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Abstract

This manuscript presents a multiscale reduced-order modeling framework for

heterogeneous materials that accounts for both cohesive interface failure and con-

tinuum damage. The model builds on the eigendeformation-based reduced-order

homogenization model (EHM), which relies on the pre-calculation of a set of

coefficient tensors that account for the effects of linear and nonlinear material

behavior between regions of the domain known as parts. A k-means clustering

algorithm is used to optimally construct these parts and a new formulation for the

partitioning of interfaces using this method is proposed. The extraction of the

volumetric and interfacial influence functions is performed using the Interface-

enriched Generalized Finite Element Method (IGFEM), which relies on a finite

element discretization that does not conform to the material phase boundaries.

A Lagrange multiplier method is used in this preprocessing phase, allowing for

the reuse of the matrix factorization for different influence function problems and

hence leading to efficiency improvement. A newly proposed traction calculation

for the interface partition is also adopted to alleviate the instability caused by

traction calculations along interfaces. The accuracy and efficiency of the IGFEM-

EHM method is assessed through comparison with reference IGFEM simulations.

The method is then used to extract the nonlinear multiscale response of particu-

late, unidirectional fiber-reinforced, and woven composites.
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1 Introduction

Composite materials demonstrate different failure modes including volumetric damage to

the various phases and interfacial damage along the matrix/reinforcement interfaces [1]. From

a numerical point of view, accounting for these different failure modes not only poses significant

challenges in the modeling strategy (e.g., representation of continuum and interfacial damage),5

but also requires an efficient multiscale solution approach that bridges the response at the

microstructure scale to that of the structural scale.

Computational homogenization has been effectively used to determine effective elastic [2,

3, 4, 5] and inelastic [6] responses of representative periodic unit cells (PUCs), providing a

method of upscaling the response of a fully resolved microstructure to that of a material point10

at the macroscale [7, 8, 9]. While homogenization techniques have been successfully applied

to a wide range of materials and physical phenomena (e.g., see review in [10]), using direct

computational homogenization for structural scale simulation still remains computationally

prohibitive even with massive parallelization [11] and efficient solver methodologies [12].

To alleviate the computational cost associated with computational homogenization, dif-15

ferent strategies have been adopted in the literature with a focus on model-order reduc-

tion of the microscale problem, including the proper orthogonal decomposition [13, 14], fast

Fourier transform [15] and its extension to incorporate interface decohesion [16], self-consistent

clustering analysis [17, 18], data driven modeling [19] and its interfacial failure formulation

[20], transformation field analysis (TFA) [6] and its nonuniform extension (NTFA) [21]. The20

eigendeformation-based reduced-order homogenization model (EHM), which is based on TFA,

provides a hierarchical model-order reduction strategy for heterogeneous materials [22, 23],

and has been further advanced to model different constituents in the presence of plasticity

[24, 25, 26, 27, 28] and/or damage (both continuum and discrete) [29, 30]. EHM allows

for efficient modeling of the inelastic behavior of complex microstructures, but the elastic25

components of the microstructure response must be precomputed using other methods in

its preprocessing stage. In addition, the application of EHM for composite materials and

structures has so far been mostly limited to relatively simple microstructures (e.g., a single

inclusion), and the capability to handle large and complex microstructures with the presence

of multiple failure modes is still to be demonstrated.30

Many methods may be used to evaluate the elastic response of a given microstructure

including the standard Finite Element Method (FEM) or other Generalized Finite Element

Methods (GFEM). Due to its ability to capture complex microstructures by incorporating
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non-conforming meshes and intuitive enrichment functions, the Interface-enriched Generalized

Finite Element Method (IGFEM) [31] has been selected for the preprocessing stage in this35

work.

This manuscript builds on the ideas of EHM and introduces the following contributions:

(i) The elastic preprocessing stage is conducted using the IGFEM, which allows for modeling of

many geometries with a single finite element discretization; (ii) A Lagrange multiplier method

is adopted for the preprocessing step to solve the influence functions corresponding to each40

interface partition, thereby allowing for the re-use of the stiffness matrix factorization and

vastly improving the EHM preprocessing efficiency; (iii) A new average traction formulation

for the interface parts is proposed, which eliminates stability issues with the IGFEM-based

EHM when interfacial cohesive failure [32, 33, 34] is considered; (iv) The clustering scheme

proposed in [17] is extended for interface partitioning and is shown to greatly speed up the45

convergence of the IGFEM-EHM scheme, even for large and complex microstructures.

This manuscript is organized as follows: Section 2 starts with an overview of the EHM,

then proceeds with its integration with IGFEM focusing on both the preprocessing stage and

the formation of the reduced-order system with emphasis on the new treatment of the traction

formulation. The clustering method for the generation of the phase parts and its extension50

to the interfacial parts are also presented in that section. Section 3 covers the phase and

interface inelastic models considered in the remainder of the manuscript. Section 4 conducts

a systematic verification study of the convergence of the solution from the IGFEM-EHM

scheme for the cases of inclusion damage, matrix damage, and cohesive failure. The proposed

method is applied to several complex microstructures in Section 5, and Section 6 summarizes55

this manuscript and proposes future research directions.

2 IGFEM-Based EHM

This section summarizes the existing EHM method that accounts for nonlinear responses in

the matrix and reinforcement phases and along the material interfaces of composite materials,

and details the use of IGFEM in conjunction with a Lagrange multiplier scheme for efficient60

preprocessing. A novel traction homogenization scheme is then proposed to compute the

reduced-order system of equations.

The standard computational homogenization problem seeks to evaluate the mechanical

response of a material through the direct homogenization of the stress field in a unit cell

problem over the domain Θ subject to a macroscopic strain loading ε̄. The macroscopic strain65

is assumed to be constant over Θ in accordance with the separation-of-scales assumption. The

response of this microscale domain is governed by
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σij,j (ε (y)) = 0, y ∈ Θ

εij (y) = ε̄ij + ε̃ij (y) ,

ε̃ij (y) =
1

2
(ũi,j + ũj,i) ,

σij (y)nj (y) = ti (Jũ (y)K) , y ∈ Γ

σ̄ij =
1

|Θ|

∫
Θ
σij (y) dΘ,

(1)

where the strain tensor εij has been decomposed into contributions from the macroscale com-

ponent ε̄ij and a perturbation value ε̃ij defined as the symmetric gradient of the perturbation

displacement ũi, which is periodic in Θ. | · | operator indicates the volume (3D) or area (2D)70

of Θ. f,i denotes partial derivative of f with respect to yi. Additionally, the fourth equation

in (1) relates the cohesive tractions, ti, caused by jumps in ũ along material interfaces, Γ, to

the local stress field and the interface normal vector nj . The final equation in (1) relates the

local stresses σij to the macroscopic stress σ̄ij .

As a point of departure to the conventional computational homogenization, EHM seeks a75

reduced representation of the full-field microscale problem. EHM expresses the perturbation

displacement in terms of influence functions, which are numerical Green’s functions computed

by solving linear elastic problems defined over the microstructure domain. The inelastic fields

within the microstructure (or eigendeformation in the context of TFA [6, 35]) are approx-

imated by a coarse discretization associated with subdomains, referred to as reduced-order80

parts, of the microstructure. Specifically, the volume of the microstructure that is damage-

able is partitioned into M̃ parts denoted by Θ[α], α = 1, 2..., M̃ , and all the material interfaces

are partitioned into M̆ interfacial parts denoted by Γ[ξ], ξ = 1, 2..., M̆ . All phase and interfa-

cial parts are non-overlapping (i.e., Θ[α] ∩Θ[β] = ∅ for α 6= β, Γ[ξ] ∩ Γ[η] = ∅ for ξ 6= η). The

perturbation displacement field from (1) is then approximated by85

ũi(y) = Hkl
i (y)ε̄kl +

M̆∑
ξ=1

h̆
n[ξ]
i (y)δ[ξ]

n +
M̃∑
ξ=1

h̃
kl[α]
i (y)µ

([α]
kl , (2)

which is a linear combination of the elastic (H), phase inelastic (h̃) and interface inelastic

(h̆) influence functions that will be derived in Section 2.1. δ
[ξ]
n is the displacement jump on

interface part ξ and µ
([α]
kl is the inelastic strain in phase part α.

Employing the microscale displacement discretization and the assumed spatial variance

of the inelastic response in the microstructure (e.g., piecewise constant over each part), the90

microscale governing equations are converted to an algebraic system that is solved for the

small set of eigenstrain coefficients for each volume part, and of eigenseparation coefficients

for each interfacial part. The detailed derivation of the reduced-order model (ROM) system
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can be found in [22, 23], leading to the following form of the ROM system that replaces the

full-field microscale problem:95

E
kl[β]
ij ε̄kl +

M̃∑
α=1

P
kl[βα]
ij µ

[α]
kl (ε[α]) +

M̆∑
ξ=1

O
m[βξ]
ij δ[ξ]

m − ε
[β]
ij = 0, (3a)

t[η]
n (δ[η])−

M̃∑
α=1

Ckl[ηα]
n µ

[α]
kl (ε[α])−

M̆∑
ξ=1

Dm[ηξ]
n δ[ξ]

m − T kl[η]
n ε̄kl = 0, (3b)

where µ[α](ε[α]) is a nonlinear material model for the inelastic strain caused by the total

strain in part α, ε[α]. The nonlinear cohesive zone model t[η](δ[η]) gives the traction on part η

caused by the local displacement jump δ[η]. The E, P , and O tensors are the concentration

and interaction tensors acting on a phase part β,100

E
kl[β]
ij =

1∣∣Θ[β]
∣∣ ∫

Θ[β]

Hkl
(i,yj)

(y)dΘ + Iijkl,

P
kl[βα]
ij =

1∣∣Θ[β]
∣∣ ∫

Θ[β]

h̃
kl[α]
(i,yj)

(y)dΘ,

O
m[βξ]
ij =

1∣∣Θ[β]
∣∣ ∫

Θ[β]

h̆
m[ξ]
(i,yj)

(y)dΘ,

(4)

while the T , C, and D tensors are the concentration and interaction tensors acting on an

interface part ξ expressed as

T kl[η]
n =

1∣∣Γ[η]
∣∣ ∫

Γ[η]

Qni(y)Lijpq(y)
[
Hkl

(p,yq)
(y) + Ipqkl(y)

]
n̄j(y)dΓ,

Ckl[ηα]
n =

1∣∣Γ[η]
∣∣ ∫

Γ[η]

Qni(y)Lijpq(y)
[
h̃
kl[α]
(p,yq)

(y)− I [α]
pqkl(y)

]
n̄j(y)dΓ,

Dm[ηξ]
n =

1∣∣Γ[η]
∣∣ ∫

Γ[η]

Qni(y)Lijpq(y)h̆
m[ξ]
(p,yq)

(y)n̄j(y)dΓ.

(5)

In (5), Qik is an orthogonal transformation matrix defined by the material interface geometry

which transforms the vector into a local coordinate system on the interface surface and n̄j

is the interface unit normal vector. All the coefficient tensors (i.e., E, P , O, T , C and D)105

are functions of the influence functions, which are computed in the preprocessing stage for a

given microstructure and ROM partitioning.

After the above ROM system is solved, the macroscale stresses are computed as an average

over the PUC as

σ̄ij = L̄ijklε̄kl +

M̃∑
α=1

Ā
[α]
ijklµ

[α]
kl +

M̆∑
ξ=1

B̄
[ξ]
ijnδ

[ξ]
n , (6)
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where

L̄ijkl =
1

|Θ|

∫
Θ
Lijpq(y)

[
Hkl

(p,yq)
(y) + Ipqkl(y)

]
dΘ,

Ā
[α]
ijkl =

1

|Θ|

∫
Θ
Lijpq(y)

[
h̃
kl[α]
(p,yq)

(y)− I [α]
pqkl(y)

]
dΘ,

B̄
[ξ]
ijn =

1

|Θ|

∫
Θ
Lijkl(y)h̆

n[ξ]
k,yl

(y)dΘ.

(7)

I
[α]
pqkl is the piecewise constant identity tensor defined in (9). Equations (3) - (7), together110

with constitutive equations for the nonlinear phase parts and traction-separation laws for the

interface parts, complete the ROM formulation. This ROM can be used to investigate the

response of a microstructure under a prescribed macroscale loading history. Alternatively, the

ROM can serve as a constitutive equation of a material point of the macroscale problem in a

coupled multiscale analysis, but this manuscript focuses on the former.115

2.1 Influence functions calculation using IGFEM

IGFEM efficiently models complex heterogeneous microstructures due to its use of finite-

element discretizations that do not conform to the internal microstructure geometry and to

its intuitive introduction of enrichment functions. The method relies on enriched degrees

of freedom placed along the intersection of the material interfaces with the non-conforming120

background mesh (Figure 1). The intersected elements are split into subdomains called inte-

gration elements where the shape functions associated with the enriched degrees of freedom

are defined. The Lagrange shape functions of the integration elements are typically used as

enrichment functions, which has the advantages over other GFEM methods of simplicity and

of vanishing at the non-enrichment nodes, allowing for easy application of Dirichlet bound-125

ary conditions. For more details on IGFEM, see [36, 37]. The IGFEM can also be used to

capture interfacial debonding [38, 39, 40, 41, 42] by introducing two superposed nodes at

each interface-mesh intersection point as shown in Figure 1b. As shown hereafter, a standard

application of the IGFEM to the influence function governing equations, combined with a

Lagrange multiplier scheme, can be used to solve the influence function problems efficiently.130

Influence function problems are directly derived from the microscale equilibrium by dif-

ferent combinations of the eigenstrains and eigenseparations, ensuring automatic satisfaction

of the microscale equilibrium as detailed in [22] and summarized here for completeness. The

Elastic Influence Function (EIF) problem represents the response of the elastic microstructure

under unit macroscopic strains with perfect interfaces and is described by135

{
Lijmn(y)

(
Imnkl +Hkl

(m,yn)(y)
)}

,yj
= 0 y ∈ Θ. (8)
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(a) Perfect interface (b) Cohesive interface

Figure 1: 4-node tetrahedral element intersected by one (a) perfect material interface and

(b) cohesive material interface. The IGFEM formulation can be expanded to non-conforming

elements intersected by multiple interfaces [43].

This elastic problem is readily solved using IGFEM by successively enforcing a unit macro-

scopic strain loading for each component of ε̄. The resulting periodic solution field, Hkl
i (y),

is the perturbation displacement component i induced by the unit strain component ε̄kl.

Similarly, the Phase Influence Function (PIF) problem represents the response in each

phase part due to a unit eigenstrain acting in part α for the elastic microstructure with140

perfect interfaces and is expressed as{
Lijmn(y)

(
h̃
kl[α]
(m,yn)(y)− I [α]

mnkl(y)
)}

,yj
= 0, y ∈ Ω ∀α

I
[α]
mnkl(y) =

{
Imnkl y ∈ Θ[α]

0 otherwise
.

(9)

This problem can again be solved for each phase part by imposing negative unit macro-

scopic strains acting in each phase part α and computing the resulting periodic perturbation

displacements, giving the PIF h̃
kl[α]
i for part α subject to unit inelastic strains µkl. For three-

dimensional problems, this involves solving 6 · M̃ linear finite element problems. However, all145

PIF problems have the same tangent stiffness matrix so they can be computed very efficiently

using a direct matrix factorization.

The Interface Influence Function (IIF) problem describes the effect of a unit displacement

jump opening on a given interface part ξ on the surrounding elastic field. This problem is

given by150
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{
Lijkl(y)h̆

m[ξ]
(k,yl)

(y)
}
,yj

= 0, y ∈ Θ ∀ξ

Qik(y)Jh̆m[ξ]
k (y)K = δim

∑
n∈Γ[ξ]

N e
n(y) y ∈ Γ[ξ].

(10)

Qik is the same transformation matrix introduced in (5) and δim is the Kronecker Delta. N e
n

are the cohesive element shape function corresponding to nodes that are part of interface part

ζ. This sum of shape functions enforces a displacement jump solution that is C0-continuous

for standard Lagrange shape functions rather than fully piecewise constant. The IIF, h̆
m[ξ]
k (y),

is the resulting periodic perturbation displacement field.155

Previous work [22, 23, 44] recommends inserting mirror nodes to all current interface part

nodes while enforcing perfect interfaces elsewhere by eliminating the mirror nodes along these

perfect interfaces. This approach has the disadvantage of modifying the stiffness matrix for

the evaluation of every IIF problem and requires refactoring the stiffness matrix each time.

An alternative method is adopted here that allows us to reuse the full matrix factorization for160

every EIF, PIF, and IIF calculation. Node pairs are included for all material interface-mesh

intersection points as in Figure 1b and constraints are imposed on the displacement jumps

across these node pairs:

gni = Qij(y
n)Jũnj K−∆n∗

i = 0 ∀n ∈ Γ, (11)

where ũnj is the jth component of the EIF, PIF, or IIF on the given interface node-pair n, and

∆n∗
i is the prescribed displacement jump in the ith direction. For EIF and PIF calculations,165

this value is always 0. For the IIF problem for h̆
m[ξ]
j , ∆n∗

i = 1 if n ∈ Γ[ξ] and if i = m.

These constraints can be expressed in matrix form as

g = GŨ −∆∗ = 0,

G = A
n∈Γ

Q(yn),

∆∗ = A
n∈Γ

∆n∗,

(12)

allowing us to form the Lagrangian

L
(
Ũ ,Λ

)
=

1

2

(
Ū + Ũ

)T
K
(
Ū + Ũ

)
+ ΛTg, (13)

where the full finite element displacement vector is split into its perturbation portion Ũ and

the contribution from the macroscopic loading Ū . Λ is the vector of Lagrange multipliers. K170

is the linear portion of the finite element stiffness matrix and Ũ can be the solution of any
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of the influence function problems presented in (8), (9), or (10). Minimizing this Lagrangian

leads to the system of linear equations[
K GT

G 0

]{
Ũ

Λ

}
=

{
−P
∆∗

}
, (14)

for all influence function problems.

For the EIF problem, Hkl, the internal load is175

P kl = A
e∈Θ

∫
Θe

BT v(Lijkl)dΘ (15)

while the constraint vector ∆∗ = 0. Here e indicates element number, and Θe denotes the

domain associated with element e. B is the standard arrangement of finite element shape

function gradients, and v(·) operator represents transformation of the high-order tensor to

Voigt notation. For the PIF problem, h̃
kl[α]

, the constraint vector is also equal to 0 while the

internal load is180

P kl[α] = − A
e∈Θ[α]

∫
Θe

BT v(Lijkl)dΘ. (16)

For the IIF problem, h̆
m[ξ]

, the internal load is 0 but the constraint vector is

∆∗m[ξ] = A
n∈Γ[ξ]

δim. (17)

In this vector assembly, every interface node-pair of the interface part ξ is assigned a local

displacement jump opening with a single nonzero entry in the mth location.

2.2 Reduced traction integration

The formulation of averaging the traction vector along interface parts in (5) is identical185

to the formulation presented in [44], but it may create an unstable system when the influence

functions are solved via IGFEM due to the presence of sliver integration elements along

interfaces. These sliver elements have poor stress solutions due to the ill-conditioning of the

finite element stiffness matrix and, when these stresses are directly used to average a surface

traction, the resulting ROM system may become unstable. Instead, rather than calculating190

the traction directly from the influence functions, the nodal forces from the IGFEM solution

of the influence functions can be reused to evaluate the integrals:
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T kl[η]
n = − 1∣∣Γ[η]

∣∣ ∑
p∈Γ[η]

Qni(y
p) pF kli ,

Ckl[ηα]
n = − 1∣∣Γ[η]

∣∣ ∑
p∈Γ[η]

Qni(y
n) pF

kl[α]
i ,

Dm[ηξ]
n = − 1∣∣Γ[η]

∣∣ ∑
p∈Γ[η]

Qni(y
n) pF

m[ξ]
i .

(18)

The nodal forces at all points p in the interface part η are transformed to local coordinates

by the transformation matrix Q at point p and summed. They are then averaged over the

area of the interface. The internal forces are calculated from the loads in (15) and (16) and195

by integration of the appropriate influence functions as

F ij = A
e∈Θ

∫
Θe

BT v
(
LpqklH

ij
(k,yl)

)
dΘ + P ij ,

F ij[α] = A
e∈Θ

∫
Θe

BT v
(
Lpqklh̃

ij[α]
(k,yl)

)
dΘ + P ij[α],

Fm[ξ] = A
e∈Θ

∫
Θe

BT v
(
Lpqklh̆

m[ξ]
(k,yl)

)
dΘ.

(19)

The evaluation of (5) by volume integrals rather than surface integrals leads to a stable ROM

system because the nodal forces are guaranteed to be in static equilibrium by the definition

of the influence function problems which are solve via IGFEM. The traction integrals from

(5) are a post-processing step and thus do not have the same guarantee.200

2.3 Domain partitioning

Many ROMs rely on representing the microscale problem using a small number of functions

spanning a basis with dimensions much smaller than the full microscale problem. Choosing the

appropriate basis, as well as the order that can represent the fine scale response, is therefore

critical. In EHM, this choice consists of splitting the damageable phase regions and imperfect205

interfaces into a desired number of parts, and selecting their geometries. Increasing the num-

ber of parts decreases the model error but also increases the computational cost. It is therefore

desirable to achieve the lowest error using the fewest number of parts. While the concept of

dynamic partitioning to achieve adaptive model order refinement on the fly is proposed in [22],

most studies adopt a static partitioning defined in the preprocessing that is kept unchanged in210

the nonlinear analysis. Partitioning can be based on the geometry or the mechanical response
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of the microstructure. In the geometry-based partitioning, geometrical features such as in-

ternal inclusion geometries in particulate composites or grains in polycrystalline metals are

used to partition the microstructures [45, 46, 47, 48, 49, 50]. In response-based partitioning,

the microstructure is subjected to a given loading, and sub-domains of the microstructure215

with similar responses are grouped into the same parts [17, 18]. Optimization can also be

used to determine the optimal partitioning of the microstructure [51, 52]. To that end, the

response-based partitioning scheme for phases described in [17] is adopted here and further

extended to interface partitioning. A k-means clustering algorithm is used to optimally form

groups of elements and nodes that behave similarly in their elastic response, which ensures220

that the assumptions of uniform inelastic strains and displacement jump openings that were

made in the ROM formulation will produce minimal errors for a set number of parts.

The strain concentration tensor, Aijkl(y), defined at each integration point as

εij(y) = Aijkl(y)ε̄kl (20)

is utilized to determine how similarly elements behave and is obtained from the elastic influ-

ence function problem. This tensor is then averaged in each element using Gauss quadrature.225

Examples of the difference between geometry-based partitioning and this clustering partition-

ing of the phase region can be found in [17]. While for standard FEM, entire elements are

grouped together into phase parts, integration elements (as depicted in Fig. 1) are grouped

when using IGFEM.

To extend this partitioning scheme for interfaces, a similar measure for the interfacial230

parts is the displacement jump opening at each interface node-pair. To cluster by displacement

jumps, an additional elastic problem must thus be solved where the constraints in (11) are not

applied and a linear cohesive law with stiffness equal to the initial stiffness of the nonlinear

cohesive zone model (CZM) is applied to cohesive surfaces. Equation (8) is then solved

with the inclusion of these cohesive elements and the displacement jump openings for each235

load component are recorded, leading to a displacement jump concentration matrix Jnij(y)

introduced as

δn(y) = Jnij(y)ε̄ij , (21)

which is defined at each interface node-pair. This value is then used to cluster interface

node pairs into interface parts. Figure 2 shows the difference between a geometry-based

partitioning and a clustering-based partitioning of the interface of a simple single sphere240

geometry. While the geometry-based partitioning assumes that adjacent regions have a similar

opening response, the clustering method ensures this and allows disconnected areas to belong

to the same part.

In three dimensions, the A matrix is 6x6 and the J matrix is 3x6 when Voigt notation

is used. In this work only the columns corresponding to nonzero components of the applied245
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macroscopic loads are considered, but in general a full representation of the A and J matrices

can be considered to generate a partitioning that robustly models responses to many load

cases.

Aijkl(y) and Jnij(y) are clustered using the standard Lloyd’s algorithm, which iteratively

finds the centroid of each cluster of data, and then re-partitions based on which centroid is250

closest to each data point until the cluster assignments cease to change [53]. The quality of the

partitioning produced by this algorithm strongly depends on starting with a representative

set of cluster centroids for the initial assignment. For this reason, the k-means++ algorithm

[54] is employed to seed the initial centroids and ncluster data points are randomly selected

with preference given to points far away from those previously selected.255

(a) (b)

Figure 2: Example partitioning of the the cohesive interface around a spherical inclusion

using four parts. (a) A geometry-based partitioning. (b) Partitioning based on clustering of

displacement jump openings.

3 Nonlinear Damage Models

The two material nonlinearities that are examined in this work are cohesive debonding

of material interfaces and continuum damage inside of reinforcement phases as well as in the

surrounding matrix. This combination of models is able to capture a rich set of homogenized

material behaviors and the specific choice of traction and damage models chosen here may260

readily be interchanged with others.

3.1 Cohesive interface model

The traction-separation behavior of material interfaces is modeled using the exponential

cohesive-zone model (CZM) of Ortiz and Pandolfi [32], which relies on a scalar effective

representation of the displacement jump vector265

δe =
√
β2δ2

s + δ2
n, (22)
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where δn is the normal component of the displacement jump vector and δs is the shear opening

magnitude. β allows for weighting the normal and shear components separately but is kept

as 1 for this work. This effective displacement jump induces a scalar traction given by

t =
σc
δc

(
ζδ̇e + δe exp [(1− δ∗/δc)]

)
, δ∗ =

{
δe if δe ≥ δmax
δmax otherwise

(23)

and is used to evaluate the complete traction vector

t =
t

δe
[β2 δ + (1− β2)δnn]. (24)

δ is the displacement jump vector and n is the unit interface normal vector. Small values of270

the critical displacement jump opening, δc, relative to the domain size can lead to convergence

difficulties in the nonlinear solution process, which are solved here through the inclusion of a

numerical damping term in (23). The time-derivative δ̇e is computed by a backward difference

and the coefficient ζ is kept small (∼ 10−5 s) to minimize its impact on the solution. Equation

(23) also introduces linear unloading through the use of the internal variable δmax to avoid275

unrealistic healing of interfaces upon closure.

Finally, the normal traction is modified as in [55],

tn = e
σc
α

sinh(
αδn
δc

) if δn < 0, (25)

as a simple method to avoid interface interpenetration. This repulsive traction rapidly in-

creases for α ≈ 100 and results in a C1-continuous normal traction response.

3.2 Continuum damage model280

The isotropic continuum damage model presented by Simo and Ju [56] is adopted for

modeling failure of phases. The damage model is based on the free energy potential

ψ (ε, ω) = (1− ω)ψ0 (ε) , (26)

where ψ0 is the elastic stored energy of the undamaged material, which for the current case

of linear isotropic elasticity, is given by

ψ0 (ε) =
1

2
ε : D0 : ε, (27)

withD0 indicating the linear elasticity tensor. For the isothermal case, this model corresponds285

to a stress tensor expressed as

σ = (1− ω)D0 : ε. (28)
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The Clausius-Duhem inequality for this system is

ψ0ω̇ ≥ 0, (29)

which implies that ω̇ ≥ 0 as ψ0 is a quadratic function. The onset of damage can be described

by the yield surface function

g(ψ0, ω
t) = G(ψ0)− ωt, (30)

where ωt indicate the damage at time t. A three-parameter Weibull distribution is used for290

the G function as in [57] and [58]

G(ψ0) = 1− exp

[
−
(
ψ0 − Yin
p1Yin

)p2]
. (31)

This choice of yield function allows for a wide range of nonlinear responses of materials from

ductile to brittle.

The evolution equation for the damage is chosen to be

ω̇ = µ 〈g(ψ0, ω)〉 , (32)

which introduces a viscous dependence on the damage as in [56] to avoid the loss of material295

ellipticity that may occur in rate-independent evolution models, thereby avoiding mesh bias

in the computational solution. µ is a damage consistency parameter, and the 〈〉 operator

denotes Macaulay brackets indicating damage evolution only after the function g becomes

positive.

When continuum damage is modeled using the EHM, damage is represented by one inter-300

nal damage variable in each phase part. The discretization of the damage evolution equation

in time gives the residual update equation in part α,

nω[α] −
(
n−1ω[α] + µ∆tG(ψ0(ε))

)
1 + µ∆t

= 0, (33)

which advances the damage value using a backward Euler integration scheme. n−1ω[α] is the

damage in phase part α at at the beginning of the time step and nω[α] is the updated damage

variable. ∆t is the time step taken by the incremental nonlinear solver.305

4 Model Verification

To verify the formulation presented in Sections 2 and 3, three convergence studies are

presented here using a microstructure containing a single spherical inclusion of radius 35 µm

inside a cubic PUC with sides of length 100 µm. Damage inside the spherical inclusion, damage
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in the surrounding matrix, and debonding of the inclusion/matrix interface are considered310

separately in this ROM convergence study to assess the impact of the type of damage on

the precision and efficiency of the ROM. The damageable domain is partitioned into ROM

parts at various levels of refinement and the stress-strain response obtained from the IGFEM-

based EHM is compared to the response obtained from a full reference IGFEM simulation for

both pure shear and biaxial loading cases. The elastic properties of the spherical inclusion315

are isotropic in all simulations with parameters Ei = 12 GPa and νi = 0.4. The matrix is

isotropic as well with elastic properties Em = 2.4 GPa and νm = 0.4, characteristic of an

epoxy matrix. For the reference simulation and the preprocessing of the EHM using IGFEM,

the microstructure is meshed using a non-conforming grid of linear tetrehedral elements with

a total of 20,480 elements and 6299 nodes, 1386 of which are enrichment nodes.320

All simulations presented in this section involve a macroscopic strain loading applied in

50 equally sized load increments. As a reference, the full nonlinear IGFEM solutions are

computed using a quasi-Newton-Raphson (qNR) method by default and a full NR step when

the qNR fails to converge, which limits the number of costly matrix factorizations. Stiffness

matrices are factored with a parallel Cholesky algorithm in the MUMPS package supplied by325

the PETSc library [59]. ROM solutions are also computed using this methodology, though

the resulting dense matrices are solved using the GNU scientific library [60] in serial. Both

IGFEM and EHM are implemented in the in-house package Par-IGFEM [61].

The two measures used to evaluate the accuracy and efficiency of the ROM are the relative

error and the speedup defined as330

ErrorL2 =

√√√√∫ ε∗0

(
σ̄∗ROM − σ̄∗IGFEM

)2
dε∫ ε∗

0

(
σ̄∗IGFEM

)2
dε

, (34a)

Speedup =
tIGFEM
tROM

, (34b)

where ∗ indicates the stress or strain component of interest, tIGFEM is the walltime to compute

the nonlinear IGFEM response, and tROM is the walltime to compute the nonlinear evaluation

of the ROM response. The preprocessing time for the ROM has not been included here as

it can be amortized over many ROM evaluations using different loading cases or nonlinear335

models with no additional preprocessing required. This preprocessing represents less than 5%

of tIGFEM for all examples presented hereafter.

4.1 Damage in inclusion

For the convergence study presented in this section, the nonlinear material response is as-

sociated with damage present inside the spherical inclusion. The damage parameters entering340
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(31) are Yin = 0.15MPa, P1 = 5, P2 = 0.5, and µ = 20 s−1.

The 3D PUC is subjected to pure shear and biaxial tension loads: ε̄shear = {0, 0, 0, 0, 0, 0.04}
and ε̄biaxial = {0.04, 0.04, 0, 0, 0, 0}. The homogenized response curves for the stress compo-

nents of interest (σxy and σxx, respectively) are presented in Figures 3a and 3b. Both show

remarkable agreement with the full IGFEM response with all relative errors falling below345

0.5%, even with a single part used. Figure 3c shows the dependence of the L2 error on the

number of parts in the inclusion, as well as the evolution of the speedup. A 600x speedup is

achieved for ROM partitionings with 8 parts or fewer. Although this speedup decreases when

the number of ROM parts is increased, speedups of over 100x are still obtained with 64 parts,

for which the error for shear loading is below 0.08% and the error for biaxial loading is below350

0.42%.

(a) (b) (c)

Figure 3: Convergence study of the IGFEM-based EHM for the case of in-inclusion damage.

(a) Pure shear response. (b) Biaxial tension response. (c) Speedups and errors for both shear

and biaxial ROM loadings.

4.2 Cohesive debonding

In the second convergence study, all phases are assumed to be linearly elastic and the non-

linear response of the particulate composite is associated with the debonding of the inclusion

from the surrounding matrix based on the traction-separation model described in Section 3.1.355

The cohesive model parameters chosen here are σc = 100MPa and δc = 20 nm.

Figure 4a depicts the domain response in pure shear with γ̄xy = 0.08. The IGFEM

shows a sharp drop in the σ̄xy response of nearly 15 MPa near γ̄xy = 0.06. Coarser ROM

partitionings do not capture this drop but models with 16 or more interface parts exhibit a

stress drop that progressively converges toward the IGFEM response. Figure 4b shows that360

a similar response is obtained in the biaxial case with ε̄xx = ε̄yy = 0.02, where the ROM

more accurately captures the ∼40 MPa stress drop in the homogenized response predicted

by the full IGFEM solution. The 128-part model captures this behavior well, while coarser

partitionings overestimate the strain at which the drop occurs leading to an overshoot of the
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peak stress estimate. The evolution of the relative errors and speedups in Figure 4c shows365

that a larger number of interface parts are required to achieve lower error than in the inclusion

damage case described in the previous subsection, likely due to the near-discontinuous nature

of the response. It should be noted, however, that the 128-interface-part models still achieve

errors of 8% in shear and 5% in biaxial tension with speedups of over 500x.

(a) (b) (c)

Figure 4: Convergence study of the IGFEM-based EHM examining cohesive debonding of

the particle from the matrix. (a) Pure shear response. (b) Biaxial tension response. (c)

Dependence of the speedup and relative error on the number of interface parts.

4.3 Matrix damage370

The final nonlinear response investigated here is the case of continuum damage occurring

in the matrix with damage parameters Yin = 0.15 MPa, P1 = 15, P2 = 0.4, and µ = 20 s−1.

This set of parameters ensures no softening of the macroscopic stress-strain response, thereby

maintaining the separation-of-scales assumption that underlies the homogenization formula-

tion (1).375

The stress-strain response in pure shear is shown in Figure 5a. The ROM-predicted

response is similar to its IGFEM counterpart, both exhibiting a flattening of the homogenized

stress-strain curve near γ̄xy = 0.015 followed by a monotonically increasing response. The

convergence toward the IGFEM solution in the shear loading as well as in the biaxial loading

response (Figure 5b) is monotonic as exhibited by the error plot in Figure 5c. The high cost of380

the IGFEM evaluation in this case also leads to very high speedups. At a 3% error level, the

shear case achieves a 10,000x speedup while the biaxial model is almost 1000x faster than the

full IGFEM. The quick convergence of the ROM solution, along with a relatively flat speedup

curve, indicate that modest levels of error can be achieved while obtaining remarkably fast

results.385
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(a) (b) (c)

Figure 5: Convergence study of the IGFEM-based EHM with nonlinear damage in the matrix.

(a) Pure shear response. (b) Biaxial tension response. (c) Speedups and errors for both shear

and biaxial ROM loadings as a function of number of matrix parts.

5 Application to More Complex Microstructures

5.1 3D particulate composites

The attractiveness of combining IGFEM with the continuum and interface EHM lies in the

geometrical flexibility of IGFEM and the computational efficiency of the ROM, which enables

the study of PUCs with complex geometries and a wide range of nonlinear damage models. In390

the example presented hereafter, we compute the homogenized response of ten realizations of

a particulate composite PUC composed of ten randomly distributed spherical particles. Each

particle has a radius of 3.5 µm and the particle volume fraction for each microstructure is

25.2%. One of these microstructures is presented in Figure 6a, which also illustrates the peri-

odic wrapping of the inclusions. The reference nonlinear IGFEM response of these ten PUCs395

is simulated as in Section 4 for a macroscopic strain load of ε̄ = {0.04,−0.01,−0.01, 0, 0, 0}
applied in 50 equally sized load steps. These solutions are computed using four processors

with an average of 101,392 nonlinear degrees-of-freedom per problem. The preprocessing steps

for all ROMs are also conducted using four processors. The elastic properties of all phases

are the same as in Section 4.400

First, damage in the matrix phase is investigated. Figure 6b shows the matrix damage

model selected because it does not exhibit significant softening, thereby maintaining the sep-

aration of scales. Several partitionings of the matrix phase were examined in this study.

Figure 6c presents the 4-part clustering of the matrix phase, showing that the various parts

are allocated to regions with similar values of the strain concentration tensor.405
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(a) (b) (c)

Figure 6: Setup of ROM of a 10-spherical-particle microstructure with matrix failure. (a)

One of 10 microstructures. (b) 1-D damage response of the matrix phase under uniaxial stress

loading. (c) 4-part clustering of the matrix phase.

(a) (b)

Figure 7: ROM simulation of the homogenized response of of 10-spherical-particle microstruc-

tures in the presence of matrix failure. (a) Macroscopic stress-strain curve for of one of the 10

simulated geometries. (b) Average relative errors and speedups for the 10 geometries with the

minimum and maximum values at each level of ROM partitioning denoted by dashed bounds.

Figure 7a shows the IGFEM σ̄xx − ε̄xx curves and selected ROM stress responses from

one of the ten microstructures. All ROM responses exhibit trends similar to the reference

direct IGFEM solution, with the ROM solutions progressively approaching the IGFEM curve

as the number of parts used in the matrix phase increases. Figure 7b shows the dependence

of the relative error and ROM speedup values on the number of parts. The minimum and410

maximum errors and speedups for each ROM are shown with dashed curves. Speedups in

excess of 300,000x are possible with errors <18% or ∼10,000x with 6% error. These very large

speedups are primarily due to the larger size of the finite element problems compared to the

verification problems presented in Section 4. As shown in Figure 8, the εxx fields obtained

from the direct IGFEM simulation and from the 128-part ROM are visually similar with the415

same patterns of strain concentrations. Note, however, that while the IGFEM contour plot is

readily available from the IGFEM simulation, the full ROM perturbation displacement field
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must be obtained from a post-processed linear combination of the influence functions with

the µ[α] and δ[ξ] coefficients.

Figure 8: Comparison between the strain fields obtained with the full IGFEM simulation

(left) and the ROM solution with 128 parts in the matrix phase (right).

Damage inside of the inclusions is investigated next, with the 1-D nonlinear response of420

the inclusion damage model exhibiting the semi-brittle behavior shown in Figure 9a. Figure

9b depicts the partitioning of the inclusions into four ROM parts. There does not appear

to be a discernible pattern in the partitioning but all four regions seem to be approximately

evenly distributed.

(a) (b)

Figure 9: Setup of ROM of 10-spherical particle microstructures with inclusion phase failure.

(a) Uniaxial stress-strain response of the inclusion material, showing a semi-brittle response.

(b) Coloring of the parts when the inclusion phase is split into 4 parts.

The stress response in Figure 10a shows remarkable agreement between the ROM ap-425

proximation and the reference IGFEM simulation, which is consistent with the results sum-

marized in Section 4.1. The damage response of the inclusions results in a drop in the

macroscopic stress of nearly 30 MPa starting near ε̄xx = 2.25% followed by a stress recovery

from ε̄xx = 3.5%. The dependence of the average relative error on the number of parts used
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inside the inclusions is shown in Figure 10b with the minimum and maximum limits shown430

as dashed bounds. Relative errors below 2% are achieved with speedups of over 10,000x in

the worst case observed.

(a) (b)

Figure 10: ROM simulation of 10-spherical particle microstructures with inclusion phase

failure. (a) Stress-strain results of one of the ten geometries tested. (b) Dependence of the

relative errors and speedups on the number of ROM parts used. Dashed lines denote minimum

and maximum observed.

The final failure case examined for the 10-spherical-particle PUC involves the cohesive

debonding of the inclusions. The Ortiz-Pandolfi CZM described in Section 3.1 is used with

parameters σc = 25 MPa and δc = 25 nm and only one geometry is studied. Figure 11a435

shows the distribution of 16 interface parts across all ten particle surfaces. Similarly oriented

regions of different particles are assigned to the same interface ROM part, indicating that

most inclusion interfaces are behaving similarly in the initial elastic response.

Figure 11b shows the macroscopic stress-strain response of the reference IGFEM simula-

tion and select partitionings of the ROM. ROMs with few parts vastly overpredict the stress440

after the initial failure near ε̄xx = 0.015 compared to the full IGFEM, but addition of more

parts to the ROM decreases this overestimation. The use of 512 parts leads to a relative

error of ∼20% as seen in Figure 11c. This slow convergence may be because cohesive failure

is often highly localized and restricting interface regions across multiple inclusions to behave

similarly via the partitioning limits the ability for this localization to occur. The similarity445

of interface regions’ initial elastic response may not necessarily be a good indicator of the

debonding behavior later in the simulation. The simple geometry in Section 4.2 did not suffer

from this as it only contained one particle. However, moderate levels of error in this more

complex PUC can still be achieved at a faster speed than the full IGFEM as the 512-part

model obtains a speedup of 87x.450

The possibility that the sliver elements mentioned in Section 2.2 caused the relatively

21



(a) (b) (c)

Figure 11: Setup of ROM of a 10-spherical particle microstructure with cohesive debonding.

(a) The 10-sphere geometry with the surface of each particle colored by the interface part

numbers. (b) Homogenized stress-strain response of select ROM solutions compared to the

IGFEM reference solution. (c) Dependence of the ROM error and speedup on the number of

interface parts.

large error for the case of cohesive debonding is investigated by examining the local stress

states. The von Mises stress fields obtained from the full IGFEM solution (Fig. 12 (a))

and the 512-part cohesive ROM (Fig. 12 (b)) along the plane (z=0.00525mm) intersecting

multiple inclusions show very similar stress patterns, especially in the matrix region. The455

presence of sliver elements adjacent to the material interfaces do not appear to affect the

stress solution associated with the IGFEM. The stress irregularities present along the material

interfaces in the ROM appear therefore to be caused by interface part boundaries rather than

poorly conditioned elements. These irregular stress peaks may be alleviated using recovery

or averaging methods [62, 63]. The spatial variation of the IGFEM and ROM solutions for460

the von Mises stress along two straight paths (denoted by the black horizontal lines in Fig.

12 (a) and (b)) is presented in Fig. 12 (c). A comparison between the IGFEM (solid curves)

and ROM (dashed curves) solutions shows a good overall agreement especially along the path

limited to the matrix (blue curves). The difference between IGFEM and ROM solutions are

more noticeable for the (lower) path crossing two inclusions, whose location is denoted by the465

shaded regions in Fig. 12 (c). More than the presence of stress peaks in the ROM solution

immediately adjacent to the material interfaces due to the interface part boundaries, the

overall gap between the solid and dashed curves in the PUC is the primary cause of the error

in the homogenized stress-strain solution.
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(a) (b) (c)

���  ����	

Figure 12: Von Mises stress field in (a) the full IGFEM solution and (b) the 512-interface

part ROM. (c) Spatial variation of the Von Mises stress solution obtained along the horizontal

lines shown in (a) and (b) by the IGFEM (solid curves) and ROM (dashed curves) solvers.

The red and blue curves respectively correspond to the lower and upper paths. The shaded

regions denote the location of the inclusions traversed by the lower line, where the von Mises

stress solution (red curves) experiences jumps.

5.2 Transverse failure of a composite ply470

IGFEM’s ability to capture complex geometries is demonstrated here by modeling the

2D domain shown in Figure 13a which represents the cross-section of a unidirectional ply

of a composite laminate containing 575 circular fibers at ∼ 60% fiber volume fraction. The

continuum damage model depicted in Figure 6b is applied to the matrix phase and the domain

is subjected to a pure shear loading with γ̄xy = 0.03. The entire domain contains 236,412475

triangular elements and 331,134 degrees-of-freedom, with both the IGFEM solution and the

ROM preprocessing computed on 4 processors.

Figure 13b shows the macroscopic σ̄xy − γ̄xy response. As alluded to in in Section 4.3,

diffuse matrix failure is captured very well with only a few ROM parts, as illustrated by the

result obtained with the 16-part model which achieves an 8% relative error with a 90,000x480

speedup. The local shear stress distributions in the reference IGFEM and the 256-ROM are

compared in Figure 14, with both showing similar shear stress patterns.

5.3 Woven composite PUC

The final microstructure studied in this work is a woven composite PUC consisting of

four woven, sinusoidally varying fiber tows with elliptical cross sections. The geometry of the485

domain is shown in Figure 15a with the primary axis of two tows oriented in the x-direction

and the remaining two tows in the perpendicular direction. The tows are assumed to be linear
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(a) (b)

Figure 13: Shear loading of a transverse composite layer with matrix damage. (a) 575-

fiber composite ply geometry. (b) IGFEM and ROM predictions of the homogenized shear

response.

Figure 14: Comparison of the shear stress fields in the full IGFEM simulation (left) and the

256-part ROM simulation (right).

elastic and transversely isotopic with the principal axis parallel to the tow centerline. Their

properties are E1 = 49.2 GPa, E2 = 7.2 GPa, G12 = 4 GPa, G23 = 2 GPa, and ν12 = 0.3,

which are equivalent to the properties of a glass fiber-epoxy composite with a fiber volume490

fraction of 60%. The elastic properties of the matrix material are the same as in Section 4.

The computational domain contains 232,320 linear tetrahedral elements and 315,357 degrees-

of-freedom with all IGFEM preprocessing and reference IGFEM computations completed on

8 processors. Damage in the matrix region combined with cohesive debonding of the tows

from the surrounding matrix is considered in this section. The matrix damage model utilizes495

the parameters Yin = 0.15 MPa, p1 = 20, and p2 = 0.8 while the tow/matrix interface CZM

parameters are σc = 50 MPa and δc = 5 µm.

Figure 15a shows the interface part distribution for the 16-interface-part case. It again

clearly shows the assignment of similar regions of the microstructure to the same interface part,

while allowing for clustering of parts in regions of high curvature or high strain-concentration.500

Figure 15b shows the distribution of 16 parts in the matrix phase region with similar regions

again being grouped together.
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(a) (b)

Figure 15: (a) 16 interface parts on woven composite geometry. (b) 16 phase parts in the

matrix of the woven PUC.

(a) (b)

Figure 16: Woven composite with matrix damage and interface failure. All ROMs use 64

matrix parts. (a) Macroscopic stress-strain response. (b) Distribution of the damage pa-

rameter ω in a deformed section of the 64-matrix/512-interface-part ROM PUC also showing

debonding along the fiber-tow/matrix interface. Deformations have been emphasized by 5x.

The results of loading this PUC of the woven composite to ε̄ = {[0.02,−0.005,−0.005, 0, 0, 0]}
are presented in Figure 16. Figure 16a shows the homogenized stress response of the ROM

with 64 matrix parts and varying numbers of interface ROM parts compared to the IGFEM505

reference simulation. Again, relatively large numbers of interface parts are necessary to cap-

ture the full nonlinear behavior but substantial computational savings are still achieved with

the 64-matrix/512-interface part model running at a 843x speedup. The gradual reduction

in stiffness of the composite is captured as well as the drop in stress that occurs at the peak

of the homogenized stress-strain curve. Figure 16b shows a slice through the final deformed510

configuration of the PUC with a diffuse damage field in the matrix region and substantial

interfacial debonding of the tows from the matrix.

25



6 Summary

This work has developed a reduced-order model based on combining the eigendeformation-

based reduced-order homogenization model (EHM) and the Interface-enriched Generalized515

Finite Element Method (IGFEM), which efficiently provides an approximation of the multi-

scale nonlinear constitutive response of PUCs with complex geometries. The use of continuum

damage models and cohesive interfaces separately and simultaneously allows for a diverse set

of nonlinear behaviors to be analyzed. The ability to use the same preprocessing phase of the

EHM for varying nonlinear model parameters makes it an efficient tool for analyzing multi-520

ple macroscopic loadings of a domain or investigating the statistical variation of the model

response with respect to the material parameters. The IGFEM introduces flexibility with

respect to the geometrical parameters as well since the mesh is independent of the material

interface geometry, readily allowing for analyses of many periodic unit cells (PUCs) with

variation of the geometry as well.525

A method of interface constraints for the efficient elastic preprocessing of the ROM was

developed using Lagrange multipliers, which allowed for the reuse of the stiffness matrix

factorization in the Elastic, Phase, and Interface Influence Function problems. A modified

traction integration scheme was also presented to address the numerical instability associated

with the IGFEM evaluation of the interface tractions. Finally, a deformation-based k-means530

clustering approach was developed to optimally partition the domain into phase and interface

parts using the strain concentration tensor and the displacement jump concentration matrix.

Speedups of several orders of magnitude were achieved at moderate levels of error com-

pared to a reference IGFEM solution for most nonlinear model cases. However, assumptions

made in the partitioning approach limit the accuracy in highly localized failure processes.535

Additionally, the number of parts required to capture interfacial failure accurately for larger

microstructures appears to be significantly higher than that needed to capture damage in the

matrix or reinforcement phases, increasing the computational cost of simulations involving

debonding processes.

The IGFEM-based EHM can be further improved by adopting partitioning schemes that540

allow for more complex failure paths or are geometry- or loading-specific. The ROM approach

described in this manuscript provides a powerful tool to simulate PUCs in coupled multiscale

FE2 simulations or in the calibration of nonlinear model parameters. The independence of

the preprocessing stage from the nonlinear model parameters also makes this tool useful for

the multiscale design of material microstructures to achieve specified nonlinear homogenized545

constitutive responses. While the computational gains might be lessened by including geomet-

rical parameters in the nonlinear design process due to the need to recalculate the coefficient

tensors, savings might still be achieved over full nonlinear IGFEM analyses.
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