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Combined Multiscale Creep Strain and Creep Rupture 
Modeling for Composite Materials 

Eric M. Jensen1 and Ray S. Fertig, III.2 
Department of Mechanical Engineering, University of Wyoming, Laramie, WY, 82071 

In this study, a novel multiscale combined creep strain and creep rupture model is 
proposed. By comparing to experimental data it was shown that the model provides accurate 
creep rupture predictions for unidirectional off-axis specimens. The creep strain model 
provides accurate predictions within the confines of the linear elastic restrictions used in its 
development. This creep strain and creep rupture model was incorporated into a progressive 
failure finite element simulation so that the effects of load redistribution could be 
considered, which tended to increase the life of the part. The finite element implementation 
also allowed for the consideration of realistic geometries resulting in complex stress states. 
By considering a perfectly flat specimen and one containing worst case thickness variation 
the experimental open hole creep rupture data was bounded. This suggests that by 
quantifying material defects realistic lifetime predictions can be made and an estimate of 
scatter can be acquired. 

Nomenclature 
 
Bi = static failure coefficients (i = t, s1, s2) 
E = Young’s modulus of matrix 
Edeg = Degraded Young’s modulus of matrix 
h = Planck’s constant 
Ii = transversely isotropic matrix stress invariants (i = t, s1, s2, h) 

k = Boltzmann constant 
Kb = rate of microcracking 
M = proportionality constant relating creep strain to microcrack density 
n = damage variable 
n0 = equilibration parameter that depends on damage accumulation exponent 
Qm = Matrix mapping composite to matrix stress 
t = time 
tf = time to failure 
T = temperature 
U = activation energy for creep rupture 
Kb = pressure strengthening coefficient 
 = pressure strengthening coefficient 
 = activation volume 
 = Matrix strain 
f = Matrix strain due at failure 
 = Matrix strain due to initial elastic loading 
 = shape exponent 
c = composite stress vector 
eff = effective stress 
m = matrix stress vector 
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0 = matrix shear strength 
 

I. Introduction 
IBER reinforced polymers (FRPs) continue to be used in ever increasing quantities for large weight-critical 
structures, such as wind turbines and aircraft.1, 2 These structures are designed to be in service for years or even 

decades and catastrophic failure can have severe consequences. Therefore, long term creep and creep rupture 
predictions are of critical importance. To this end, a multiscale creep strain and creep rupture model based on the 
kinetic theory of fracture has been developed and implemented in a progressive failure subroutine for the finite 
element software Abaqus.3 This novel approach combines continuum damage mechanics for predicting creep strain 
with discrete damage mechanics for predicting the effects of rupture. Experimental data was collected in order to 
calibrate the model and open hole creep rupture data was used to test the models predictive capabilities. By 
considering realistic geometries accurate lifetime predictions can be achieved and insight into the scatter in time to 
failure of a component can be gained. 

II. Model Development 
The proposed creep rupture model is based on the kinetic theory of fracture, which treats damage as a thermally 
activated process.4-8 Damage is predominantly accumulated in the polymer matrix constituent in the form of 
microcracks.9 The rate of microcracking, Kb, can be described as  

 
( )

( ) expb
kT U t

K t
h kT

   
 

  (1) 

where U is the activation energy, γ is the activation volume, h is Planck’s constant, k is Boltzman’s constant and T is 
the absolute temperature. The rate of microcracking is dependent on the applied stress which, in the general case, 
can vary with time denoted as σ(t). The damage evolution can then be described by a differential equation as 
proprosed by Fertig and Kenik,10, 11 which is an enhancement of that proposed by Hansen and Baker-Jarvis12 and 
Hsiao et al.13 as 

  0 b
dn

n n K
dt

    (2) 

The scalar damage parameter, n, represents the ratio of the current microcrack density to the microcrack density at 
failure (n(t=0)=0 and n(tf)=1), t is time and λ is an exponential shape factor. The constant no is determined by 
forcing 
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which forces the differential equation to reproduce Zhurkov’s durability equation4 for the application of a constant 
stress. Solving the differential equation leads to two forms of the damage evolution as 
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  (4) 

This formulation allows for the damage evolution to be predicted for an arbitrary time varying stress. An arbitrary 
time varying stress can be approximated by constant stress time intervals. Then the total damage accumulation at 
some time t after a previous time ti can be calculated assuming a constant stress, σs, for the time interval (t-ti) as 
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  (5) 
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The ni parameter is the normalized damage state at time ti. This formulation lends itself to implementation in a finite 
element analysis where time is incremented discretely and the stress is assumed to remain constant for the time 
increment. For a constant applied stress the time to failure can be found as, 

 exp s
f

Uh
t

kT kT

   
 

  (6) 

The above formulation requires a scalar stress measure, so an effective stress is proposed. Since the damage 
being modeled is microcracking in the polymer matrix material the stress state in the matrix is the quantity of 
interest. A mapping mQ exists which maps the composite stress state to volume averaged matrix stress state as14-17 

 m m cσ Q σ   (7) 

where mσ is the matrix stress tensor and cσ is the composite stress tensor. Then an effective matrix stress as proposed 

by Fertig18  can be calculated as 
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  (8) 

where τo is the matrix shear strength, β is a pressure strengthening term, Bt, Bs1, Bs2 are failure coefficients 
determined from transverse tension, transverse compression, and in plane shear respectively. The denote 

Macaulay brackets such that if the quantity inside is negative the quantity is zero and if the quantity inside the 
brackets is positive it remains that quantity. The It, Is1, Is2, and Ih terms are transversely isotropic stress invariants 

 

   

 

2

22 33 22 33 22 33 23

2 2
1 12 13

2 2
2 22 33 23

22 33

4

2

1

4

t

s

s

h

I

I

I

I

      

 

  

 

    


 

  

 

  (9) 

Static failure of the matrix constituent can be predicted with the related Fertig Failure Criterion18 as 
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  (10) 

With this formulation the time to failure of a composite laminate can be predicted for an arbitrary stress history. 
However, there is no information about the deformation. In many cases the function of a structural component limits 
deformation. Therefore, it is important that creep deformation is also considered. Zhurkov and Kuksenko9 showed 
that in a polymer the creep deformation is linearly related to microcrack density and proposed a form as 
 0 m N      (11) 

where ε is the strain in the loading direction, ε0 is the initial strain state prior to damage, εm is a proportionality 
constant, and N is the microcrack density. Changing the microcrack density variable, N, to a normalized microcrack 
density, n, results in an equivalent relationship 
 0 Mn     (12) 

where M is the new proportionality constant relating change in strain to a normalized microcrack density. If it is 
assumed that the initial state is undamaged and that the initial strain is linear elastic then 

 0
a

elastic E


     (13) 

where E is the elastic modulus of the material and σa is the applied stress. The normalized damage parameter is unity 
at failure so the proportionality constant is simply 
 0fM      (14) 

where εf is the strain at failure. Fiber reinforced polymers tend to fail in a rather brittle and catastrophic manner. 
Therefore, as a first order approximation it is assumed that the material behaves linear elastically to failure then 
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 UT
f E


    (15) 

where σUT is the ultimate tensile strength of the material.  
In order to implement this methodology in a finite element analysis where stresses are typically calculated from 

strains based on a stiffness matrix it is desirable to formulate this as stiffness degradation. Therefore, an effective 
modulus, Edeg, can be defined as, 

 deg
aE




   (16) 

Substituting this into the strain relationship results in 

 
 

deg a

a UT a

E

E n


  


 

  (17) 

Until this point the strain description has been based on the one dimensional case for a polymer under tensile load. 
However, stress and strain are tensors and the polymer matrix in the composite will be subjected to complex stress 
states. Therefore, an effective stress measure is needed. The same effective stress as described above is used 
resulting in a description for the modulus degradation as 

 
 

deg
a
eff

a UT a
eff eff eff

E

E n



  


 
  (18) 

Poisson’s ratio is held constant during the analysis. 

III. Finite Element Implementation 
The creep rupture and creep strain model described above have been combined with a static failure criterion and 

implemented in a progressive failure user material subroutine (UMAT) for the finite element software Abaqus. 
Although the model can handle an arbitrary stress history the focus of this study is the prediction of deformation and 
failure under a constant load. In order to do this the subroutine breaks the analysis into a load step and a hold load 
step.   

During the load step a prescribed load is applied to the modeled geometry and the stress state is calculated 
assuming linear elasticity. Then, mapping the composite stress state to a volume average matrix and fiber stress 
state, static failure of the individual constituents is evaluated. Matrix failure is predicted by the Fertig failure 
criterion and fiber failure is predicted by a maximum fiber stress criterion. If matrix failure is predicted, then the 
composite stiffness tensor is degraded to be that predicted by a hexagonal micromechanics model with the matrix 
moduli decreased to 1% of the original values. If fiber failure is predicted, then composite stiffness is degraded to 
that predicted by a hexagonal micromechanics model with both the matrix and fiber moduli degraded to 1% of the 
original values. For this estimate it was assumed that no change in the constituent Poisson’s ratios occurs. This 
process is iterated until a converged solution is reached. All of the material properties, including the degraded 
stiffness matrices, are provided by the user in a material text file. This allows for alternative material degradation 
methods to be investigated in the future.  

Once a converged solution is achieved in the load step the hold load step begins. This step is broken into a 
predetermined number of time increments. The stress is calculated based on the stiffness at the end of the previous 
increment. It is assumed that the stress state remains constant for the duration of the time increment. If the element 
did not fail previously then damage accumulation for the increment is calculated based on Equation (5). The 
effective modulus of the matrix material at the end of the increment is calculated based on Equation (18). The 
effects of this matrix degradation on the composite properties are estimated by linear least squares regressions to the 
composite properties predicted by a hexagonal micromechanics model with varying matrix moduli which have been 
shifted to ensure that the original properties are reproduced when no damage has occurred. The relationships are, 
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Table 1. Summary of measured elastic material properties 
 E1 (GPa) E2 (GPa) G12(GPa) G23(GPa) ν12 ν23 
Average 134 8.91 4.04 2.65 0.326 0.554 
Std Dev 9.03 0.658 0.464 0.316 0.039 0.089 
COV 0.067 0.074 0.115 0.119 0.120 0.161 

Table 2. Summary of measured composite strengths 
 S11

UT (MPa) S11
UC (MPa) S22

UT (MPa) S22
UC(MPa) S12

US(MPa) S23
US(MPa)

Average 1933 832 45.1 147 57.2 32.4 
Std Dev 52.8 74.3 2.56 2.95 3.87 6.18 
COV 0.027 0.089 0.057 0.020 0.068 0.191 
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 

    
 

 
    

 




  (19) 

The other material parameters are not significantly affected by small changes in matrix modulus so they were held 
constant. The degraded stiffness tensor is stored and is used to predict the starting stress and strain point in the next 
increment. If creep rupture is predicted then the composite properties are discretely degraded to those of the static 
matrix failed state. 

IV. Model Calibration 
 A complete material characterization was performed on unidirectional pre-impregnated carbon/epoxy (Zoltek 
Panex 35 carbon fiber/Hexcel M9.7 Epoxy resin) material system. Strain was measured using foil resistance strain 
gages and an in house digital image correlation (DIC) system.19 The DIC technique also allows for the measurement 
of two dimensional strain fields on the surface of the specimens. Tension and compressions tests were performed 
according to ASTM D3039 and ASTM D3410.20, 21 Shear properties were extracted using the v-notch beam tests of 
ASTM D5379.22 The extracted elastic material properties are summarized in Table 1 and the measured strengths are 
summarized in Table 2. 

 Although this is a complete set of composite properties, the material properties of the individual constituents 
must also be known, as the proposed methodology is a multiscale approach. Unfortunately, the manufacturers do not 
provide all of the necessary material properties. Furthermore, there is much difficulty associated with predicting 
composite material properties. So a complete set of consistent composite and constituent material properties were 
estimated using the Autodesk Simulation Composite Analysis 2014 Material Manager.23 The results are provided in 
Table 3. This consistent set of composite and constituent material properties were used in all subsequent analyses. 
These material properties produce a matrix stress mapping of 
 

 

0.0274336 0.399300 0.399300 0.000000 0.000000 0.000000

0.0015567 0.833861 0.137345 0.000000 0.000000 0.000000

0.0015567 0.137345 0.833861 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.658906 0.000000 0.000000

0.

mQ 

000000 0.000000 0.000000 0.000000 0.658906 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.696516

 
 
 
 
 
 
 
 
  

  (20) 

 
 The matrix shear strength, τ0, was estimated to be the volume average matrix shear stress at composite failure. 
The pressure strengthening term was taken to be similar to published values.18, 24 From the measured transverse 
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Figure 1. Comparison of experimental creep rupture and
model predictions.

         
(Left) Figure 2. Open hole creep rupture experiments and analytical predition comparison.  
(Right) Figure 3.  90° creep strain comparison with same initial strain.

Table 3. Consistent micromechanics material 
properties 

 Matrix Fiber Composite 
E1 (GPa) 3.491 224.8 133.9 
E2 (GPa) 3.491 17.34 9.040 
G12(GPa) 1.229 18.20 3.848 
G23(GPa) 1.229 6.618 2.939 
ν12 0.42 0.271 0.330 
ν23 0.42 0.310 0.538 

Table 4. Summary of extracted failure coefficients and creep constants 
τ0 (MPa) β Bs1 (MPa-2) Bs2 (MPa-2) Bt (MPa-2) U 

 (kJ/mol) 
γ 

(kJ/MPAmol) 
λ 

37.7 0.35 7.0398e-4 8.729e-4 5.5230e-4 259.1 4.82 9 

tensile strength, compressive strength and in plane shear 
strength the failure coefficients of the Fertig failure criterion 
were calculated. These values are summarized in Table 4.
 The activation energy and activation volume, U and γ, of 
the material were determined by fitting to experimental creep 
rupture data of 90° and 45° off axis specimens. The shape 
parameter, λ, was determined by forcing the creep strain 
predictions to follow a similar form to experimental creep 
strain results.9 The results are summarized in Table 4. With 
these parameters, the model is calibrated and creep strain and 
creep rupture predictions can be made. 

V. Results 
 After the model calibration was complete, 
comparisons to experimental data were needed to 
validate that the model was functioning properly. 
The creep predictions based on the analytic time to 
failure of 90° and 45° off axis specimens are 
compared with experimental data in Figure 1. It can 
be seen that the model accurately predicts creep 
rupture of the unidirectional FRPs. However, this is 
the same experimental data that was used to extract 
the activation energy and activation volume, so a 
good fit is expected. In order to test the predictive 
capabilities of the model analytic time to failure 
predictions of open hole specimens were made 
based on an approximate maximum stress at the 
edge of the hole using a stress concentration factor 
of 2. A comparison to experimental data is shown 
in Figure 2. The analytic prediction does pass 
through the range of experimental data but it is 
clear that the behavior is not as well described as 
the whole off-axis tests. In fact, the experimental open hole data seems to be following a much more vertical path 
than the whole specimens suggesting that another factor may be influencing failure of the open hole specimens.   
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(a) (b)  
Figure 4. Creep strain evolution of open hole specimen (a) initial state and (b) after 1010s.  

Table 5. Flat open hole FEA time-to-failure predictions 
Load 
(N) 

Nominal 
Stress (MPa) 

tf Prediction 
(s) 

tf Progressive 
Prediction (s) 

1000 18.0 3.80e10 1.11e13 
1111 20.0 1.19e8 1.01e10 
1200 21.6 1.18e6 2.11e7 

Figure 5. Comparison of FEA open hold time-to-failure and
experimental data points. 

Table 6. Open hole FEA with thickness variations time-to-
failure predictions 

Load 
(N) 

Nominal 
Stress (MPa) 

tf Prediction 
(s) 

tf Progressive 
Prediction (s) 

750 13.5 1.38e6 4.11e7 
800 14.4 2.20e4 9.90e4 
850 15.3 3.52e2 1.00e3 

 A comparison of the creep strain prediction to experimental creep strain for a 90° off-axis specimen, with the 
same initial strain point based on the elastic modulus of the composite, is shown in Figure 3. The shape of the 
predicted creep strain curve and the experimental measurement are very similar suggesting that the shape parameter 
of 9 is a reasonable choice. Furthermore, the amount of creep strain predicted is very similar to what was measured. 
The total strain of the 45° off-axis specimens was significantly under-predicted but the 45° off-axis specimens 
exhibited non-linear behavior that this model is not currently capable of considering.  Within the limitations of the 
assumptions used in its derivation the strain model appears to be providing accurate predictions.  
 The finite element implementation of the 
combined creep strain and creep rupture model 
allowed for the effect of load redistribution due 
to creep strain on the time to failure to be 
investigated. Simulations were performed on 
perfectly flat open hole specimens and the creep 
strain localized at the edge of the hole as 
expected. This is shown in Figure 4. Time to 
failure predictions, based on the initial nominal 
stress and progressive failure, for three load 
cases are provided in Table 5. Clearly the load 
redistribution tends to increase the time to 
failure of the component. This suggests that by 
neglecting load redistribution overly 
conservative failure predictions could be made. 
The finite element predictions are provided as 
the red curves in Figure 5. Clearly, these over-
predict the life of the open hole specimens and 
still do not capture the trend. Another factor 
must be influencing the experimental failure 
times. 
 Previously, it has been shown that thickness 
variation exists in laminates such as the ones 
used for this study.19 This thickness variation 
leads to stress and strain inhomogeneity in the 
composite. This strain inhomogeneity is 
exacerbated by creep deformation as illustrated 
by the two dimensional strain field 
measurements in Figure 6. It is possible that the 
open hole stress concentration is interacting with 
stress concentrations due to thickness variation 
resulting in the unusual vertical nature of the 
experimental data. In order to investigate this, creep failure simulations on an open hole composite containing 
measured thickness variation was performed. This measured thickness variation likely represents a worst case 
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(a) (b)  
Figure 6. 45° specimen strain localization (a) elastic and (b) creep.  

scenario as steps were taken to minimize this in future samples used for the open hole tests. The addition of the 
thickness variation dramatically reduced the time to failure and load carrying capacity of the open hole specimen 
and failure predictions for three load states are provided in Table 6. Again, longer life was predicted by considering 
load redistribution. When these predictions are compared to the experimental data in Figure 5, the failure predictions 
with worse case thickness variation fall below the experimental data points. By considering a perfectly flat specimen 
and one with worst case thickness variation the open hole creep data was bounded. This illustrates that by 
quantifying and considering material defects this methodology allows for realistic life predictions to be made on 
geometries resulting in complex stress states. 

VI. Conclusion 
 This study proposed a novel multiscale combined creep strain and creep rupture model. By comparing to 
experimental data it was shown that the model provides accurate creep rupture predictions for unidirectional off-axis 
specimens. The creep strain model provides accurate predictions within the confines of the linear elastic restrictions 
used in its development. By incorporating this creep strain and creep rupture model in a progressive failure finite 
element simulation the effects of load redistribution can be considered, which tends to increase the life of the part. 
The finite element implementation also allows for the consideration of realistic geometries resulting in complex 
stress states. By considering a perfectly flat specimen and one containing worst case thickness variation the 
experimental open hole creep rupture data was bounded. This suggests that by quantifying material defects realistic 
lifetime predictions can be made and an estimate of scatter can be acquired.  This may lead to more accurate and 
reliable failure predictions of critical structures in the future. 
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