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Abstract 

 
The use of fiber reinforced composites in the wind energy industry is growing rapidly. Owing to 
their increasing importance, it is critical to develop tools to accurately predict their complex 
behavior under different loading conditions. However, their heterogeneous microstructure and 
inherent anisotropy make failure prediction very difficult. Two well-known composite failure 
benchmarks, World-Wide Failure Exercise I (WWFE-I) and World-Wide Failure Exercise II 
(WWFE-II) compared leading failure theories from around the world with one another and with 
actual test results. This paper presents a three-parameter micromechanics-based composite failure 
theory which uses constituent-level stresses to predict matrix-dominated composite failure. A 
representative volume element (RVE) of the microstructure is used to extract constituent stresses 
for use with the failure theory. The merit of the failure theory lies in its simplistic calibration 
which requires just three parameters that can be obtained from three standard composite failure 
tests (transverse tension, transverse compression and in-plane shear). This theory is benchmarked 
against lamina failure test data from WWFE-I and WWFE-II and compared with the failure 
theories that performed comparatively well in WWFE-I and WWFE-II. Our results show that for 
most of the test cases the predictions of the theory were in close agreement with the test data. 
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Introduction 

 
Modern composite materials constitute a significant portion of engineered materials market 
ranging from everyday products to sophisticated niche applications [1]. Unlike conventional 
homogeneous materials like metals, the properties of composite materials can be tailored to meet 
the structural demands of the end product, which results in significant weight and cost savings. 
One of the sectors where fibrous composites are a lucrative choice of materials is the wind energy 
sector. It is important to increase renewable energy production, particularly wind energy 
generation, to achieve the goal of reducing our dependency on fossil fuels. This can be realized 
by installing and expanding many on-shore and off-shore wind farms built with large and extra-
large wind turbines. The durability and longevity of a wind turbine can be enhanced if the wind 
blade materials have high stiffness and strength, and fatigue and environmental resistance. 
Fibrous composites have been utilized extensively in wind turbines because they offer all the 
above advantages. Wind turbine blades are exposed to a variety of complex external loads 
originating from wind, gravity and other natural elements. In order to ensure durability of the 
turbine blade, reliable failure theories are needed that can predict failure of the blade materials. 
The approach in this paper is to use multiscale modeling to predict constituent-level failure. The 
focus of this work will be on benchmarking an existing matrix failure criterion, comparing it with 
some of the leading failure theories, and suggesting areas for enhancement.  



International Conference on Future Technologies for Wind Energy  October 07-09, 2013, Laramie, Wyoming, USA  2 

 

` 

 
Failure Modeling 

 
The Maximum Distortional Energy, or von Mises, criterion is the most widely used criterion for 
predicting yielding in isotropic metals [2]. Composite materials, unlike metals, are anisotropic 
making failure prediction a complicated mechanism. For composite materials, failure criteria can 
be broadly categorized into three groups: limit criteria, interactive criteria, and separate mode 
criteria [3]. The failure theories falling under limit criteria (e.g. maximum stress) predict failure 
load by comparing lamina level stresses 2211 ,(  and )12  with corresponding strengths 
separately. They do not consider interaction among the different stresses and consequently give 
the most conservative results. The interactive failure theories (e.g  Tsai-Wu [4] and Tsai Hill) 
predict failure load using a quadratic or higher order polynomial equation which involves all the 
stress components. The onset of failure is assumed when this equation is satisfied. Separate mode 
criteria are failure theories that have separate matrix failure criterion and fiber failure criterion. 
Failure load is predicted by equations which depend on either one or more stress components. 
Hashin [5], Christensen [6] and Puck [7] failure criterion are some of the examples of separate 
mode failure criteria. Failure theories may also be classified as meso-mechanical or micro-
mechanical depending upon the kind of stresses used to predict failure. Meso-mechanical failure 
theories use lamina level stresses to predict failure of a lamina, whereas micro-mechanical failure 
theories employ constituent level stresses to predict failure of a constituent of a lamina. To 
compare the different failure theories and assess the maturity of different composite failure 
criteria, Soden, Kaddour and Hinton organized the World Wide Failure Exercises [8] [9].  These 
composite failure benchmarks contain detailed assessments of different theories and their 
approaches for predicting the failure response of polymer composite laminates under complex 
states of stress. The different failure theories were benchmarked against carefully selected test 
cases after which they were assessed qualitatively. Puck [7], Zinoview [8], Tsai [9] and Bogetti 
[10] were ranked highest [11] in the first World Wide Failure Exercise (WWFE-I) and Carrere 
[12], Pinho [13], Cuntze [14] and Puck [15] were ranked highest [16] in the second World Wide 
Failure Exercise (WWFE-II) for their predictions and descriptions of failure mechanics in 
composite materials. One major drawback that is evident in all these theories is the use of a 
substantially large number of input parameters (from 50-75) and thus difficult in calibrating them.  
 
The micromechanical matrix failure theory used in this paper requires three parameters, which all 
have physical meaning, and utilizes volume-average constituent level stresses to predict failure of 
a constituent (matrix or fiber here) and thereby of the composite. The merit of the failure theory 
lies in its simplistic calibration which is required to obtain the three parameters required to predict 
failure load under any composite state of stress. The matrix failure theory is outlined below [17] 
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where  21,, sst BBB  represent the coefficients of the stress invariants;  

hsst IIII ,,, 21  represent the invariants of matrix stress tensor, 

0  represents the shear strength of the matrix,  

and   represents pressure strengthening due to compressive loading (~ 0.35) [18].  
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The values of iB  are determined from three composite static failure tests: transverse tension, 

transverse compression, and in-plane shear, all of which involve failure of the matrix constituent. 
The invariants are computed from the volume average matrix stresses as follows 
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where It corresponds to the maximum tensile stress normal to the fiber, Is1 is related to the in-
plane shear, Is2 is related to the transverse shear, and Ih represents the pressure on the maximum 
transverse shear.     

 
The fiber failure criterion is outlined below 
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where fS11  is the longitudinal tensile strength of the fiber and fS11 compressive strength of the 
fiber. 
 
The constituent level stresses were extracted 
from a Representative Volume Element (RVE) 
of an idealized microstructure of a hexagonally 
packed fiber reinforced composite, shown in 
Fig. 1. The RVE has periodic boundary 
conditions enforced on all its sides and was 
subjected to six types of loads

 11 22 33 12 13 23, , , , ,      , which generated 

stresses in the fiber and the matrix regions. 
After extracting stresses from the fiber and the 
matrix regions, volume average constituent 
stresses were computed. There exists a mapping
 between the composite and constituent 
stresses, which can be used to compute 
constituent level stresses for any type of 
composite load state. This mapping can be 
computed as shown below [19] 
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Figure 1 : The RVE with hexagonal fiber packing 
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where, the subscript L denotes the load case,  i  denotes the six components of the stress vector, 
f  denotes the fiber, m denotes the matrix and c denotes the composite. For example the 

mapping functions for matrix constituent under a pure 11  composite load state are   
 

c

m
im

i
1

1 


              (8) 

 
Thus for any composite load state, the stress i  in a constituent a is given by 
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Results 

 
The focus of this work is to use the Fertig failure theory to predict failure of composites and 
benchmark it against lamina failure test data [20][21] from well know composite failure 
benchmarks ‘World Wide Failure Exercise-I’ (WWFE-I) and ‘World Wide Failure Exercise-II’ 
(WWFE-II).  The failure exercises contain in total twenty-six carefully selected test cases which 
include strength envelopes and stress-strain curves for a range of unidirectional and 
multidirectional laminates. This failure theory is benchmarked against seven strength envelopes 
for unidirectional laminae. These are ideal for evaluating failure criteria, whereas laminate level 
tests are appropriate for evaluating the combination of failure criteria with progressive damage 
methodology. The details of the test cases are included in Table 1. The results obtained were 
compared with leading theories from WWFE-I and WWFE-II discussed above. 
 
 

Table 1 

 
 
The benchmarking of the theory and its comparison with the leading failure theories is shown 
below. 
 
Test case 1: GRP lamina under combined transverse normal and shear loading 
The failure envelopes predicted by the Fertig failure theory for case 1 are shown in Fig. 2. Figure 
2(a) shows the failure envelope when the UD values provided by the WWFE-I authors were used 
as model inputs. Figure 2(b) shows the failure envelope obtained when different UD values were 

Test 
case 

Lamina 
layup 

Material Loading 

1 0° E-glass/LY556 epoxy 2  vs. 12  

2 0° T300/BSL914C carbon/epoxy 1  vs. 12  

3 0° E-glass/MY750 epoxy 2  vs. 1  

4 0° T300/PR319  
12  vs. 2 )( 321    

5 90° E-glass/MY750 epoxy 
2  vs. 3  )( 31    

6 0° S-glass/epoxy 
1  vs. 3 )( 32    

7 0° Carbon/epoxy 
1  vs. 3 )( 32    
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used as inputs to the model which yielded slightly better results. In both the cases (a) and (b), the 
theory fits the shape of the test data very well especially in the (

122 , ) quadrant. In case (a), 

Fertig failure theory is conservative, especially in the ( 122 , ) quadrant. By choosing a 
different transverse compressive strength than the one given by the originators of the exercise, the 
theory predicts a failure envelope which is a little less conservative.    
 
 

 
 
Test case 2: GRP lamina under combined 
longitudinal and shear loading 
The failure envelopes predicted by the Fertig 
failure theory for test case 2 are shown in Fig. 3. 
It can be seen that the theory captures the general 
shape of the experiments very well except in the 
high-shear region. It is known that material 
inhomogeneity in a composite gives rise to stress 
and strain fluctuations in the constituents. We 
have already shown that the volume average 
matrix stresses do not capture these stress/strain 
fluctuations in the constituents of the composite 
material and thus all the strain energy of a 
constituent is not accounted for [22]. The bulk of 
this missing energy (about 30%) is due to 
fluctuations in the matrix constituent when the 
composite is a under shear state of stress. 
Because our failure theory uses volume average 
constituent level stresses to predict failure of the constituents of the composite material, the 
matrix failure in this high shear region is not captured well since the missing strain energy in the 
matrix constituent is ignored. The matrix failure theory needs to be augmented with this missing 
energy to improve the predictions for this test case. 
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Test case 3: CFRP lamina under combined normal and longitudinal loading 
The failure predictions of our failure theory and a modified failure theory are shown in Fig. 4.  
Figure 4(a) shows the failure envelope obtained using the original Fertig failure theory. It can be 
seen that like most of leading theories, the Fertig failure theory is very conservative in the  

 

 1 2,    quadrant. 

Figure 4(b) shows the 
failure predictions of a 
modified Fertig failure 
theory which captures the 
shape of the experiments 
better than any of the 
leading failure theories in 
WWFE-I.  
 
This modified approach first 
requires the calculation of 
the matrix stress 
concentration factor in an 
ideal microstructure at the 
point of critical matrix 
failure under transverse 
tension. Figure 5 shows the 
fluctuations in the maximum 
principal matrix stress when 
the RVE with hexagonal 
fiber packing was subjected 
to transverse failure load.  
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The matrix stress concentration factor ( m ) can be computed using the maximum and nominal 

(or volume average) stresses as follows 
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where   m  is the matrix stress concentration factor  
m

max  and m

nom  are maximum principal and nominal matrix stresses respectively 

 
The modified matrix failure criteria is as follows 
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where    m

principalmax  is the maximum principal matrix stress 

 m

VMl  is the Von Mises stress in the matrix  
m

tS    is the transverse tensile strength of the matrix 
m

VMS   is the Von Mises strength of the matrix 

and m is the matrix stress concentration factor  

 
The fiber failure criterion remains unchanged. In test case 3, it was observed that after the point 
of critical failure, the matrix failure was due to large principal stresses in the fiber direction. After 
this point even though the matrix was failing, the fiber could hold the composite together but it 
now it was carrying a larger load. To calculate the resultant fiber stresses after matrix failure, the 
matrix properties were degraded as follows 
 

m
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where m

newE and m

originalE  are the new and original Elastic moduli of the matrix respectively and  
m

new  and m

original  are the new and original poisons ratio of the matrix respectively. 

The new resultant fiber stresses were computed from the RVE with hexagonal fiber packing using 
the procedure discussed in the second section (Failure Modeling). The original fiber failure 
criterion and new fiber stresses were then used to compute failure load which represents 
catastrophic composite failure. The modified approach was used to predict failure load in the (

21 ,   ) and ( 21,   ) quadrants while the original Fertig failure theory was used in the 
remaining two quadrants.   
 
Test case 4: Combined hydrostatic and shear loading 
The failure envelopes predicted by the Fertig failure theory for test case 4 are shown in Fig. 6. 
Figure 6(a) shows the failure envelope when the UD values provided by the authors were used as 
model inputs and and Fig. 6(b) shows the failure envelope when different UD values were 
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used as inputs to the model and35. In both the cases (a) and (b), the theory fits the shape of 
the test data very well. When the shear strength of the 0° tubes is used as one of the model inputs,  
the theory captures the test data of the 0° very well. When the UD values provided by the 
originators of the exercise are used, the pressure strengthening term has to be reduced to 0.1 
from 0.35 to capture the failure of 90° tubes.  
 

 
Test case 5-7:  
The failure envelopes predicted by the Fertig failure theory for test cases 5-7, which are omitted 
for space, are very similar to the other theories that have been compared. The exception is when 
the primary mode of failure is fiber kinking, where only two theories have been shown to be 
accurate, but require extensive calibration.  

 
Conclusions 

 
The failure envelopes from the Fertig failure theory were compared with the lamina failure test 
data from WWFE-I and WWFE-II. It was concluded for most of the test cases, the predictions of 
the theory were in close agreement with the test data. The predictions of the theory were also 
similar to the leading failure theories from the WWFE exercises. However, the leading theories 
from WWFE-I and WWFE-II require substantially more input parameters, which makes 
calibration very difficult. The merit of Fertig failure theory lies in its simplistic calibration, which 
requires just three parameters that can be obtained from three standard composite failure tests 
(transverse tension, transverse compression and in-plane shear). The modified Fertig failure 
theory, which is a two parameter theory, performed better than any of the leading failure theories 
in predicting the strength of the composite under combined transverse and longitudinal loads 
(Test case 3). Under combined longitudinal and shear loading (Test case 2), the Fertig failure 
theory did not predict the failure loads when the composite was under high-shear and low- 
longitudinal stresses. It has already been shown that the volume average matrix stresses do not 



International Conference on Future Technologies for Wind Energy  October 07-09, 2013, Laramie, Wyoming, USA  9 

 

` 

capture the stress/strain fluctuations in the constituents of the composite material and thus all the 
strain energy of a constituent is not accounted for especially under shear loading. Moreover, for 
commonly used fiber volume fractions, almost all of the strain energy is due to the fluctuations in 
the matrix constituent. Consequently, only the matrix failure needs to be augmented with this 
missing energy to improve on the predictions for the particular test case.  
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