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This is the lecture note written & assembled by Ye Zhang for an introductory
course in Geostatistics.

Fall 2010
GEOL 5446
3 CREDITS
A-F GRADING
Pre-requisite: Calculus I & II; Linear Algebra; Probability & Statistics;
Matlab programming language
Location: ESB1006
Times: TTh (9:35 am ∼ 10:50 pm)
Office hour: M(4:00∼5:30 pm), F(3:00∼4:30 pm), GE 220
Email: yzhang9@uwyo.edu
Phone: 307-766-2981
The syllabus: see handout.

NOTE: The lecture note do not include: (1) solutions to the ex-
ercises and projects; (2) proofs to theories and equation derivations.
These will be presented only during lectures. So, please do not rely
on the notes for everything — class attendance and participation are
key to doing well.

0.1 Overview

Geoscientists often face interpolation and estimation problems when analyzing
sparse data from field observations. Geostatistics is an invaluable tool that can
be used to characterize spatial or temporal phenomena1. Geostatistics orig-
inated from the mining and petroleum industries, starting with the work by
Danie Krige in the 1950’s and was further developed by Georges Matheron in
the 1960’s. In both industries, geostatistics is successfully applied to solve cases
where decisions concerning expensive operations are based on interpretations
from sparse data located in space. Geostatistics has since been extended to
many other fields in or related to the earth sciences, e.g., hydrogeology, hydrol-
ogy, meteorology, oceanography, geochemistry, geography, soil sciences, forestry,
landscape ecology. In this class, both fundamental development of geostatistics
and simple, practical applications in the earth sciences will be presented. Ex-
ercises and projects are designed to help elucidate the fundamental concepts.
Reading assignments will be given illustrating the applications of geostatistics
in the particular field of reservoir characterization and modeling.

1In this class, we’re concerned only with spatial analysis; temporal phenomena might be
better understood in a separate class on time series analysis.



Chapter 1

Overview

What is geostatistics? Data analysis and spatial continuity modeling (Journel,
1989). Establish quantitative measure of spatial correlation to be used for sub-
sequent estimation and simulation (Deutsch, 2002). The following introduction
and overview materials are based on compilation of several source materials (see
full references in Sec. 1.5.1).

1.1 Why Geostatistics?

Classic statistics is generally devoted to the analysis and interpretation of un-
certainties caused by limited sampling of a property under study. Geostatistics
however deviates from classic statistics in that Geostatistics is not tied to a
population distribution model that assumes, for example, all samples of a pop-
ulation are normally distributed and independent from one another. Most of
the earth science data (e.g., rock properties, contaminant concentrations) often
do not satisfy these assumptions as they can be highly skewed and/or possess
spatial correlation (i.e., data values from locations that are closer together tend
to be more similar than data values from locations that are further apart).
To most geologists, the fact that closely spaced samples tend to be similar is
not surprising since such samples have been influenced by similar physical and
chemical depositional/transport processes.

Compared to the classic statistics which examine the statistical distribution
of a set of sampled data, geostatistics incorporates both the statistical distri-
bution of the sample data and the spatial correlation among the sample data.
Because of this difference, many earth science problems are more effectively ad-
dressed using geostatistical methods. As stated by Marc Cromer (in Geostatis-
tics for environmental and geotechnical applications, 1996, ASTM International,
edited by Rouhani et al.):

Geostatistical methods provide the tools to capture, through rigorous exami-
nation, the descriptive information on a phenomenon from sparse, often biased,
and often expensive sample data. The continued examination and quantitative

1



2 CHAPTER 1. OVERVIEW

rigor of the procedure provide a vehicle for integrating qualitative and quantita-
tive understanding by allowing the data to “speak for themselves”. In effect, the
process produces the most plausible interpretation by continued examination of
the data in response to conflicting interpretations. ... The application of geo-
statistics to environmental problems (e.g., groundwater contaminant cleanup)
has also proven a powerful integration tool, allowing coordination of activities
from field data acquisition to design analysis. For example, data collection is
often incomplete, resulting in uncertainties in understanding the problem and
increasing the risk of regulatory failure. While this uncertainties can often be
reduced with additional sampling, the benefits must be balanced with increasing
cost. ... Thus, geostatistics offers a means to quantify uncertainty,
while leveraging existing data to support sampling optimization.

1.2 Geostatistical Prediction

The goal of geostatistics is to predict the possible spatial distribution of a prop-
erty. Such prediction often takes the form of a map or a series of maps. Two
basic forms of prediction exist: estimation (Figure 1.1) and simulation (Fig-
ure 1.2). In estimation, a single, statistically “best” estimate (map) of the
spatial occurrence is produced. The estimation is based on both the sample
data and on a model (variogram) determined as most accurately representing
the spatial correlation of the sample data. This single estimate or map is usu-
ally produced by the kriging technique. On the other hand, in simulation, many
equal-likely maps (sometimes called “images”) of the property distribution are
produced, using the same model of spatial correlation as required for kriging.
Differences between the alternative maps provide a measure of quantifying the
uncertainty, an option not available with kriging estimation.

Geostatistics has played an increasing role in both groundwater hydrology
and petroleum reservoir characterization and modeling, driven mainly by the
recognition that heterogeneity in petrophysical properties (i.e., permeability and
porosity) dominates groundwater flow, solute transport, and multiphase migra-
tion in the subsurface. Geostatistics, by transforming a sparse data set from
the field into a spatial map (kriging estimation), offers a means to recreate het-
erogeneity to be incorporated into numerical flow and transport modeling. On
the other hand, by transforming a sparse data set into multiple spatial maps
(unconditional/conditional simulations), it offers a means of evaluating the un-
certainties on modeling due to the uncertain nature of each map (Figure 1.3). In
both reservoir simulation and groundwater modeling, for example, Monte Carlo
simulation is a popular technique. Note that this uncertainty reflects our lack
of knowledge about the subsurface, though the geological “groundtruth”, albeit
unknown, is deterministic and certain.
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Figure 1.3: Flow predictions based on the realizations generated in a geostatis-
tical simulation, e.g., Figure 1.2.

1.3 Geostatistics versus Simple Interpolation

In geostatistical estimation, we wish to estimate a property at an unsampled
location, based on the spatial correlation characteristics of this property and
its values at existing sampled locations. But, why not just use simple interpo-
lation? How is spatial correlation incorporated in the geostatistical approach?
A simple example may illustrate this point more clearly (Figure 1.4): we know
permeability at n sampled locations, we wish to estimate the permeability at
an unsampled location, z0. Using inverse distance, the unknown value can be
evaluated as:

z0 =
n∑

i=1

wizi (estimate)

wi =
1/di∑n

i=1(1/di)
(weight)

We can see that the above relation is a linear estimator, i.e., z0 is a weighted sum
of the n known values. Each weight (wi) (assigned to a known zi) is determined
by the distance of the known data point to the unknown data point. For n = 7,
for example, the weights can be calculated easily as shown in Figure 1.5.

Using this scheme, the weights assigned to points 1, 2, 4, 6 are all equal to
0.2. However, from the understanding of geology, we realize that permeability
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within the elongated sand body should be more similar in the lateral direction.
Thus, points 4 and 6 should be given higher weights than points 1 and 2. This is
obviously not the case when using inverse distance. Thus, in conventional inter-
polation methods (e.g., inverse distance, inverse distance squared), information
on spatial correlation is not incorporated. On the other hand, geostatistical
estimation considers both distance and spatial correlation. In general, geosta-
tistical estimation consists of 3 steps: (1) examining the similarity between a
set of sample (known) data points via an experimental variogram analysis; (2)
fitting a permissible mathematical function to the experimental variogram; (3)
conducting kriging interpolation based on this function. In the above example,
the spatial correlation will be revealed by the more similar values of z4 and z6

(step (1)). It will be modeled via step (2) (variogram modeling). Then, using
kriging, we’ll find that the weights assigned to points 4 and 6 will increase (those
of 1 and 2 will decrease accordingly since the total weight must sum to 1.0) (step
(3)). In kriging, based on the new weights, a best linear unbiased estimate of z0

is obtained. Further (though sometimes optional depending on the goal of the
study), uncertainty in the estimated field is additionally evaluated. In this class,
we’ll use many exercises to illustrate how to conduct a geostatistical study.

Given the same set of sampled data, interpolation results using IDS (di is
replaced by d2

i ) and kriging can look drastically different (Figure1.6). However,
does this mean that kriging is the preferred interpolation method regardless of
the data? It turns out, there are situations when the sampled data are simply
not good for kriging (we’ll explore this aspect when we look at the “pitfalls” of
conducting a variogram analysis). Given such data—either too unreliable or too
sparse and widely spaced to capture the spatial correlation of the true property
field, the conventional IDS may give just as good result. The decision of which
method to use is in a way data-driven. Usually, an increase in sample quality
or density will affect which method may be the most appropriate for the study.

1.4 Limitations

What is not geostatistics?
Interestingly, geostatistics models mathematical objects, not geological ob-

jects. For example, given a set of spatial measurements of isopach values, a
geologist can create various contour maps based on his/her understanding of
the underlying geology (Figure 1.7). This process is best described as pattern
recognition—the geologist has an existing idea of the underlying geology when
doing the interpretation. Geostatistics, however, does not recognize pattern,
rather, it is based on a set of mathematical principles.

As stated by AndréJournel (1989), “geostatistics is an art, and as such,
is neither completely automatable nor purely objective”. In an experiment
conducted by the US EPA, 12 independent geostatisticians were given the same
dataset and asked to perform the same kriging. The 12 results were very different
due to widely different data analysis conclusions, variogram models, choices of



1.4. LIMITATIONS 7

Figure 1.6: Estimation results from IDS and Kriging, based on the same set of
sample data.
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kriging type, and search strategy. As stressed by Journel, “that there are no
accepted universal algorithm for determining a variogram/covariance model,
that cross-validation is no guarantee that an estimation procedure will produce
good estimates at unsampled locations, that kriging needs not be the most
appropriate estimation method, and that the most consequential decisions of
any geostatistical study are made early in the exploratory data analysis”.

In this class, I will repeatedly emphasize the importance of understand-
ing our data, via exploratory analysis, trend analysis, error identification, and
dealing with sampling issues and non-stationarity. From both the environmen-
tal engineering and petroleum reservoir modeling literature, I present “rules of
thumb” or “best practice” guide that is recommended by experts in the field.
Further, it is my recommendation that before you embark on a geostatistical
study, you should research the literature for analysis conducted on similar data
in the past. You can often learn a lot from past studies and hopefully, you
can try to avoid pitfalls that others had stumbled upon before you. In the end
of this class, I will present a lecture on literature search and point to further
resources that you can use to solve your own problems.

Thus, geostatistics is not a black box. Without understanding
its fundamental assumptions and limitations, an untrained person is
more likely use it incorrectly. As summarized by Journel (1989): Geostatis-
tics is a tool: it cannot produce good results from bad data. It cannot replace
common sense, good judgment, or professional insight. Throughout the course,
I’ll pay equal attention to its limitations as well as its useful applications. In
practice, as more data become available, the geostatistical procedure often need
to be repeated, the data re-analyzed or reinterpreted.

Another point to make is that estimation or simulation based on variograms
cannot very well capture curvilinear features, e.g., curved channels (Figure 1.8).
To overcome such limitations, recent development includes multiple point statis-
tics (where correlation is characterized among multiple data points and then
incorporated into simulations), pluralGaussian simulation (several correlated
populations can be superimposed), and hybrid or hierarchical approaches (e.g.,
kriging is used to create property distribution within a higher-order geobody
created via either deterministic or stochastic means, often object-based). These
are currently areas of active research.

1.5 This Class

1.5.1 References

In this class, a fairly rigorous mathematical treatment is presented. This course
is thus designed at the upper undergrad and graduate level, appropriate for the
level of rigor contained herein. Course lecture is the key, though most materials
are assembled based on several textbooks, tutorials, and lecture notes, each with
its own emphasis:

• Engineering Geostatistics, Course Notes, Randal Barnes, 2000, Depart-
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variograms to describe heterogeneity with non-linear features.



1.5. THIS CLASS 11

ment of Civil Engineering, U of Minnesota.

• An Introduction to Applied Geostatistics, Isaaks & Srivastava (I&S), 1989,
Oxford University Press.

• Geostatistical Reservoir Modeling, Clayton Deutsch, 2002, Oxford Uni-
versity Press.

• Fundamentals of Geostatistics in Five Lessons, Andre Journel, 1989, Short
Course in Geology, vol 8, Presented at the 28th International Geological
Congress, Washington, D. C.

• Introduction to Geostatistics, Application in Hydrogeology, Peter Kitani-
dis, 1997, Cambridge University Press.

• GSLIB: Geostatistical Software Library and User’s Guide, Clayton Deutsch
& Andre Journel, 2nd Edition, Oxford University Press, 1997.

Bear in mind that the current course can only serve an introductory purpose:
it cannot hope to cover every aspect of the subject as presented in the refer-
ences, nor will we have time to explore many advanced topics, as they are being
continuously developed and refined in the literature. In particular, the topics
of this course are limited to stationary random space function (RSF) (station-
arity here, roughly speaking, means that the mean, variance, and variogram do
not change with position in the data field; if we have time, we’ll cover Simple
Kriging which is not based on assuming stationary RSF). Although there are
geostatistical estimation methods developed for non-stationary RSF, the most
widely used ones are based on stationary RSF. Wikipedia has a listing of the
major kriging techniques used in practice:

http://en.wikipedia.org/wiki/Kriging
To further be exposed to the power of the geostatistical analysis, we might

have a guest lecturer to give a talk about the reservoir simulation workflow.
Finally, all lectures are rooted in a fairly rigorous mathematical framework.

Hopefully, such an approach will better prepare you for the more advanced
topics or doing independent research. The exercises are designed to help you
understand both the strength of the geostatistical methods and the various
pitfalls you may encounter when working with raw data and the suggested so-
lutions. The suggested reading list at the end of each chapter presents either
example applications of geostatistics in different geoscience specialties or select
topics specific to geostatistical reservoir simulation. They are not specific to
the topics of each chapter, however, i.e., most papers are assuming you’re al-
ready familiar with the fundamentals. Some of these papers come from the
papers compiled in: Geostatistics for environmental and geotechnical applica-
tions, Shahrokh Rouhani et al. (editors), 1996, ASTM publication. Some come
from excerpts of the textbook Geostatistical Reservoir Modeling by Deutsch
(2002). I will also post additional papers on a ftp site that you can access.
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1.5.2 Outline

The outline of this course is:

1. Probability Theory Review

2. Spatial Analysis

3. Experimental Variogram

4. Variogram Modeling

5. Geostatistical Estimation (Kriging & Co-Kriging)

6. Geostatistical Simulation (Unconditional & Conditional)

7. Advanced Topics

1.5.3 Homework, Grades, Tools

In addition to exercises and projects, reading assignments are given, which may
be expected to be discussed during the class meeting if we have time. For
some paper assignments, students are expected to produce a short (15 minute
) powerpoint presentation on what has been learned from these papers. Those
who do not show up in class or fail to participate in the exercises may expect
F. Tools for simple exercises include ruler, calculator, Excel, Matlab. For more
complex projects, we’ll use software packages such as Surfer (kriging estimation)
and Gslib (stochastic simulation).

1.6 Suggested Reading

Besides the above textbooks, other reading materials may come from:

1. Geostatistics for environmental and geotechnical applications: a technol-
ogy transferred, M. V. Cromer, in Rouhani et al. (1996).

2. Describing spatial variability using geostatistical analysis, R. M. Srivas-
tava, in Rouhani et al. (1996).

However, it is my belief that depending on the type of research you do, do
literature search, and focus on papers that have similar aspects to your problems.
This might help you not get lost in the sea of the ever expanding geostatistical
literature!

Some final thoughts: This is a-graduate level class on a challenging sub-
ject. Instead of learning how to use some software, the course emphasizes fun-
damental and quantitative understanding. So, be prepared to think hard. Work
out the exercises and projects yourself. Theoretical rigor is emphasized because
I believe that if you do research related to spatial analysis, fundamental aspects
are important. You simply cannot hope to understand many literature papers
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or produce quality results if you’re not exposed to a systematic study of the fun-
damental principles lying behind software applications. However, if you’re only
interested in applied problems, you may feel that theories and accompanying
derivations and programming (you’re required to write a few Matlab codes) are
too tedious and not of interest to you. For those with such a view, please con-
sider taking an alternative class with a more applied emphases. In this course,
a series of chapter projects are designed using Surfer which shows the typical
steps involved in applications of kriging, though solving applied problems is not
the focus. Make sure you sign up the class for the right reason.
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Chapter 2

Probability Theory Review

We review some basic concepts and results of probability theory that are of
relevance. It is meant to be a refresher of concepts covered in a separate statistics
course. However, in case you have not taken such courses, the concepts and
results will be explained using simple examples.

2.1 Nomenclature and Notation

1. Important nomenclature:

• Pr[A]—the probability of event A occurring;
• Pr[A]—the probability of event A not occurring;
• Pr[A ∩B]—the probability of event A and event B both occurring;
• Pr[A ∪B]—the probability of event A or event B occurring;
• Pr[A|B]—the probability of event A occurring given that event B

has occurred.

2. Axioms:

• 0 ≤ Pr[A] ≤ 1;
• Pr[Ω] = 1, Ω is the union of all possible outcomes.

3. Conditional Probability:

Pr[A|B] = Pr[A∩B]
Pr[B]

4. Independence:

Events A and B are statistically independent if and only if:

Pr[A ∩B] = Pr[A] · Pr[B]

In words, if events are independent, the probability of their join occurrence
is simply the product of their individual probabilities of occurrence.

15



16 CHAPTER 2. PROBABILITY THEORY REVIEW
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Discrete Distribution 

1 ( head ) 2 ( tail )

P
i
=Pr[X=x
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Figure 2.1: Outcomes of experiments of tossing a coin: discrete r.v. and its
probability distribution.

2.2 Univariate Analysis

2.2.1 Introduction

One may define the probability of an event as between 0 and 1, representing the
chance or relative frequency of occurrence of the event. The probabilities of all
possible (mutually exclusive) events of an experiment must sum to 1. In practice,
the outcomes of experiments are assigned numerical values, e.g., when tossing a
coin, 1 and 2 can be assigned to the outcome of “head” and “tail”, respectively
(Figure 2.1). Such numerical values can be represented by a Random variable
(r.v.). Two types of r.v. exist: discrete and continuous. Discrete examples
include the outcome of tossing a coin (head or tail), the grades of this course
(A, B, C, D, F); continuous examples include the height of all men in the U.S.
(ranging from, say, 4 ft to 7 ft), the grades of a class (e.g., 0.0∼100.0 points). In
this class, a r.v. is expressed with a upper-case letter, e.g., X. The numerical
value of a particular outcome is designated as the lower-case equivalent “x”.

The probability of a r.v. occurring at any possible value (discrete r.v.)
or within a range of values (continuous r.v.) is described by its probability
distribution. For discrete r.v., its distribution is also discrete (Figure 2.1):

(2.1) Pi = Pr[X = xi], i = 1, . . . , n.
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Table 2.1: Grade distribution of a class. An example of a discrete r.v.
Grades Number of People X = xi

A 2 6
B 12 5
C 20 4
D 7 3
E 3 2
F 1 1

In this case, P1 = Pr[X = 1] = 0.5, P2 = Pr[X = 2] = 0.5, and P1 +P2 = 1.
In the discrete r.v., its distribution is just the frequency (or proportion) of
occurrence.

Exercise 1: Calculate the probability distribution of the grade in a class, see
Table 2.1. Steps: (1) assign each grade a numerical value (a discrete r.v.); (2)
calculate the proportion; (3) plot the probability. You can either do it by hand
with a calculator, or using Excel. Does the total probability sum up to 1? We
often call such a diagram “histogram”.

Now, can you calculate the probability of any person with a grade less than
or equal to A (X <= 6)? What is the probability for B (X <= 5), and so
on? We can also plot this probability out. We see that it rises from near 0.0
(X <= 1) to 1 (X <= 6). Such a plot represents the (discrete) cumulative
probability for a discrete r.v.

Similarly, histogram and the cumulative probability can be constructed for
a continuous r.v. In this case, for a sample data set: {x1, x2, . . . , xn} (outcomes
of experiments or realizations of X), we use “bins” to do the trick. Each bin
represents a range of values that X may fall in. Similar to what was done for
the discrete r.v., we can also calculate the proportion within each bin and plot it
out. For the sample set, a few other key statistics are also of interest: mean (µ),
variance (σ2) (standard deviation: σ), and coefficient of variation (CV = σ/µ):

µ = (1/n)Σn
i=1xi(2.2)

σ2 =
1

n− 1
Σn

i=1(xi − µ)2(2.3)

Why “n-1”? (Hint: it constitutes an unbiased estimator. However, due to
time constraint, we will not go into the subjects on estimator, e.g., maximum
likelihood versus unbiasedness.)

Exercise 2: A sample data set of a continuous r.v.: the thickness (X; m) of
an aquifer is measured along the horizontal distance (di; m) (Table 2.2). For the
thickness, calculate the mean, variance and CV, calculate and plot the histogram
and cumulative distribution.
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Table 2.2: Aquifer thickness along a 1D distance.
di 1 2 3 4 5 6 7 8 9 10 11
xi 56 57 55 54 49 43 37 36 39 37 41
di 12 13 14 15 16 17 18 19 20 21 22
xi 41 36 33 40 44 53 53 54 51 48 54
di 23 24 25 26 27 28 29 30 31 32 33
xi 63 65 63 63 53 50 50 54 49 43 43
di 34 35 36 37 38 39
xi 47 47 50 53 61 61

Can you imagine fitting a curve (a mathematical function) to the histogram
and cumulative distribution? Loosely speaking 1, such functions will be, re-
spectively, the probability density function (pdf: fX(x)) and the cumulative
distribution function (cdf: FX(x)) (Figure 2.2).

2.2.2 Formal Definitions

For a continuous r.v., the cdf is defined as:

(2.4) FX(a) = Pr [X ≤ a]

where a is a constant (non-random). For example, if FX(x) = 1 − e−x, x ≥ 0,
then FX(1) = 0.62 means that the probability that X takes a value smaller than
1 is 0.62. Since FX(x) is a probability, it must be non-negative. For FX(x), the
corresponding pdf is defined as:

(2.5)
∫ a

−∞
fX(x)dx = Pr [X ≤ a]

Clearly, FX(x) and fX(x) are related:

(2.6)
∫ a

−∞
fX(x)dx = FX(a) = Pr [X ≤ a]

and2

(2.7)
dFX(a)

dx
= fX(a)

The pdf of a r.v. must satisfy:

(2.8) fX(x) ≥ 0
∫ ∞

−∞
fX(x)dx = 1 Pr[a ≤ x ≤ b] =

∫ b

a

f(x)dx

1Strictly, pdf and cdf apply to the underlying population of X, not a function fitted to the
sample histogram and cumulative distribution which can be biased for a finite sample set.

2 dFX (a)
dx

= d
dx

∫ a
−∞ fX(x)dx = fX(a); Note this relation only holds when FX(x) is differ-

entiable with respect to x (i.e., it’s slope exist). When FX(x) is non-differentiable, the pdf
function fX(x) does not exist.
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The mean is defined as:

(2.9) µ = E[X] =
∫ +∞

−∞
xfX(x)dx

Here, we introduce the expectation operator: E[·]. Equation 2.9 can be general-
ized to define the expected value of a function: g(X) (some known, non-random
function of the random variable X):

(2.10) E[g(X)] =
∫ +∞

−∞
g(x)fX(x)dx

The variance (a special case of g(X)) is defined as:

(2.11) σ2 = V ar[X] = E[(X − µ)2] =
∫ +∞

−∞
(x− µ)2fX(x)dx

Notice that we write the formula for variance directly following equation (2.10),
the variance is written out within the expectation as a function of X. Thus,
though we introduce a variance operator, it can alternatively be expressed by the
expectation operator. Clearly, the variance is just the mean squared deviation
of X from its expected value (µ).

An extremely useful relationship between mean and variance is (proof given
in class):

(2.12) σ2 = E[X2]− µ2

Note that proofs are not written in the course notes. This is to encourage class
attendance, besides, the proofs tend to be long and tedious and just require too
much typing!

2.2.3 Random Variable Arithmetic

From equation 2.10, we can obtain some useful properties of the expectation
operator (proofs given in class): a, b are constants.

E[aX + b] = aE[X] + b = aµ + b(2.13)
V ar[aX + b] = a2V ar[X] = a2σ2(2.14)

The above relations always hold regardless of the type of distribution function
for X. They are very useful when trying to understand the properties of a scaled
random variable, e.g., what are the Std[aX + b] and CV [aX] (a > 0)?

2.3 Bivariate Analysis

2.3.1 Introduction

In the previous section, we look at the statistical measures of a single r.v. How-
ever, correlation can often exist between two r.v. For example, the height and



2.3. BIVARIATE ANALYSIS 21

Height (inches)

W
e

i
g
h

t
 
(
p

o
u

n
d

s
)

Linear Fit

35 40 45 605550

140

120

100

80

60

Correlation: ρ=0.76

Figure 2.3: An example of positive correlation: height and weight scatter plot
for a junior high school class.

weight of people are often correlated—a set of sample data is shown for stu-
dents in a junior high school (Figure 2.3). In this case, the weight increases
with increasing height for which we say a positive correlation exists between the
two variables. To investigate correlation, a scatter plot is often used, e.g., for
each person, the height and weight is cross-plotted. Often, some sort of fit is
attempted. Here, we see a linear function fitted to the scatter plot. However, to
quantitatively evaluate correlation, a correlation coefficient (rXY ) is often used:

(2.15) ρXY =
1

n− 1
Σn

i=1

(
xi − µX

σX

)(
yi − µY

σY

)

As defined previously, µX (or µY ) is the mean of X (or Y) in its univariate
distribution. ρXY varies between -1 (perfect negative correlation: Y=-X) to 1
(perfect positive correlation: Y=X). When rXY = 0, we say the two variables
are not correlated. In this example, rXY = 0.76, thus there is a certain amount
of positive correlation between weight and height.

The correlation between two r.v. is the cornerstone of geostatistics: one
r.v. is a geological/hydrological/petrophscial property at one spatial location,
the second r.v. can be the (1) same property at a different location (auto-
correlation studies; kriging); or, (2) a different property at a different location
(cross-correlation studies, co-kriging). To develop the fundamental geostatisti-
cal equations, a formal definition is needed and introduced next.
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2.3.2 Bivariate Random Variables

Given two r.v. X and Y, the bivariate distribution function is defined as
FXY (x, y) = Pr[(X ≤ x) ∩ (Y ≤ y)] (0 ≤ FXY (x, y) ≤ 1). The marginal dis-
tribution of X and Y is related to the bivariate function: FX(x) = FXY (x, +∞),
FY (y) = FXY (+∞, y).3 X and Y are statistically independent when: FXY (x, y) =
FX(x)FY (y).

The bivariate density function is defined as: fXY (x, y) = ∂2FXY (x,y)
∂x∂y when

it exists. Similar to the univariate density function, we have:

(2.16) Pr[(a ≤ X ≤ b) ∩ (c ≤ Y ≤ d)] =
∫ b

x=a

∫ d

y=c

fXY (x, y)dxdy

And, we have total probability sum to 1:

(2.17)
∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy = 1

As with marginal distribution function, by definition, each r.v. also has
associated marginal density function:

fX(x) =
∫ +∞

−∞
fXY (x, y)dy

fY (y) =
∫ +∞

−∞
fXY (x, y)dx

Similar to the distribution function, X and Y are statistically independent when:
fXY (x, y) = fX(x)fY (y).

Similar to the univariate analysis, the expectation of a function of two ran-
dom variables, g(X, Y ), is given:

E[g(X,Y )] =
∫ +∞

−∞

∫ +∞

−∞
g(x, y)fXY (x, y)dxdy

The covariance between X and Y (σXY ) measures how well the two variables
track each other: when one goes up, how does the other go on average? By
definition, the covariance between X and Y is given as:

σXY = Cov[X, Y ] = E[(X − µX)(Y − µY )] =∫ +∞

−∞

∫ +∞

−∞
(x− µX)(y − µY )fXY (x, y)dxdy = E[XY ]− µXµY

Clearly, compared to the expectation of g(X, Y ), the covariance is a special
case: g(X, Y ) = (X − µX)(Y − µY ). The unit of covariance is the product of

3The marginal distribution functions are nothing more than the distribution function de-
fined in the previous section for each univariate r.v.; the term “marginal” is added only when
working with 2 or more r.v., so as not to confuse the univariate (or marginal) distribution
function with the bivariate or multi-variate distribution function.
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the unit of r.v. X and unit of r.v. Y. The covariance between a r.v. X with
itself is equal to its variance:

Cov[X,X] = E[(X − µX)(X − µX)] = E[(X − µX)2] = σ2
X = V ar[X]

The correlation (or correlation coefficient) between X and Y is a dimension-
less, normalized version of σXY :

ρXY =
σXY

σXσY
(−1 ≤ ρXY ≤ 1)

Note that this corresponds to the correlation defined in the introduction by
equation(2.15). Actually, equation(2.15) is a (discrete) estimator of the above
relation which is defined in terms of expectation and continuous function, i.e.,
the joint pdf of X and Y: fXY (x, y). By comparing these two equations, we can
see that an estimator of the covariance can be defined as:

σXY =
1

n− 1
Σn

i=1(xi − µX)(yi − µY )

If X and Y are independent, then they are uncorrelated and their covariance
σXY (thus ρXY ) is zero (proof given in class). However, zero covariance does
not imply statistical independence (think of Y = |X|, it can be calculated that
σXY = 0, but X and Y are obviously not independent with each other). The
covariance is best thought of as a measure of linear dependence.

2.3.3 Bivariate Arithmetics

Let a, b, c be known constants (they are not random). For the univariate
random variable, X, we have:

µX = E[X]
σ2

X = V ar[X] = E[(X − µX)2]

For a second univariate random variable, Y, we have:

µY = E[Y ]
σ2

Y = V ar[Y ] = E[(Y − µY )2]

When there exists correlation between X and Y, we have (by definition):

σXY = Cov[X, Y ] =
∫ +∞

−∞

∫ +∞

−∞
(x− µX)(y − µY )fXY (x, y)dxdy

Note fXY (x, y) is the joint pdf function.
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The following rules always hold regardless of the underlying distribution
functions for X and Y (proofs given in class):

E[aX + bY + c] = aµX + bµY + c

V ar[aX + bY + c] = a2σ2
X + b2σ2

Y + 2abσXY

E[aXbY ] = abE[XY ]
V ar[aXbY ] = (ab)2V ar[XY ]
Cov[aX, bY ] = abCov[X, Y ]

Special cases include:

E[X + Y ] = µX + µY

E[X − Y ] = µX − µY

V ar[X + Y ] = σ2
X + σ2

Y + 2σXY

V ar[X − Y ] = σ2
X + σ2

Y − 2σXY

Clearly, if X, Y are independent, σXY = 0, thus V ar[X+Y ] = V ar[X−Y ] =
σ2

X + σ2
Y , and E[XY ] = µXµY (try proving this yourself).

2.4 Multivariate Analysis

2.4.1 Linear Combination of Many r.v.

Extending the bivariate arithmetics into multivariate analysis, we can get an-
other host of relationships. Let Xi (i=1,N) be N random variables with unspec-
ified distribution. Let ai (i=1,N) be N known constants. The N-multivariate
joint pdf of Xi is fX1X2...XN

(x1, x2, . . . , xN ). If Xi are mutually independent,
fX1X2...XN

(x1, x2, . . . , xN ) = fX1(x1) · fX2(x2) . . . fXN
(xN ). Particularly rele-

vant definitions and properties are listed below (note the similarity when com-
paring to the previous univariate and bivariate definitions):

∫ +∞

−∞
. . .

∫ +∞

−∞
fX1X2...XN (x1, x2, . . . , xN )dx1dx2 . . . dxN = 1

E[g(X1, X2, . . . , XN )] =∫ +∞

−∞
. . .

∫ +∞

−∞
g(x1, x2, . . . , xN )fX1X2...XN (x1, x2, . . . , xN )dx1dx2 . . . dxN

∫ +∞

−∞
. . .

∫ +∞

−∞
fX1X2...XN (x1, x2, . . . , xN )dx2dx3 . . . dxN = fX1(x1)

where fX1(x1) is the marginal pdf of X1. Note that the first two formulas
integrate N times; the last formula integrate N-1 times.
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In this class, we’ll only use what’s applicable to the study of geostatistics for
which we study linear combination of many r.v. 4

2.4.2 Multivariate Arithmetics

The following rules always hold (proofs given in class):

E[
N∑

i=1

aiXi] =
N∑

i=1

aiE[Xi]

V ar[
N∑

i=1

aiXi] =
N∑

i=1

N∑

j=1

aiajCov[Xi, Xj ]

Remember, Cov[Xi, Xi] = V ar[Xi]. Thus, if Xi are mutually uncorrelated,
we have (proof given in class):

V ar[
N∑

i=1

aiXi] =
N∑

i=1

a2
i V ar[Xi]

Exercise 3: Sums, Products, and Normalization. Consider a set of N in-
dependent, identically distributed (i.i.d.) random variables {X1, X2, . . . , XN},
with mean and variance: E[Xi] = µX , V ar[Xi] = σ2

X . Defined 3 derived
r.v.: (1) Pi = N · Xi, ∀i = 1, 2, . . . , N , what is the mean and variance of
Pi? (2) S =

∑N
i=1 Xi, what is the mean and variance of S? (3) Zi = Xi−µX

σX
,

∀i = 1, 2, . . . , N , what is the mean and variance of Zi?

2.5 Gaussian Distribution

The importance of the Gaussian distribution (or normal distribution) as a model
of quantitative phenomena in the natural sciences is due to the central limit the-
orem (next). Many physical phenomena (like photon counts and noise) can be
approximated well by the normal distribution. While the mechanisms under-
lying these phenomena are often unknown, the use of the normal model can
be theoretically justified by assuming that many small, independent effects are
additively contributing to each observation.

If the density function (pdf) of a random variable X is given by:

f(x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

−∞ < x < +∞

4Not coincidentally, Kriging system is developed based on the linear combination of many
random variables. We’ll get back to these important relationships once we reach the point of
deriving the kriging equations.
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X is said to have a Gaussian distribution: X∼ N(µ, σ).
The Gaussian distribution has a well-known “bell” shape, e.g., Figure 2.4.

It is symmetric around the mean. Can you approximately draw the shape of
the pdf for Y, if Y = (X − µX)/σX (in the previous exercise, we determined
that Y ∼ N(0, 1))? What is the pdf for Y? (f(y) = 1√

2π
e−

1
2 y2

;−∞ < y < +∞)
Y is called a standard Gaussian random variable.

The distribution function (cdf), recall equation(2.6), is by definition: FX(a) =∫ a

−∞ fX(x)dx = Pr [X ≤ a]. For Gaussian distribution, however, FX(x) cannot
be expressed by elementary functions, as the above integral cannot be analyti-
cally integrated for the Gaussian pdf fX(x). Often, a “Normal Table” is given
for the standard Gaussian r.v. Y = (x− µX)/σX .

Though geostatistical analysis is not based on the assumption of data nor-
mality, some estimation and simulation tools work better if the distribution is
close to normal. It is thus of interest to determine if one’s data is close to
normal. A normal probability plot is a type of cumulative frequency plot that
helps decide this question (normal probability paper can be purchased in most
engineering supply stores). On a normal probability plot, the y-axis (cumulative
frequency) is scaled in such a way that the cumulative frequency will plot as a
straight line if the distribution is Gaussian.

Many variables in earth sciences have distributions that are not close to
normal. It is common to have many small values and a few large ones. Though
the normal distribution is inappropriate to model such asymmetric distribution,
a closely related distribution, the lognormal distribution function, can sometimes
be a good alternative. A random variable (Y) satisfy a lognormal distribution if
its log-transform (e.g., Z = ln Y , or Z = log10Y ) satisfies a normal distribution.
A normality test is thus performed on the log-transformed variable Z.

2.6 Central Limit Theorem

The Central Limit Theorem is often stated as:

Let {X1, X2, . . . , XN} be N random variables, each with a finite
variance. Let Y be a r.v. defined as Y =

∑N
i=1 Xi, then, under a set

of general conditions, limN→∞ Y ⇒ Normal Distribution.

The practical importance of the theorem is that may physical phenomena in
nature arise from a number of additive variations. The distributions of the
individual variations are often unknown, however, the histogram of the summed
variable is often observed to be approximately Normal.

A more restrictive, but more useful version of the theorem is stated as:

Let {X1, X2, . . . , XN} be N independent, identically distributed ran-
dom variables, each with a finite variance. Let Y be a r.v. defined
as Y = 1

N

∑N
i=1 Xi (the arithmetic mean of Xi), then, under a set

of general conditions, limN→∞ Y ⇒ Normal Distribution.

Y∼ N(µY , σY ), µY = µX , and σY = σX/
√

N .
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X ~ N(1000, 250)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

-1000 -500 0 500 1000 1500 2000 2500 3000

x

f
(
x
)

X ~ N(1000, 250)

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

-1000 -500 0 500 1000 1500 2000 2500 3000

f
(
x
)

Figure 2.4: An example of Gaussian distribution: X∼ N(1000, 250). In the
bottom plot, f(x) is in log scale.
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81 77 103 112 123 19 40 111 114 120

82 61 110 121 119 77 52 111 117 124

82 74 97 105 112 91 73 115 118 129

88 70 103 111 122 64 84 105 113 123

89 88 94 110 116 108 73 107 118 127

77 82 86 101 109 113 79 102 120 121

74 80 85 90 97 101 96 72 128 130

75 80 83 87 94 99 95 48 139 145

77 84 74 108 121 143 91 52 136 144

87 100 47 111 124 109 0 98 134 144

Figure 2.5: Location map and values of 100 V measurements.

2.7 Chapter Project

In the Walker Lake area in Nevada, the concentration (V; in ppm) of a arsenious
contaminant in soil has been measured on a 10 × 10 m2 grid (Figure 2.5). At
each measurement point, a second contaminant, PCE (U; in ppm) has also been
measured (Figure 2.6). All values are rounded off to integers—you can report
your results in integer (data source: Isaaks & Srivastava (1989)). In this project,
we will investigate both the univariate statistics of V and U, and their bivariate
correlation.

In the univariate analysis, tasks include:
(1) Calculate the mean, variance, and standard deviation of V.
(2) Plot the histograms of V. Hint: By inspecting the V values (Figure 2.5),

we find that it ranges from 0 to ∼ 150. We can construct a frequency table to
count the number of V occurring in these intervals: 0 ≤ V < 10, 10 ≤ V < 20,
..., 130 ≤ V < 140, 140 ≤ V < ∞. Each “number” can also be converted to a
frequency (%) by dividing it with the total data count (100). You can do it by
hand, or use Excel-Tool-Data Analysis-Histogram, and set up a “bin” to do it.

(3) Plot the cumulative frequency of V. Hint: Based on the frequency table
of V, calculate the frequency of V (number/data count) that occurs in intervals:
V < 10, V < 20, ..., V < 140, V < ∞.

(4) Plot the cumulative frequency of V on a normal probability paper. De-
termine if V falls close to a normal distribution.

(5) Calculate the mean, variance, standard deviation of U. Construct its
histogram and cumulative frequency U. Plot the cumulative frequency of U on
a normal probability paper.

The above univariate analysis can be used to describe the distribution of
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Figure 2.6: Location map and values of 100 U measurements.

an individual random variable. However, a very limited view is obtained if
we analyze a multivariate data set one variable at a time. Some of the most
interesting feature of earth science data are the relationship between variables.
To explore the relation between U and V, a bivariate analysis is necessary. A
scatter plot is the most useful mean of detecting both data correlation and
potential errors.

(6) Construct a scatter plot of U and V and calculate the correlation coeffi-
cient. Do you see any correlation? Is it positive (larger U corresponds to larger
V) or negative (larger U corresponds to smaller V)? Calculate the correlation
coefficient: ρUV

(7) Change the last value of V to 14 (by accident—commonly happening
during data input). Now look at the scatter plot. Calculate the correlation
coefficient.

Linear Regression: Using Excel-Chart-Add Trendline, a best-fit line func-
tion can be plotted to the scatter plot of (6) (Figure 2.7). Excel also gives the
value of R2—in effect, a square of ρUV (is it the same as your ρUV calculated
by hand?). However, for small V, we note that this best-fit line extends into
negative U values which is not physically reasonable. Thus, the regression line
can not be used for prediction blindly. In this case, what would the value of U
be given V of around 5 ppm? Commonly, it is appropriate to set U (at V=5
ppm) either 0, or, consider using other forms of non-linear regression. For more
discussions on linear and non-linear regression (e.g., conditional expectation),
see p. 33-39, Isaaks & Srivastava (1989).
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Figure 2.7: Scatter plot of U and V fitted with linear and nonlinear functions.
Note that the non-linear function seems a slightly better fit. However, this
particular 2nd order polynomial does not guarantee positive U at small V values.



2.8. SUGGESTED READING 31

2.8 Suggested Reading

1. Geostatistical estimation: kriging, S. Rouhani, in Rouhani et al. (1996).

2. Modeling spatial variability using geostatistical simulation, A. J. Des-
barats, in Rouhani et al. (1996).

I will also post additional papers on the class ftp site. Stay tuned.


