–) – (–) 13 (12) 

16 26 (21) 8 (6) 6 (9.5) 13 (12) 

21 15 (9) 16 (14) 9 (12) 13 (12) 

8 12 (6) 12 (9) 22 (15) 15 (15) 

17 20 (14) 14 (13) – (–) 17 (16) 

4 23 (17) 18 (18) 12 (13) 18 (17) 

11 20 (14) 17 (17) 26 (17) 21 (18) 

20 17 (10) 16 (14) 30 (18.5) 21 (18) 

2 25 (18) 23 (19) 24 (16) 24 (20) 

13 25 (18) 26 (21) – (–) 26 (21) 

5 25 (18) 28 (22) 36 (20) 30 (22) 

18 26 (21) 24 (20) 42 (21) 31 (23) 

19 35 (23) 30 (23) 30 (18.5) 32 (24) 
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Table B2. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse nest 

mortality risk based on environmental variables, Carbon County, Wyoming, USA, 2017–2019. 

For description of variables, see Table 1. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

shrub 

30 

shrubht 

30 

sage 

100 

litter 

400 

herb 

100 

nonsageshr 

30 

bare 

100 
tpi 800 

shrub 30 – – – – – – – – 

shrubht 30 0.82 – – – – – – – 

sage 100 0.17 -0.13 – – – – – – 

litter 400 -0.3 -0.45 0.69 – – – – – 

herb 100 -0.76 -0.55 -0.36 0.08 – – – – 

nonsageshr 30 0.65 0.77 -0.54 -0.71 -0.4 – – – 

bare 100 -0.44 -0.58 0.08 0.42 0.16 -0.42 – – 

tpi 800 -0.1 -0.09 -0.05 0.08 0 -0.03 0.05 – 

tri 100 0.21 0.16 0.04 0.11 -0.3 0.1 0.06 0.09 
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Table B3. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse brood 

mortality risk based on environmental variables, Carbon County, Wyoming, USA, 2017–2019. 

For description of variables, see Table 1. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

sage 

30 

perherb 

400 

litter 

30 

herb 

200 

bare 

30 

decid 

800 

hli 

400 

tpi 

100 

perherb 400 -0.06 – – – – – – – 

litter 30 0.78 0.08 – – – – – – 

herb 200 -0.12 0.86 0.08 – – – – – 

bare 30 0.09 -0.05 0.19 0.01 – – – – 

decid 800 -0.08 -0.5 -0.2 -0.39 -0.12 – – – 

hli 400 0.09 0.41 0.13 0.25 0.05 -0.36 – – 

tpi 100 0.06 -0.32 0.04 -0.29 0 0.21 -0.23 – 

tri 30 0.05 -0.22 0.02 -0.33 0.06 -0.04 0.01 -0.02 



 

 

Table B4. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse early nonbreeding season mortality risk based 1 

on environmental variables, Carbon County, Wyoming, USA, 2017–2019. For description of variables, see Table 1. The number 2 

following each variable is the distance that the variable is averaged over (i.e., the distance bin). 3 

 

sage 

100 

perherb 

1600 

litter 

100 

herb 

1600 

nonsageshr 

100 

bare 

100 

decid 

200 

hli 

3200 

tpi 

100 

perherb 1600 0.26 – – – – – – – – 

litter 100 0.85 0.29 – – – – – – – 

herb 1600 0.35 0.89 0.47 – – – – – – 

nonsageshr 100 -0.62 -0.16 -0.69 -0.34 – – – – – 

bare 100 0.15 -0.25 0.34 0.07 -0.47 – – – – 

decid 200 -0.5 -0.36 -0.67 -0.49 0.32 -0.26 – – – 

hli 3200 0.17 0.25 0.18 0.24 -0.16 0.01 -0.19 – – 

tpi 100 -0.03 -0.05 -0.02 -0.05 -0.06 0.13 0.19 0.05 – 

tri 800 -0.25 -0.23 -0.32 -0.31 0.3 -0.09 0.31 -0.06 0.21 

  4 
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Table B5. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse late nonbreeding season mortality risk based 5 

on environmental variables, Carbon County, Wyoming, USA, 2017–2020. For description of variables, see Table 1. The number 6 

following each variable is the distance that the variable is averaged over (i.e., the distance bin). 7 

 

shrub 

3200 

shrubht 

3200 

sage 

100 

litter 

100 

herb 

3200 

bare 

3200 

decid 

3200 
doil droads 

hli 

3200 

tpi 

3200 

shrubht 3200 0.73 – – – – – – – – – – 

sage 100 -0.04 -0.22 – – – – – – – – – 

litter 100 -0.20 -0.03 0.86 – – – – – – – – 

herb 3200 -0.06 -0.07 0.40 0.51 – – – – – – – 

bare 3200 -0.50 -0.82 0.29 0.38 0.17 – – – – – – 

decid 3200 0.13 0.49 -0.49 -0.55 -0.66 -0.60 – – – – – 

doil -0.10 0.15 -0.31 -0.38 -0.47 -0.28 0.68 – – – – 

droads 0.03 0.14 -0.14 -0.06 -0.01 -0.04 0.06 -0.02 – – – 

hli 3200 0.02 0.04 0.07 0.07 0.04 -0.15 0.03 0.09 -0.30 – – 

tpi 3200 0.10 0.02 -0.17 -0.20 0.01 0.02 -0.03 -0.11 -0.01 -0.17 – 

tri 100 0.08 0.12 -0.41 -0.36 -0.06 -0.17 0.15 0.06 0.10 -0.02 0.13 

  8 
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Table B6. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse nest-site selection based on environmental 9 

variables, Carbon County, Wyoming, USA, 2017–2019. For description of variables, see Table 1. The number following each variable 10 

is the distance that the variable is averaged over (i.e., the distance bin). 11 

 

shrub 

800 

shrubht 

800 

sage 

30 

litter 

30 

herb 

200 

bare 

100 

nonsageshr 

200 

decid 

800 

conif 

800 
doil 

hli 

800 

tpi 

800 

shrubht 800 0.87 – – – – – – – – – – – 

sage 30 0.33 0.11 – – – – – – – – – – 

litter 30 0.18 0.07 0.74 – – – – – – – – – 

herb 200 0.16 0.18 0.41 0.69 – – – – – – – – 

bare 100 -0.20 -0.38 0.16 0.17 0.08 – – – – – – – 

nonsageshr 

200 
0.58 0.67 -0.30 -0.31 -0.22 -0.44 – – – – – – 

decid 800 0.13 0.32 -0.46 -0.53 -0.50 -0.40 0.55 – – – – – 

conif 800 -0.46 -0.44 -0.45 -0.53 -0.67 -0.27 0.04 0.20 – – – – 

doil -0.18 -0.03 -0.48 -0.52 -0.51 -0.45 0.33 0.56 0.63 – – – 

hli 800 -0.04 -0.06 -0.04 -0.02 -0.02 0.05 0.02 -0.11 0.09 0.15 – – 

tpi 800 0.06 0.01 -0.04 -0.03 -0.05 0.02 0.12 0.03 0.01 0.00 0.00 – 

tri 100 0.01 0.06 -0.26 -0.27 -0.28 -0.09 0.25 0.27 0.21 0.27 0.17 0.07 

  12 
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Table B7. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse brood habitat selection based on 13 

environmental variables, Carbon County, Wyoming, USA, 2017–2019. For description of variables, see Table 1. The number 14 

following each variable is the distance that the variable is averaged over (i.e., the distance bin). 15 

 shrub 

800 

shrub-

ht 800 

sage 

100 

per-

herb 

200 

litter 

800 

herb 

100 

nonsage-

shr 800 

bare 

800 

ann-

herb 

200 

decid 

800 

conif 

800 
doil droads 

hli 

30 

tpi 

100 

shrubht 

800 
0.81 – – – – – – – – – – – – – – 

sage 100 0.31 0.00 – – – – – – – – – – – – – 

perherb 

200 
0.16 0.25 0.34 – – – – – – – – – – – – 

litter 800 0.14 -0.07 0.76 0.57 – – – – – – – – – – – 

herb 100 0.04 0.08 0.37 0.92 0.65 – – – – – – – – – – 

nonsage-

shr 800 
0.55 0.72 -0.51 

-

0.19 
-0.66 -0.34 – – – – – – – – – 

bare 800 -0.28 -0.58 0.33 
-

0.08 
0.44 0.13 -0.60 – – – – – – – – 

annherb 

200 
-0.33 -0.48 0.31 0.12 0.59 0.39 -0.64 0.70 – – – – – – – 

decid 

800 
0.02 0.26 -0.57 

-

0.45 
-0.77 -0.53 0.61 

-

0.49 
-0.52 – – – – – – 

conif 800 -0.3 -0.28 -0.46 
-

0.57 
-0.68 -0.59 0.23 

-

0.31 
-0.36 0.29 – – – – – 

doil -0.07 0.16 -0.52 
-

0.29 
-0.70 -0.42 0.49 

-

0.56 
-0.61 0.66 0.51 – – – – 

droads -0.05 -0.09 -0.13 
-

0.13 
-0.17 -0.14 0.09 

-

0.07 
-0.11 0.05 0.27 0.13 – – – 

hli 30 0.03 0.02 0.00 0.04 -0.01 0.04 0.05 0.02 0.00 -0.05 0.01 0.05 0.02 – – 



 242 

tpi 100 0.00 0.00 0.03 
-

0.02 
-0.01 -0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.01 

-

0.02 
– 

tri 200 0.02 0.11 -0.31 
-

0.14 
-0.28 -0.24 0.27 

-

0.14 
-0.37 0.26 0.13 0.23 0.20 0.13 -0.02 

  16 
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Table B8. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse early nonbreeding season habitat selection 17 

based on environmental variables, Carbon County, Wyoming, USA, 2017–2019. For description of variables, see Table 1. The number 18 

following each variable is the distance that the variable is averaged over (i.e., the distance bin). 19 

 

shrub 

400 

shrubht 

400 

sage 

3200 

perherb 

3200 

herb 

1600 

nonsage-

shr 400 

bare 

1600 

annherb 

800 

decid 

3200 

conif 

1600 

hli 

3200 

tpi 

200 

shrubht 400 0.91 – – – – – – – – – – – 

sage 3200 0.31 0.13 – – – – – – – – – – 

perherb 3200 0.39 0.41 0.65 – – – – – – – – – 

herb 1600 0.22 0.26 0.67 0.89 – – – – – – – – 

nonsageshr 

400 
0.71 0.77 -0.37 -0.05 

-

0.25 
– – – – – – – 

bare 1600 -0.26 -0.38 0.40 -0.03 0.21 -0.52 – – – – – – 

annherb 800 -0.29 -0.27 0.37 0.15 0.51 -0.55 0.61 – – – – – 

decid 3200 0.20 0.35 -0.65 -0.38 
-

0.54 
0.65 

-

0.57 
-0.58 – – – – 

conif 1600 -0.43 -0.45 -0.63 -0.73 
-

0.80 
-0.01 

-

0.34 
-0.43 0.23 – – – 

hli 3200 -0.03 -0.07 0.01 0.03 0.01 -0.04 
-

0.08 
-0.06 -0.12 0.13 – – 

tpi 200 0.02 -0.01 0.00 0.00 
-

0.01 
0.02 0.00 -0.02 0.00 0.01 0.00 – 

tri 3200 0.13 0.17 -0.37 -0.17 
-

0.41 
0.38 

-

0.58 
-0.64 0.52 0.42 0.28 0.02 

20 



 

 

Table B9. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse late 21 

nonbreeding season habitat selection based on environmental variables, Carbon County, 22 

Wyoming, USA, 2017–2020. For description of variables, see Table 1. The number following 23 

each variable is the distance that the variable is averaged over (i.e., the distance bin). 24 

 

shrub 

400 

shrubht 

400 

sage 

3200 

herb 

3200 

bare 

400 

decid 

3200 

conif 

1600 
doil 

tpi 

400 

shrubht 

400 
0.91 – – – – – – – – 

sage 3200 0.37 0.19 – – – – – – – 

herb 3200 0.28 0.31 0.70 – – – – – – 

bare 400 -0.32 -0.42 0.26 0.08 – – – – – 

decid 3200 0.24 0.38 -0.59 -0.49 -0.48 – – – – 

conif 1600 -0.44 -0.45 -0.64 -0.78 -0.32 0.19 – – – 

doil -0.20 -0.18 -0.62 -0.66 -0.24 0.45 0.60 – – 

tpi 400 0.02 -0.02 0.00 0.01 0.04 0.00 0.01 0.00 – 

tri 3200 0.14 0.20 -0.36 -0.37 -0.58 0.52 0.45 0.39 0.02 

 25 

  26 
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Table B10. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek-27 

site selection based on environmental variables, Carbon County, Wyoming, USA, 2017–2019. 28 

For description of variables, see Table 1. The number following each variable is the distance that 29 

the variable is averaged over (i.e., the distance bin). 30 

 shrub 3200 sage 400 herb 200 conif 800 tpi 100 

sage 400 0.46 – – – – 

herb 200 0.36 0.92 – – – 

conif 800 -0.63 -0.71 -0.72 – – 

tpi 100 0.00 0.00 -0.01 0.00 – 

tri 200 -0.02 -0.16 -0.27 0.18 -0.04 

 31 



 

 

Table B11. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek-site selection based on seasonal habitat 

selection and mortality risk, Carbon County, Wyoming, USA, 2017–2019. MR stands for mortality risk; NB stands for nonbreeding 

season; and RSF represents resource selection function or habitat selection. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

Brood MR 

3200 

Nest 

MR 400 

Early NB 

MR 800 

Brood 

RSF 400 

Nest RSF 

800 

Early NB 

RSF 1600 

Nest MR 400 -0.29 – – – – – 

Early NB MR 800 -0.01 -0.69 – – – – 

Brood RSF 400 -0.23 -0.58 0.74 – – – 

Nest RSF 800 -0.28 -0.59 0.77 0.94 – – 

Early NB RSF 1600 -0.25 -0.56 0.84 0.85 0.84 – 

Late NB RSF 3200 -0.35 -0.51 0.73 0.82 0.81 0.93 



 

 

Table B12. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek 

size (average lek count from 2017–2019) based on environmental variables, Carbon County, 

Wyoming, USA, 2017–2019. For description of variables, see Table 1. The number following 

each variable is the distance that the variable is averaged over (i.e., the distance bin). 

 

shrub 

1600 

sage 

3200 

herb 

1600 

bare 

400 

decid 

1600 

conif 

400 
doil hli 200 

sage 3200 -0.65 – – – – – – – 

herb 1600 -0.72 0.45 – – – – – – 

bare 400 -0.44 0.56 -0.05 – – – – – 

decid 1600 0.73 -0.80 -0.69 -0.49 – – – – 

conif 400 0.64 -0.65 -0.44 -0.27 0.60 – – – 

doil 0.17 -0.42 -0.18 -0.10 0.33 0.06 – – 

hli 200 0.11 -0.13 -0.20 -0.15 0.42 -0.03 0.11 – 

tri 200 0.01 0.02 -0.04 0.16 0.07 -0.13 0.29 0.37 
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Table B13. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek 

size in 2017 based on environmental variables, Carbon County, Wyoming, USA, 2017–2019. 

For description of variables, see Table 1. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

shrub 

1600 

herb 

1600 

bare 

800 

decid 

1600 

conif 

1600 
doil hli 200 tpi 400 

herb 1600 -0.73 – – – – – – – 

bare 800 -0.52 0.08 – – – – – – 

decid 1600 0.73 -0.69 -0.56 – – – – – 

conif 1600 0.25 -0.33 -0.20 0.13 – – – – 

doil 0.17 -0.19 -0.21 0.33 0.29 – – – 

hli 200 0.11 -0.20 -0.19 0.42 -0.18 0.11 – – 

tpi 400 -0.10 -0.14 -0.14 -0.03 0.10 -0.07 -0.16 – 

tri 200 0.02 -0.06 0.14 0.07 -0.17 0.29 0.37 -0.36 
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Table B14. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek 

size in 2018 based on environmental variables, Carbon County, Wyoming, USA, 2017–2019. 

For description of variables, see Table 1. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

shrub 

1600 

sage 

3200 

herb 

800 

bare 

400 

decid 

1600 

conif 

1600 
hli 200 

sage 3200 -0.65 – – – – – – 

herb 800 -0.58 0.15 – – – – – 

bare 400 -0.44 0.57 -0.24 – – – – 

decid 1600 0.73 -0.79 -0.46 -0.48 – – – 

conif 1600 0.25 -0.41 -0.03 -0.18 0.14 – – 

hli 200 0.11 -0.12 -0.15 -0.14 0.42 -0.18 – 

tri 200 0.01 0.03 -0.19 0.17 0.07 -0.19 0.37 

 



 

 

Table B15. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek size in 2019 based on environmental 

variables, Carbon County, Wyoming, USA, 2017–2019. For description of variables, see Table 1. The number following each variable 

is the distance that the variable is averaged over (i.e., the distance bin). 

 

shrub 

200 

sage 

3200 

herb 

100 

bare 

400 

decid 

1600 

conif 

800 
doil droads 

hli 

200 

tpi 

100 

sage 3200 -0.39 – – – – – – – – – 

herb 100 -0.51 -0.13 – – – – – – – – 

bare 400 -0.25 0.57 -0.50 – – – – – – – 

decid 1600 0.60 -0.80 -0.07 -0.50 – – – – – – 

conif 800 0.07 0.23 0.03 -0.02 -0.12 – – – – – 

doil 0.11 -0.42 -0.01 -0.11 0.34 -0.17 – – – – 

droads 0.39 0.16 -0.44 0.08 0.19 -0.06 -0.28 – – – 

hli 200 0.11 -0.14 0.00 -0.16 0.42 -0.20 0.11 0.27 – – 

tpi 100 0.29 0.03 -0.53 0.36 -0.05 -0.06 0.32 0.01 -0.43 – 

tri 3200 0.15 0.14 -0.03 -0.17 0.07 -0.02 -0.29 0.60 0.21 -0.33 
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Table B16. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek size (average lek count from 2017–

2019) based on seasonal habitat selection and mortality risk, Carbon County, Wyoming, USA, 2017–2019. MR stands for mortality 

risk; NB stands for nonbreeding season; and RSF represents resource selection function or habitat selection. The number following 

each variable is the distance that the variable is averaged over (i.e., the distance bin). 

 

Brood 

MR 800 

Nest 

MR 800 

Early NB 

MR 400 

Late NB 

MR 3200 

Brood 

RSF 800 

Nest 

RSF 800 

Early NB 

RSF 800 

Nest MR 800 0.01 – – – – – – 

Early NB MR 400 0.39 -0.09 – – – – – 

Late NB MR 3200 0.44 -0.27 -0.24 – – – – 

Brood RSF 800 -0.65 0.00 0.13 -0.52 – – – 

Nest RSF 800 -0.55 0.07 0.20 -0.57 0.96 – – 

Early NB RSF 800 -0.55 -0.06 0.06 -0.17 0.84 0.75 – 

Late NB RSF 800 -0.59 -0.21 0.02 -0.21 0.88 0.77 0.90 
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Table B17. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek size in 2017 based on seasonal habitat 

selection and mortality risk, Carbon County, Wyoming, USA, 2017–2019. MR stands for mortality risk; NB stands for nonbreeding 

season; and RSF represents resource selection function or habitat selection. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

Brood 

MR 1600 

Nest 

MR 30 

Early NB 

MR 400 

Brood 

RSF 400 

Nest 

RSF 800 

Early NB 

RSF 800 

Nest MR 30 0.02 – – – – – 

Early NB MR 400 -0.59 0.17 – – – – 

Brood RSF 400 -0.46 0.05 0.00 – – – 

Nest RSF 800 -0.59 -0.05 0.16 0.87 – – 

Early NB RSF 800 -0.50 -0.15 0.05 0.85 0.74 – 

Late NB RSF 400 -0.48 0.26 0.22 0.79 0.70 0.77 
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Table B18. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek size in 2018 based on seasonal habitat 

selection and mortality risk, Carbon County, Wyoming, USA, 2017–2019. MR stands for mortality risk; NB stands for nonbreeding 

season; and RSF represents resource selection function or habitat selection. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

Brood 

MR 800 

Nest MR 

800 

Early NB 

MR 400 

Late NB 

MR 3200 

Brood 

RSF 800 

Nest 

RSF 800 

Early NB 

RSF 30 

Nest MR 800 0.24 – – – – – – 

Early NB MR 400 -0.25 -0.08 – – – – – 

Late NB MR 3200 0.71 -0.30 -0.21 – – – – 

Brood RSF 800 -0.62 0.00 0.10 -0.52 – – – 

Nest RSF 800 -0.63 0.07 0.18 -0.57 0.95 – – 

Early NB RSF 30 -0.35 -0.29 -0.09 0.12 0.59 0.49 – 

Late NB RSF 1600 -0.59 0.24 0.44 -0.63 0.78 0.83 0.38 
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Table B19. Pearson’s correlation matrix for variables used to identify sharp-tailed grouse lek size in 2019 based on seasonal habitat 

selection and mortality risk, Carbon County, Wyoming, USA, 2017–2019. MR stands for mortality risk; NB stands for nonbreeding 

season; and RSF represents resource selection function or habitat selection. The number following each variable is the distance that 

the variable is averaged over (i.e., the distance bin). 

 

Brood 

MR 1600 

Nest 

MR 30 

Early NB 

MR 400 

Late NB 

MR 3200 

Brood 

RSF 800 

Nest 

RSF 400 

Early NB 

RSF 1600 

Nest MR 30 0.12 – – – – – – 

Early NB MR 400 -0.63 0.13 – – – – – 

Late NB MR 3200 0.69 -0.14 -0.30 – – – – 

Brood RSF 800 -0.59 -0.09 0.19 -0.53 – – – 

Nest RSF 400 0.65 0.14 -0.28 0.57 -0.92 – – 

Early NB RSF 1600 -0.66 -0.21 0.30 -0.43 0.84 -0.83 – 

Late NB RSF 1600 -0.75 0.03 0.48 -0.64 0.79 -0.88 0.85 

 



 

 

Table B20. Pearson’s correlation matrix for variables in final hypothesis testing used to identify 

sharp-tailed grouse lek-site selection based on environmental variables (H1), seasonal habitat 

selection and mortality risk (H2), or a combination of the environmental variables and seasonal 

habitat selection and mortality risk (H3), Carbon County, Wyoming, USA, 2017–2019. For 

description of environmental variables, see Table 1. MR stands for mortality risk; NB stands for 

nonbreeding season; and RSF represents resource selection function or habitat selection. The 

number following each variable is the distance that the variable is averaged over (i.e., the 

distance bin). 

 herb 200 shrub 3200 tri 200 Brood MR 3200 Nest MR 400 

shrub 3200 0.37 – – – – 

tri 200 -0.27 -0.03 – – – 

Brood MR 3200 0.17 -0.57 -0.29 – – 

Nest MR 400 -0.81 -0.31 0.20 -0.29 – 

Late NB RSF 3200 0.56 0.87 -0.04 -0.35 -0.51 

 

  



 256 

Table B21. Pearson’s correlation matrix for variables in final hypothesis testing used to identify 

sharp-tailed grouse lek size (average lek count from 2017–2019) based on environmental 

variables (H1), seasonal habitat selection and mortality risk (H2), or a combination of the 

environmental variables and seasonal habitat selection and mortality risk (H3), Carbon County, 

Wyoming, USA, 2017–2019. For description of environmental variables, see Table 1. MR stands 

for mortality risk; NB stands for nonbreeding season. The number following each variable is the 

distance that the variable is averaged over (i.e., the distance bin). 

 bare 400 hli 200 Early NB MR 400 Early NB RSF 800 

hli 200 -0.15 – – – 

Early NB MR 400 -0.33 -0.09 – – 

Early NB RSF 800 -0.58 0.27 0.06 – 

Nest MR 800 -0.26 -0.02 -0.09 -0.06 
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Table B22. Pearson’s correlation matrix for variables in final hypothesis testing used to identify 

sharp-tailed grouse 2017 lek size based on environmental variables (H1), seasonal habitat 

selection and mortality risk (H2), or a combination of the environmental variables and seasonal 

habitat selection and mortality risk (H3), Carbon County, Wyoming, USA, 2017–2019. For 

description of environmental variables, see Table 1. MR stands for mortality risk; NB stands for 

nonbreeding season. The number following each variable is the distance that the variable is 

averaged over (i.e., the distance bin). 

 conif 1600 hli 200 Brood RSF 400 

hli 200 -0.18 – – 

Brood RSF 400 0.22 0.22 – 

Nest MR 30 0.01 0.22 0.05 
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Table B23. Pearson’s correlation matrix for variables in final hypothesis testing used to identify 

sharp-tailed grouse 2018 lek size based on environmental variables (H1), seasonal habitat 

selection and mortality risk (H2), or a combination of the environmental variables and seasonal 

habitat selection and mortality risk (H3), Carbon County, Wyoming, USA, 2017–2019. For 

description of environmental variables, see Table 1. MR stands for mortality risk; NB stands for 

nonbreeding season. The number following each variable is the distance that the variable is 

averaged over (i.e., the distance bin). 

 conif 1600 hli 200 Nest RSF 800 

hli 200 -0.18 – – 

Nest RSF 800 0.25 0.26 – 

Nest MR 800 -0.26 -0.03 0.07 
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Table B24. Pearson’s correlation matrix for variables in final hypothesis testing used to identify 

sharp-tailed grouse 2019 lek size based on environmental variables (H1), seasonal habitat 

selection and mortality risk (H2), or a combination of the environmental variables and seasonal 

habitat selection and mortality risk (H3), Carbon County, Wyoming, USA, 2017–2019. For 

description of environmental variables, see Table 1. MR stands for mortality risk; NB stands for 

nonbreeding season. The number following each variable is the distance that the variable is 

averaged over (i.e., the distance bin). 

 bare 400 hli 200 Brood RSF 800 Early NB MR 400 

hli 200 -0.16 – – – 

Brood RSF 800 -0.83 0.20 – – 

Early NB MR 400 -0.36 -0.10 0.19 – 

Nest MR 30 0.05 0.18 -0.09 0.13 
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Figure B1. Partial effects plots from the top model predicting the relative probability of sharp-

tailed grouse nest-site selection (± 95% CI) as predicted by mean bare ground cover (%) within 

100 m (a), mean herbaceous vegetation cover (%) within 200 m (b), mean heat load index within 

800 m (c), mean sagebrush (Artemisia sp.) cover (%) within 15 m (d), mean shrub cover (%) 

within 800 m (e), mean topographic position index within 800 m (f), and mean terrain 

ruggedness index within 100 m (g), Carbon County, Wyoming, USA, 2017–2019.  
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Figure B2. Partial effects plots from the top model predicting the relative probability of sharp-

tailed grouse brood-site selection (± 95% CI) as predicted by mean bare ground (%) within 800 

m (a), mean coniferous forest canopy cover (%) within 800 m (b), mean deciduous forest canopy 

cover (%) within 800 m (c), mean sagebrush shrub cover (%) within 100 m (d), mean shrub 

cover (%) within 800 m (e), mean topographic position index within 100 m (f), and mean terrain 

ruggedness index within 100 m (g), Carbon County, Wyoming, USA, 2017–2019.  
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Figure B3. Partial effects plots from the top model predicting the relative probability of female 

sharp-tailed grouse early non-breeding season habitat selection (Sept 1–Nov 30; ± 95% CI) as 

predicted by mean bare ground (%) within 1,600 m (a), mean heat load index within 3,200 m 

(b), mean perennial herbaceous vegetation cover (%) within 3,200 m (c), mean sagebrush cover 

(%) within 3,200 m (d), mean shrub height (cm) within 400 m (e), mean terrain ruggedness 

index within 3,200 m (f), and mean topographic position index within 3,200-m (g), Carbon 

County, Wyoming, USA, 2017–2020.  
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Figure B4. Partial effects plots from the top model predicting the relative probability of female 

sharp-tailed grouse late non-breeding season habitat selection (Dec 1–Mar 31; ± 95% CI) as 

predicted by mean bare ground (%) within 400 m (a), mean deciduous forest canopy cover (%) 

within 3,200 m (b), distance to oil and natural gas infrastructure (m; c), mean sagebrush cover 

(%) within 3,200 m (d), mean shrub height (cm) within 3,200 m (e), and mean topographic 

position index within 400-m (f), Carbon County, Wyoming, USA, 2017–2020.  
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Figure B5. Partial effects plots from the top model predicting hazards to sharp-tailed grouse nest 

mortality risk (± 95% CI) as predicted by mean herbaceous vegetation cover within 100 m (a), 

shrub height (cm) within 15 m (b), and mean topographic position index within 800 m (c), 

Carbon County, Wyoming, USA, 2017–2019.  
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Figure B6. Partial effects plots from the top model predicting hazards to sharp-tailed grouse 

brood mortality risk (± 95% CI) as predicted by mean deciduous forest canopy cover (%) within 

800 m (a) and mean perennial herbaceous vegetation cover (%) within 400 m (b), Carbon 

County, Wyoming, USA, 2017–2019.  
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Figure B7. Partial effects plots from the top model predicting hazards to sharp-tailed grouse 

early non-breeding season mortality risk (Sept 1–Nov 30; ± 95% CI) as predicted by perennial 

herbaceous vegetation cover (%) within 800 m (a) and mean topographic position index within 

3,200-m (b), Carbon County, Wyoming, USA, 2017–2020. 
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Figure B8. Partial effects plots from the top model predicting hazards to sharp-tailed grouse late 

non-breeding season mortality risk (Dec 1–Mar 31; ± 95% CI) as predicted by bare ground (%) 

within 3,200 m (a), mean heat load index within 3,200 m (b), mean sagebrush (Artemisia sp.) 

cover within 100 m (c), and mean topographic position index within 3,200-m (d), Carbon 

County, Wyoming, USA, 2017–2020.  
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Figure B9. Partial effects plots for the top binomial logistic regression model predicting sharp-

tailed grouse lek-site selection based on three landscape features: mean herbaceous vegetation 

cover (%) within 200 m (a), mean shrub cover (%) within 3,200 m (b), and mean terrain 

ruggedness index within 200 m (c), Carbon County Wyoming, USA, 2017–2019.  
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Figure B10. Partial effects plots for the top binomial logistic regression model predicting sharp-

tailed grouse lek locations based on seasonal habitat selection and mortality risk models: mean 

brood mortality risk within 3,200 m (a), mean nest mortality risk within 400 m (b), and mean 

relative probability of late nonbreeding habitat selection within 3,200 m (c), Carbon County 

Wyoming, USA, 2017–2020. For brood and nest mortality risk, 1 represents low nest mortality 

risk and 5 represents high mortality risk. For mean relative probability of late nonbreeding 

season selection within 3,200 m, 1 represents low probability of selection and 5 represents high 

probability of selection. 
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Figure B11. Partial effects plots for the top Poisson regression model predicting average (2017–

2019) sharp-tailed grouse lek size (number of individuals counted on leks) based on seasonal 

habitat and mortality risk predictors: mean early nonbreeding season mortality risk within 400 m 

(a), mean relative probability of early nonbreeding season habitat selection within 800 m (b), and 

mean nest mortality risk within 800 m of leks (c), Carbon County, Wyoming, USA, 2017–2019. 

For early nonbreeding season mortality risk and nest mortality risk, 1 represents low mortality 

risk and 5 represents high mortality risk. For mean relative probability of early nonbreeding 

season habitat selection within 400 m, 1 represents low probability of selection and 5 represents 

high probability of selection. 
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APPENDIX C 

Results for annual lek size analysis as described in Chapter 3 

We modeled lek size as averaged lek size across the years of our study (2017–2019). Our top 

models predicting lek size in 2017 and 2018 included percent canopy cover of coniferous forest 

within 1,600 m and the quadratic of heat load index within 200 m and our top model predicting 

lek size in 2019 included percent bare ground cover within 400 m and the quadratic of heat load 

index within 200 m (Appendix S2: Table S1, Figure S1–S3). In 2017 and 2018, our top model 

indicated that lek size increased with greater cover of coniferous forest canopy cover (max 

within 1,600 m was 5.3% canopy cover) and lek size was larger at the highest and lowest heat 

load indices (Appendix S2: Table S1, Figures S1 and S2). Our top model predicting lek size in 

2019 indicated that lek sizes were larger in areas with less bare ground and lek size was larger at 

the highest and lowest heat load indices at lek sites (Appendix S2: Table S1, Figure S3).  

Our top model predicting lek size in 2017 based on seasonal female habitat indicated that 

lek size was smaller at leks surrounded by more brood rearing habitat within 1,600 m and lek 

size was larger at leks surrounded by areas with higher nest mortality risk within 30 m 

(Appendix S2: Table S1, Figure S4). Our top model predicting lek size in 2018 indicated lek size 

was larger at leks surrounded by more nesting habitat within 800 m and lek size was larger at 

leks surrounded by areas with lower nest mortality risk within 800 m (Appendix S2: Table S1, 

Figure S5). Our top model predicting lek size in 2019 indicated that lek size was larger at leks 

surrounded by more brood rearing habitat within 800 m, lek size was larger at leks surrounded by 

areas with higher early nonbreeding season mortality risk, and lek was larger at leks surrounded 

by areas with lower nest mortality risk within 30 m (Appendix S2: Table S1, Figure S6).  
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Our top model with the lowest AICc predicting sharp-tailed grouse lek size was the 

combination of landscape features and seasonal female habitat model (H3) in 2017, the 

landscape features model (H1) in 2018, and the combination of landscape features and seasonal 

female habitat (H3; Appendix S2: Table S2). The top model predicting sharp-tailed grouse lek 

size in 2017 (H3) indicated that lek size increased as percent canopy cover of coniferous forest 

increased within 3,200 m, lek size was larger at the highest and lowest heat load indices, and lek 

size increased as nest mortality within 30 m increased (Table 6, Figure S18); confidence intervals 

for both brood mortality risk within 1,600 m overlapped zero, indicating these variables were 

uninformative in predicting lek size in this model (Appendix S2: Table S1). Our top models for 

average lek size and lek size in 2018 based on landscape features (H1) indicated that lek sizes 

were larger at leks in areas with greater canopy cover of coniferous forest (max within 1,600 m 

was 5.3% canopy cover) and lek size was larger at the highest and lowest heat load indices 

(Appendix S2: Table S1 and Figure S2). For our model predicting sharp-tailed grouse lek size in 

2019 based on a combination of landscape features and seasonal female habitat, bare ground 

within 400 m and brood habitat selection within 800 m were correlated, therefor we developed 

two models for our third hypothesis to avoid including correlated features in the same model 

(Appendix S2: Table S2). The top model predicting sharp-tailed grouse lek size in 2019 (H3a) 

indicated that lek sizes were larger in areas within less bare ground within 400 m, lek size was 

larger at the highest and lowest heat load indices, and lek size was larger at leks with surrounded 

by lower nest mortality risk (Appendix S2: Table S1 and Figure S2); confidence intervals for 

early nonbreeding season mortality risk within 200 overlapped zero, indicating it was 

uninformative in predicting lek size in this model (Appendix S2: Table S1).  



 

 

Table C1. Covariates, standardized beta coefficients (β), standard errors (SE), and 95% CIs for variables included in Poisson 

regression models predicting the annual lek size of sharp-tailed grouse (Tympanuchus phasianellus) as predicted by landscape features 

(H1), seasonal female habitat (H2), and seasonal female habitat and landscape features (H3) in Carbon County, Wyoming, USA, 

2017–2020. Earlynbmort represents early nonbreeding season mortality risk; earlynbRSF represents early nonbreeding season habitat 

selection; nestmort represents nest mortality risk; broodmort represents mean brood mortality risk; broodRSF represents brood habitat 

selection. An asterisk (*) denotes beta (β) coefficient whose 95% CI does not overlap zero.  

Hypothesis Year Covariate Distance Bin β SE 95% CI 

H1–Landscape features 2017 conif 1600 1.64* 0.57 (0.48, 2.73) 
  hli 200 0.49* 0.13 (0.23, 0.74) 
  hli2 200 2.07* 0.33 (1.42, 2.72) 
 2018 conif 1600 2.65* 0.64 (1.35, 3.87) 
  hli 200 0.62* 0.14 (0.35, 0.89) 
  hli2 200 2.57* 0.36 (1.87, 3.27) 
 2019 bare 400 -1.08* 0.24 (-1.58, -0.62) 
  hli 200 0.57* 0.13 (0.31, 0.83) 
  hli2 200 3.34* 0.44 (2.49, 4.20) 

H2–Seasonal habitat 2017 broodmort 1600 -0.35* 0.13 (-0.62, -0.10) 
  nestmort – 0.25* 0.07 (0.10, 0.39) 
 2018 nestmort 800 -0.44* 0.14 (-0.71, -0.17) 
  nestRSF 800 0.63* 0.16 (0.33, 0.94) 
 2019 broodRSF 800 1.04* 0.23 (0.61, 1.50) 
  earlynbmort 400 0.71* 0.15 (0.42, 1.01) 
  nestmort – -0.40* 0.10 (-0.61, -0.21) 

H3–Combination 2017 conif 1600 1.65* 0.58 (0.47, 2.77) 
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  hli 200 0.39* 0.15 (0.08, 0.69) 

  hli2 200 2.09* 0.40 (1.31, 2.88) 

  broodmort 1600 -0.03 0.16 (-0.37, 0.28) 

  nestmort 30 0.25* 0.08 (0.09, 0.41) 

 2018 conif 1600 2.70* 0.92 (0.86, 4.49) 

  hli 200 0.55* 0.17 (0.22, 0.88) 

  hli2 200 2.43* 0.42 (1.62, 3.25) 

  nestRSF 800 0.11 0.18 (-0.23, 0.47) 

  nestmort 800 -0.06 0.16 (-0.37, 0.24) 

 2019 bare 400 -1.02* 0.25 (-1.53, -0.54) 

  hli 200 0.63* 0.14 (0.35, 0.90) 

  hli2 200 2.89* 0.50 (1.92, 3.88) 

  earlynbmort 400 0.01 0.18 (-0.35, 0.37) 

  nestmort 30 -0.35* 0.11 (-0.57, -0.14) 



 

 

Table C2. Model selection results for Poisson regression models predicting sharp-tailed grouse 

(Tympanuchus phasianellus) lek size environmental covariates (H1), seasonal habitat (H2), and 

environmental and seasonal (H3) for average, 2017, 2018, and 2019 lek counts, Carbon County, 

Wyoming, USA, 2017–2020. There are two H3 models in 2019 (H3a and H3b) because bare400 

and broodRSF800 were correlated (|r| = 0.83); because these were correlated we did not include 

these terms in the same model and tested all possibilities of the model. Earlynbmort represents 

early nonbreeding season mortality risk; earlynbRSF represents early nonbreeding season habitat 

selection; nestmort represents nest mortality risk; broodmort represents mean brood mortality 

risk; broodRSF represents brood habitat selection. 

Year Model Hypothesis Ka ΔAICc wi
b 

2017 conif1600 + hli200 + hli2002 + 

broodmort1600 + nestmort 

H3 6 0.00c 0.78 

 conif1600 + hli200 + hli2002 H1 4 2.49 0.22  
broodmort1600 + nestmort H2 3 25.14 0.00  
Null – 1 37.54 0.00 

2018 conif1600 + hli200 + hli2002 H1 4 0.00c 0.96  
conif1600 + hli200 + hli2002 + 

broodmort800 + nestmort800 

H3 6 6.60 0.04 

 
broodmort800 + nestmort800 H2 3 32.82 0.00  
Null – 1 55.38 0.00 

2019 bare400 + hli200 + hli2002 + 

earlynbmort200 + nestmort 

H3a 7 0.00c 0.88 

 bare400 + hli200 + hli2002 H1 4 3.94 0.12  
hli200 + hli2002 + broodRSF800 + 

earlynbmort200 + nestmort 

H3b 7 15.89 0.00 

 broodRSF800 + earlynbmort200 + 

nestmort 

H2 4 49.96 0.00 

 
Null – 1 115.84 0.00 

aNumber of parameters 

bAICc weight  
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c2017 lowest AICc value = 171.85; 2018 lowest AICc value = 142.90; 2019 lowest AICc value = 

167.11  
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Figure C1. Partial effects plots for the top linear Poisson regression model predicting 2017 

sharp-tailed grouse lek size (number of individuals counted on leks) based on landscape features: 

mean coniferous forest canopy cover (%) within 1,600 m (a) and mean heat load index within 

200 m (b), Carbon County, Wyoming, USA, 2017. 
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Figure C2. Partial effects plots for the top linear Poisson regression model predicting 2018 

sharp-tailed grouse lek size (number of individuals counted on leks) based on landscape features: 

mean coniferous forest canopy cover (%) within 1,600 m (a) and mean heat load index within 

200 m (b), Carbon County, Wyoming, USA, 2018. 
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Figure C3. Partial effects plots for the top linear Poisson regression model predicting 2019 

sharp-tailed grouse lek size (number of individuals counted on leks) based on landscape features: 

percent bare ground within 400 m (a) and mean heat load index within 200 m (b), Carbon 

County, Wyoming, USA, 2019. 
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Figure C4. Partial effects plots for the top Poisson regression model predicting 2017 sharp-tailed 

grouse lek size (number of individuals counted on leks) based on seasonal female habitat and 

mortality risk predictors: mean relative probability of brood habitat selection within 1,600 m of 

leks (a) and nest mortality risk within 30 m (b), Carbon County, Wyoming, USA, 2017. For 

probability of brood habitat selection within 1,600 m, 1 represents low probability of brood 

habitat selection and 5 represents high probability of brood habitat selection. For nest mortality 

risk, 1 represents low mortality risk and 5 represents high mortality risk. 
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Figure C5. Partial effects plots for the top linear Poisson regression model predicting 2018 

sharp-tailed grouse lek size (number of individuals counted on leks) based on seasonal female 

habitat and mortality risk predictors: mean relative probability of nest site selection within 800 m 

of leks (a) and mean nest mortality risk within 800 m of leks (b), Carbon County, Wyoming, 

USA, 2018. For nest site selection, 1 represents low probability of selection and 5 represents 

high probability of selection; for nest mortality risk within 800 m, 1 represents low nest mortality 

risk and 5 represents high mortality risk.  
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Figure C6. Partial effects plots for the top linear Poisson regression model predicting 2019 

sharp-tailed grouse lek size (number of individuals counted on leks) based on seasonal female 

habitat and mortality risk predictors: mean relative probability of brood habitat selection within 

800 m of leks (a), mean early nonbreeding season (Sep 1–Nov 30) mortality risk within 400 m of 

lek (b), and nest mortality risk within 30 m of leks (c), Carbon County, Wyoming, USA, 2019. 

For mean relative probability of brood habitat selection within 800 m, 1 represents low 

probability of selection and 5 represents high probability of selection. For early nonbreeding 

season and nest mortality risk, 1 represents low nest mortality risk and 5 represents high 

mortality risk.  
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Figure C7. Partial effects plots for the top linear Poisson regression model predicting 2017 

sharp-tailed grouse lek size (number of individuals counted on leks) based on landscape features 

and seasonal female habitat and mortality risk predictors: mean percent canopy cover of 

coniferous forest within 1,600 m (a), mean heat load index within 200 m (b), mean brood 

mortality risk within 1,600 m (c), and mean nest mortality risk within 30 m of lek (d), Carbon 

County, Wyoming, USA, 2019. For brood mortality risk within 1,600 m and nest mortality risk 

within 30 m, 1 represents low nest mortality risk and 5 represents high mortality risk.  
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Figure C8. Partial effects plots for the top linear Poisson regression model predicting 2019 

sharp-tailed grouse lek size (number of individuals counted on leks) based on environmental 

conditions and seasonal habitat and mortality risk predictors: percent bare ground within 400 m 

(a), mean heat load index within 200 m (b), and mean nest mortality risk within 30 m of lek (c), 

Carbon County, Wyoming, USA, 2019. For nest mortality risk within 30 m, 1 represents low 

nest mortality risk and 5 represents high mortality risk.  
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