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Abstract1

This manuscript presents a dislocation density informed eigenstrain based reduced order2

homogenization model (DD-EHM), and its application on a titanium alloy structure subjected3

to cyclic loading. The eigenstrain based reduced order homogenization (EHM) approach has4

been extended to account for the presence of HCP (primary α phase) and BCC (β phase)5

grains, within which the deformation process is modeled using a dislocation density based6

crystal plasticity formulation. DD-EHM has been thoroughly verified to assess the accuracy of7

the reduced order model in capturing local and global behavior compared with direct crystal8

plasticity finite element method (CPFEM) simulations. A structural scale study of titanium9

alloy Ti-6242S is performed using DD-EHM to quantify and characterize the spatial distri-10

bution and evolution of the dislocation pile-ups subjected to cyclic loading. The evolution of11

pileups at two spatial scales are tracked using a nonlocal parameter based on dislocation den-12

sity discrepancy across neighboring grains. The effect of non-uniform texture on the response13

of the structural component has been investigated.14
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1 Introduction17

Predicting the response of structural components made of polycrystalline metals using mi-18

croscopically informed multi-scale models requires efficient and accurate upscaling (homoge-19

nization) and downscaling (localization) strategies. In particular, the crystallographic physics20

that are local at the grain or subgrain scale must be retained during upscaling, and the com-21

putational cost must be sufficiently low to allow simulation of large structural components.22

Concurrent multiscale approaches such as the computational homogenization [1, 2], variational23

multiscale enrichment [3, 4, 5], heterogeneous multiscale method [6, 7], multiscale finite element24

method [8], among others provide the appropriate ways for rigorous scale bridging. Unfortu-25

nately, the high computational cost of these approaches limit their application to relatively26

small size problems.27

While the high computational cost associated with these approaches can be alleviated28

by massive parallelization [9], employing reduced order approximations of the microstructure29

scale response is a more practical alternative and has been pursuit by different researchers. A30

number of reduced order modeling approaches have been proposed and employed to efficiently31

replace crystal plasticity finite element method (CPFEM) simulations, including the classi-32

cal Sachs and Taylor models, and more recent and sophisticated approaches such as spectral33

crystal plasticity method [10], grain cluster method [11], elasto-plastic self-consistent (EPSC)34

method [12, 13, 14], fast Fourier transform (FFT) method [15] and nonuniform transformation35

field analysis [16, 17]. Among others, sequential multiscale has been proposed as an alternative36

approach to devise structural scale models. In this approach, structural analysis is uncoupled37

from the microstructure scale, but a macro-scale constitutive model is trained based on mi-38

croscale simulations on representative volume elements (RVEs) or statistical volume elements39

(SVEs), retaining local information in the form of internal state variables (e.g., [18, 19, 20]).40

Recently, the eigenstrain based reduced order homogenization method (EHM) has been41

proposed to alleviate the computational cost of CPFEM simulations [21]. The EHM ap-42

proach relies on the pre-computation of a small set of “constitutive tensors” that retain the43

microstructure morphological information, and employing these tensors to approximate the44

microstructure scale response fields using a much smaller basis obtained through constrained45

kinematics. EHM approach was later extended to achieve sparse and scalable formulations that46

allow efficient analysis of structures in the presence of large representative volumes by selec-47

tively eliminating long range interactions at the scale of the RVE [22]. An important advantage48

of the EHM is that the grain interactions and the intra-granular strain and stress variations49

with the microstructure could be retained during the up-scaling such that the individual grain50

information will be kept in the multiscale modeling.51

In the aforementioned works, capabilities of the EHM approach was demonstrated in the52

context of the monotonic response of FCC polycrystals. In this manuscript, we extend the53

capabilities of the EHM framework to incorporate HCP, BCC and multi-phase microstructures54

subjected to monotonic and cyclic loading conditions. A reversible dislocation density based55
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crystal plasticity constitutive model is adopted to capture the dislocation evolution physics56

under cyclic loading. The generalized crystal plasticity EHM implementation has been thor-57

oughly verified to assess the accuracy of the reduced order model in capturing local and global58

behavior compared with the direct CPFEM simulations. Structural scale investigations are59

performed to study the spatial distribution of dislocation pile-ups in a large structure made of60

titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242S).61

The remainder of the manuscript is organized as follows: In Section 2, the basic formulation62

of the EHM approach and the dislocation density based crystal plasticity model are provided.63

In Section 3, the dislocation density informed EHM framework is verified for HCP and BCC64

crystals in direct comparison with CPFEM simulations. Section 4 provides the calibration65

of model parameters using the experimental data for Ti-6242S; hereinafter, a component-level66

analysis is conducted for this material to investigate dislocation pile-ups at the grain boundary67

and the effect of non-uniform texture.68

2 Eigenstrain based reduced order homogenization69

for polycrystalline plasticity70

The detailed derivation of the EHM approach in the context of computational homogenization71

is provided in [21, 22]. A similar approach has been developed for variational multiscale72

enrichment in [23, 24]. In what follows, we summarize the governing equations of the EHM73

modeling approach and describe the dislocation density based evolution equations used to74

describe the slip and hardening evolution within the material microstructure.75

We consider the domain of a macroscopic structure, denoted as Ω. The structure con-76

sists of a periodic construction of a polycrystalline microstructure, denoted as Θ. In what77

follows, we loosely refer to the polycrystalline microstructure as the RVE indicating that the78

microstructure is statistically representative in the context of ergodic measure of deforma-79

tion. In order to ensure the applicability of the EHM approach, we make the following two80

assumptions on the inelastic behavior within the structure: (1) the size of the macroscopic81

spatial deformation wave form is large compared to the microstructure domain, i.e., the ma-82

terial response is devoid of weak or strong discontinuities such as shear bands or cracks, and83

that the classical scale separation assumption is valid; and (2) the strains at the scale of the84

material microstructure remains small under the applied load cycles, and the material is taken85

to undergo negligible amount of texture evolution. While texture evolution is an important86

issue in a number of applications that involve large deformations, total micro- and macroscale87

strains in fatigue problems often remain small (see, e.g., [25, 26] for near α titanium alloys)88

and negligible texture evolution is observed.89

In the context of the EHM approach, we consider the decomposition of the RVE into n90

subdomains (or reduced order “parts”) such that Θ(α)∩Θ(β) = ∅ when α 6= β; α, β = 1, 2, ..., n,91

and ∪nα=1Θ
(α) = Θ, where Θ(α) denotes the domain of part α. The kinetics and the kinematics92
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3 Reduced Order Model Representative Volume

Figure 1: The two-scale problem: macro- and microscales.

in the reduced order model are constrained such that the stress and the visco-plastic strain93

fields are taken to spatially vary within the RVE in a piecewise constant fashion, based on the94

reduced order partitioning of the domain.95

The boundary value problem governing the equilibrium at the macroscopic scale is ex-96

pressed as:97

∇ · σ̄σσ(x, t) + b̄(x, t) = 0 x ∈ Ω; t ∈ [0, t0] (1)

where, σ̄σσ is the macroscopic Cauchy stress; b̄ is the body force; and ∇· denotes the divergence98

operator. The boundary conditions are given as:99

ū(x, t) = ū0(x, t) x ∈ Γu (2)

100

n · σ̄σσ(x, t) = t̄0(x, t) x ∈ Γt (3)

in which, ū denotes the macroscopic displacement field, ū0 and t̄0 are the prescribed displace-101

ment and traction on the boundaries Γu and Γt, where Γu ∪Γt = ∂Ω and Γu ∪Γt = ∅. n is the102

unit normal to Γt. The macroscale strain tensor, ε̄εε(x, t) is expressed in terms of macroscale dis-103

placement based on small deformation assumption: ε̄εε = ∇sū(x, t), where ∇s is the symmetric104

gradient operator.105

Considering the kinetic and kinematic approximations of the model reduction strategy and106

employing influence functions (i.e., discrete Green’s functions) at the scale of the RVE to107

express the microscopic response fields, the part average stress and inelastic strain tensors for108

each part, β are related to each other as:109

M(αβ)σ̇(β)(x, t)−
n∑

α=1

[
P(βα) − δ(αβ)I

]
µ̇(α)(x, t) = A(β) ˙̄ε(x, t); β = 1, . . . , n (4)

where, σ(α) and µ(α) respectively denote the part-averaged Cauchy stress and inelastic strain110

tensor associated with part α; a superscribed dot over f indicates time derivative of f ; δ(αβ)111

is Kronecker delta ( δ(αβ) = 1 if α = β; δ(αβ) = 0 if α 6= β); and I is the fourth order identity112

tensor. M(αβ), P(βα) and A(β) are respectively the part-averaged compliance, interaction and113

concentration tensors. These tensors are integral functions of the influence functions providing114
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the morphological information of the RVE. The specific expressions for the coefficient tensors115

are provided in [21]. The macroscale stress is then computed as the volume average of the116

part-averaged stress coefficients:117

σ̄ =

n∑
β=1

|Θ(β)|
|Θ|

σ(β) (5)

in which, |Θ(β)| denotes the volume of part β and |Θ| is the volume of the RVE.118

Since the static texture and dislocation slip are the sole sources of plastic deformation,119

inelastic strain in part α, µ(α), results from dislocation slip over all slip systems within the120

grain that occupy Θ(α) through the Schmid law:121

µ̇(α)(x, t) =

N∑
s=1

γ̇s(α)(x, t) Zs(α) (6)

in which, the superscript s denotes the sth slip system in each part. Zs(α) is the Schmid122

tensor in part α, uniquely describing the orientation of the sth slip system as the dyadic123

product of the slip direction, ns(α) and the direction normal to the slip plane ms(α) (i.e.,124

Zs(α) = ns(α) ⊗ms(α)). N is the number of slip systems. The accuracy of the slip evolution125

naturally limits the reduced order discretization of the RVE. In particular, the RVE domain126

is discretized such that each part coincides with the domain or a subdomain of a single grain.127

By this approach, no averaging over slip systems within multiple grains forming a single part128

is necessary in the description of slip and hardening evolution. This constraint implies that129

the coarsest reduced order discretization corresponds to the case when each part occupies130

the domain of a single grain, in what follows referred to as the one-part-per-grain model.131

Under this constraint, the compliance tensor of each part is equal to the compliance tensor132

of corresponding grain within the RVE. If a grain is divided into multiple separate parts, the133

resulting reduced model is referred to as a multi-part-per-grain model. The consequences of134

grain partitioning is investigated in Section 3.2.135

The above mentioned reduced-order formulation relies on the assumption of piece-wise con-136

stant spatial distribution of the inelastic strain field within the RVE. It is possible to choose137

other, more complex forms of spatial distribution functions to represent the inelastic strain138

field, such as non-uniform plastic modes [27, 17]. When the approximate direction of the ap-139

plied loading (i.e., the history of macroscopic strain field) on the microstructure is known a140

priori, very accurate plastic modes could be identified through proper orthogonal decompo-141

sition and the resulting reduced order model could yield higher accuracy than the piece-wise142

constant approximation. A critical benefit of employing piece-wise constant approximation is143

that the construction of the reduced order model is purely geometrical and does not rely on144

prior knowledge of the direction of loading on the microstructure, which is typically unknown145

and time-varying in the context of a multiscale simulation. While it is possible to also con-146

sider adaptive enrichment of the approximation basis during a multiscale analysis to improve147

accuracy, this step is typically considerably expensive from the computational point of view.148
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2.1 Reversible dislocation density based crystal plasticity un-149

der cyclic loading150

The classical dislocation-mediated plasticity was first introduced by [28, 29] and [30]. Based151

on these fundamental theories, major progress has been made in the development of dis-152

location density based crystal plasticity constitutive models in the past few decades (see153

e.g., [31, 32, 33]). These constitutive models have been shown to reveal the underlying plastic154

deformation mechanisms in various metallic material microstructures, validated by experimen-155

tal observations [12, 34, 35]. Langer and co-authors have recently developed an alternative,156

physics-based plasticity theory consistent with the thermodynamics principles. This theory157

proposes an advanced dislocation model, which incorporates the energy and entropy in the158

dislocation flow in the presence of strain rate sensitivity and non-uniform Bauschinger ef-159

fects [36, 37, 38]. In this manuscript, the classical dislocation theory has been adopted, but160

the modeling strategy can be extended to incorporate others in a straightforward manner.161

In what follows, the part index α is omitted in the equations for simplicity, but the variables162

are to be understood as part-averaged quantities. The slip rate at the sth slip system is derived163

from the Orowan’s equation and expressed as [39, 35]:164

γ̇s =
ρsmν

s
id(b

s)2

2
sgn(τ s) exp

(
−∆F s

kθ

)
exp

(
(τ s − ss)∆V s

kθ

)
(7)

where, ss is the critical resolved shear strength (CRSS), ∆V s is the thermal activation volume,165

k the Boltzmann constant ( 1.38×10−23 J ·K−1) and θ the temperature in Kelvin. In Eqn. (7),166

γ̇s is related with ρsm, the average mobile dislocation density, νsid, the vibration frequency of the167

dislocation segment, bs, the magnitude of the Burgers vector and ∆F s, the activation energy.168

The resolved shear stress τ s is associated with the Cauchy stress through Zs as:169

τ s = σ : Zs (8)

In addition, it has been widely acknowledged that the stored sessile dislocation would be the170

main source for fatigue deformation behaviour, such as local strain or stress concentration and171

strengthening [26, 40, 41], including geometrically necessary dislocation and stored statistical172

dislocation density. Thus, here the strength hardening evolution in HCP dominated crystals173

are expressed as [31, 42]:174

ss (γ̇s) = ss0 + ssfor (γ̇s) + ssdeb (γ̇s) , (9)

in which, ss0 is the temperature-dependent initial slip resistance. sfor and sdeb respectively de-175

note the contributions to strength evolution by the sessile (i.e., forest and debris) dislocations,176

described as177

ssfor (γ̇s) = µχbs
√
ρsfor (10)

178

ssdeb (γ̇s) = µbskdeb
√
ρdeb ln

(
1

bs
√
ρdeb

)
, (11)
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where, µ is the shear modulus, χ the dislocation interaction parameter (set to 0.9) satisfying179

the Taylor relationship [31]. The latent hardening effects have not been incorporated in this180

study, because dislocation density evolution induced by latent hardening has been found to be181

small compared with that due to self-hardening in the alloys investigated here [43, 34, 44]. The182

latent hardening effects could be added by replacing the scalar χ with an interaction coefficient183

matrix as employed in [42]. kdeb = 0.086 is the material independent factor associated with184

low substructure dislocation density [32]. ρsfor and ρsdeb are the forest and debris dislocation185

densities, respectively.186

Experimental observations by [45, 33, 46, 47] indicate that the forest and debris dislocations187

and their evolution significantly impact the mechanical behavior of HCP and BCC polycrys-188

talline materials. Under monotonic loading, the forest dislocation density evolves through the189

competing mechanisms of generation and annihilation associated with recovery [12]. The evo-190

lution is affected by the current dislocation density as well as the extent of plastic slip. Stored191

forest dislocations annihilate by the effect of shearing along the opposing strain path when the192

loading is reversed under cyclic loading conditions [48, 14]. The total forest dislocation density193

is expressed as:194

ρsfor = ρsfwd + ρs+rev + ρs−rev (12)

where, ρsfwd is the forward dislocation density and ρs±rev denote the reversible terms correspond-195

ing to loading and unloading paths along the sth slip system as shown in Fig. 2. Superscripts196

s+ and s− denote the particular slip direction in the slip system. The initial forest disloca-197

tion density is relatively low in the pure HCP- or BCC-based materials corresponding to the198

experimental observations [49, 33, 45, 50] and a small value ρfor,0 = 1.0× 1012 m−2 is used for199

materials considered in this study. The evolution of the forward term is expressed as:200

∂ρsfwd

∂γs
= (1− p)

∂ρsgen,fwd

∂γs
−
∂ρsrec,fwd

∂γs
= (1− p)ks1

√
ρsfor − k

s
2(γ̇, θ)ρ

s
for, (13)

where ρsgen,fwd and ρsrec,fwd are the athermal storage and temperature dependent recovery of201

classical Kock-Mecking law [51]. p is a reversibility parameter determining the fraction of the202

reversible loosely tangled forest dislocations. Since the shear strain is relatively small in cyclic203

loading, a greater value of p = 0.8 is chosen according to [48]. ks1 and ks2 are the coefficients204

controlling the generation of forest dislocations and the annihilation due to dynamic recovery,205

respectively. The recovery coefficient is taken to be proportional to generation rate:206

ks2 (γ̇s, θ) = ks1
bsχ

gs

[
1− kθ

D̂sbs3
ln

(
γ̇s

γ̇0

)]
(14)

Equation 14 is similar to the law proposed in [31], but employs the slip rate of the current slip207

system rather than the total strain rate. γ̇0, g
s and D̂s are respectively the reference shearing208

rate defined as 107 s−1 (satisfying the high cycle and low cycle fatigue loading conditions),209

effective activation enthalpy and drag stress. The evolutions of the remaining components of210
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Figure 2: Slip orientations for the reversible dislocation density evolution.

the forest dislocation density are expressed as functions of the loading direction along the slip211

system [48]:212

Case 1 : if τ s > 0

∂ρs+rev
∂γs

= pks1
√
ρsfor − k

s
2(γ̇

s, θ)ρs+rev

∂ρs−rev
∂γs

= −ks1
√
ρsfor

(
ρs−rev
ρs0

)m̂ (15)

213

Case 2 : if τ s < 0

∂ρs−rev
∂γs

= pks1
√
ρsfor − k

s
2(γ̇

s, θ)ρs−rev

∂ρs+rev
∂γs

= −ks1
√
ρsfor

(
ρs+rev
ρs0

)m̂ (16)

where, ρs0 is the value of the total dislocation density at the point of load reversal and m̂ is the214

dislocation density recombination coefficient taken to be 0.4 for HCP and BCC crystals [14].215

The state of τ s = 0 incurs no plastic flow or dislocation density evolution. It is worthy to216

note that τ s is the part-averaged Cauchy stress σ resolved onto the sth slip system. Thus, the217

change in sign of τ s does not necessarily correspond to the load reversals in the macroscopic218

load cycles.219

The recovery process through dislocation climb or cross-slip is naturally related to the220

debris dislocation formation. Thus, the evolution rate of debris dislocation density is taken to221

be proportional to the recovery rate. As implied by Eq. 11, hardening at a given slip system,222

s, is taken to be affected by the total debris dislocations on all slip systems. The evolution of223

8



the debris dislocation density is expressed as the sum of contributions from each slip system:224

dρdeb =
∑
s

∂ρsdeb
∂γs

dγs (17)

where,225

∂ρsdeb
∂γs

= qbs
√
ρdeb

∂ρsrec,fwd

∂γs
ρsfor

= qbs
√
ρdebk

s
2(γ̇

s, θ)ρsfor

(18)

where, q is the recovery rate coefficient. The initial debris dislocation density in all slip systems226

is defined as the same quantity, ρsdeb,0 = 1.0× 1010 m−2 [52, 53].227

The dislocation density based crystal plasticity model defined in Eqs. 7-18 has been imple-228

mented within the EHM framework (Eqs. 1-6). In contrast to the classical crystal plasticity229

finite element approach, the evolution equations and the state variables are associated with230

each reduced model part rather than a material point. The implementation has been performed231

by employing the commercial finite element package, ABAQUS. The reduced order model is232

incorporated using the user supplied material subroutine capabilities. A two-level semi-implicit233

stress integration algorithm is applied to obtain the convergence of Cauchy stress and CRSS.234

In the first level, Newton-Raphson algorithm is used to calculate the stress update with full-235

implicit integration. Then the dislocation densities and CRSS are explicitly updated. The two236

steps of the integration process is repeated until convergence.237

3 DD-EHM model verification238

The accuracy characteristics of the reduced order model (referred to as DD-EHM in what239

follows) introduced in the previous section are verified against classical CPFEM simulations at240

the microstructure scale [54, 55, 56]. The model is not restricted to specific evolution laws. We241

therefore employ a bottom-up verification approach where, the proposed model is verified using242

a pure HCP (Magnesium) and a pure BCC (Niobium) microstructures first. The capability of243

the model is then demonstrated in a more complex alloy (Section 4). In the current section,244

the effect of the model order in capturing the local stress distribution within the RVE is also245

investigated. In the next section, the verified model has been further demonstrated using a246

more complex two-phase alloy. Verification of the EHM approach for multi-phase materials (in247

FCC polycrystals) has been performed in [5]. Twinning, an important deformation mechanism,248

could also be incorporated in the EHM formulation. For simplicity of the verification studies,249

twinning is not included in the description of plastic deformation.250
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Basal slip Prismatic slip Pyramidal slip 

1st order Pyramidal slip 2nd order Pyramidal slip 

Figure 3: Slip systems in HCP and BCC lattices.

3.1 Single phase HCP or BCC polycrystal verification251

The model verifications have been performed for material behavior that does not exhibit severe252

strain softening (e.g. shear bands) where deformation localizes at a length scale below the size253

of the RVE [57]. The verifications are performed by comparing the results of the proposed DD-254

EHM approach with those of the CPFEM simulations (i.e., the reference model) performed on a255

representative volume. Figure 4 illustrates a sample microstructure employed in the verification256

analyses. The grain orientations are sampled from the uniform orientation distribution function257

which contains 145 grains and is generated by the previous workflow [21, 35]. The DD-258

EHM model employs a part-per-grain model reduction approach (i.e., n = 145). Identical259

constitutive models (Section 2.1) and constitutive parameters (Table 1) have been employed260

in the DD-EHM and CPFEM simulations. The full field CPFEM simulation contains 82,561261

four-noded tetrahedra elements.262

Table 1 summarizes the model parameters of the HCP and BCC grains, respectively, used263

in the model verification studies. The slip systems considered for the HCP and BCC lattices264

are shown in Fig. 3. The HCP model includes 30 slip systems including the basal, pyramidal265

and prismatic systems. The parameters are obtained based on the stress-strain behavior of266

magnesium polycrystals provided by [58]. The BCC model includes 48 slip systems, and the267

model parameters are obtained based on the curves provided in [34] for niobium polycrystals.268

The mobile dislocation density within a grain is likely to be different for different slip systems269

and evolves with deformation, however it remains difficult to experimentally quantifying the270

magnitude and evolution of mobile dislocations. In this study, its value is taken to be constant271

and set to the same in all slip systems following Ref. [40].272

Figure 5 shows the comparison of the RVE-averaged (i.e., overall) stress strain behavior273

for the proposed and the reference models for a pure HCP polycrystal subjected to strain274

controlled uniaxial tension, fatigue cycle, dwell fatigue cycle and a more complex biaxial load275

path. The overall stress reported for CPFEM simulations are calculated by volume-averaging276
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Figure 4: Sample microstructure used in verification. (a) Discretization used in the CPFEM simulations;
(b) Selected grains used in the verification of the DD-EHM simulations.
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Figure 5: Overall stress-strain curves for the HCP polycrystal subjected to: (a) uniaxial tension; (b) pure
fatigue cycle; (c) dwell fatigue cycle; (d) biaxial loading.
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Table 1: Model parameters for the HCP and BCC crystals used in the verification studies.

Parameters HCP BCC

Symbols Units Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈a〉 Pyramidal 〈c+ a〉 {110}〈1̄11〉
∆F s J 2.58× 10−19 2.93× 10−19 3.21× 10−19 3.44× 10−19 2.27× 10−19

∆V s m3 1.94× 10−29 2.84× 10−29 2.96× 10−29 3.17× 10−29 4.79× 10−27

ρsm m−2 5.00× 1012 5.00× 1012 5.00× 1012 5.00× 1012 5.00× 1012

νsid Hz 1.00× 1012 1.00× 1012 1.00× 1012 1.00× 1012 1.00× 1012

bs µm 3.54× 10−4 3.58× 10−4 3.59× 10−4 6.83× 10−4 2.86× 10−4

ss0 MPa 11.60 47.20 143.69 158.87 94.00
ks1 m−1 6.32× 106 1.07× 108 1.03× 108 1.74× 108 5.20× 107

Ds MPa 100 150 185 225 230

(a) (b)
 

Figure 6: Overall stress-strain curves for the BCC polycrystal subjected to: (a) uniaxial tension; (b) pure
fatigue cycle.

of element-wise stresses in the RVE. In the uniaxial tension case (Fig. 5a), a 2 % strain is277

applied along the X-direction with a constant strain rate of 0.05 s−1. In the fatigue cycle278

case (Fig. 5b), a maximum strain amplitude of 2 % is applied along the X-direction at strain279

rate of 0.04 s−1. The R-ratio is set to R = −1. In the dwell fatigue cycle case (Fig. 5c),280

the same maximum strain, strain rate and R-ratio are applied along the X-direction. Upon281

reaching maximum strain in tension and compression, the strain is held for 0.5s before the282

loading is reversed. In the biaxial loading case (Fig. 5d), a 6 % tensile strain is applied at the283

X-direction with constant strain rate of 0.04 s−1 and the strain is held until the end of the284

test. Concurrently, the RVE is subjected to a cyclic load with a peak strain of 4 % along the285

Y-direction at 0.04 s−1 strain rate and with R = −1. The total duration of the cyclic biaxial286

tension and the fatigue cycle tests are 2.5 s, whereas the total time of the dwell fatigue cycle287

testing is 3.5 s. In Figure 6, the comparison between the proposed and the CPFEM model288

is shown for the BCC polycrystal subjected to strain controlled uniaxial tension and fatigue289

cycle. The same loading rate, total strain and R-ratio are applied in the BCC case.290

Figures 5 and 6 illustrate that the overall stress-strain behavior predicted by the proposed291

approach matches well with the reference CPFEM simulations. DD-EHM shows slightly stiffer292
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Figure 7: Local Mises stress, principal strain and dislocation density distributions at the peak load for
the HCP polycrystal subjected to: (a) uniaxial tension; (b) pure fatigue cycle; (c) dwell fatigue cycle; and
(d) biaxial loading.
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model. Local maximum principal strain contours using: (c) DD-EHM model; (d) CPFEM model.
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responses compared with the reference case due to constrained kinematics associated with the293

reduced basis. In order to ensure the consistency of the accuracy, 50 separate uniaxial tension294

simulations were performed with random grain orientations sampled from uniform orientation295

distribution. The error in the overall stress-strain curves as defined by the discrete L2 norm296

were bounded by approximately 10 % for all cases considered. As a reference for accuracy297

of model predictions, experiments on Ti-6242S exhibited about 5% variation in flow stress298

predictions at low temperature and about 12% variation at high temperatures [59].299

In addition to the overall stress responses, we tested the ability of the DD-EHM model in300

capturing the local stress variations within the microstructure. Figure 7 shows the comparison301

of the local stress, strain and dislocation density distributions between the proposed approach302

and the CPFEM simulations at the peak load state of all four loading conditions applied to303

the HCP polycrystal. Using the form of a histogram plot, the volume fraction of grains within304

the microstructure are plotted as a function of the stress and strain levels experienced by305

the grains. The bin plots represent the CPFEM model whereas the stars at the mid-point of306

each bin refer to the proposed model. The magnitudes of the local stresses match well with307

those of the reference simulations under the four loading conditions. The magnitudes of the308

local strains deviate slightly more than the respective stress distributions under the four loading309

conditions with peak strain amplitudes underestimated by the proposed approach. Dislocation310

density distribution patterns are similar to that of strain distributions. Figure 8 illustrates311

the variation of equivalent stress and maximum principal strain within the RVE as predicted312

by the DD-EHM and CPFEM approaches. The contour plots are from the biaxial loading at313

the end of the loading period. The CPFEM simulation captures the spatial variation of the314

stresses and strains within each grain, whereas the part-per-grain DD-EHM model tracks a315

grain-averaged fields only.316

Figure 9 compares the stress-strain curves at a number of grains within the microstructure317

shown in Figure 4. The results indicate that the accuracy of the DD-EHM in capturing the local318

stresses are bounded by approximately 13.4 % error. Implemented with the dislocation density319

based constitutive law, the EHM has the similar accuracy of the local grain-scale responses in320

keeping with CPFEM results, compared with the previous EHM numerical results [21].321

3.2 Hierarchical model improvement: sub-grain responses pre-322

diction323

In polycrystalline microstructures with high anisotropy or in the presence of multiple phases324

with high property contrast, stress and deformations could vary significantly within each grain325

and concentrate near the grain/phase boundaries and triple junctions. In the proposed reduced326

order modeling approach, the variability of the response fields within each grain could be better327

approximated by considering larger number of reduced order parts per each grain (denoted328

as multi-part-per-grain approximation). The multi-part-per-grain approximation therefore329

considers a non-uniform variation of the inelastic response field within each grain.330
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In this section, the effect of using a multi-part-per-grain scheme and improvement of ac-331

curacy with increasing model order are investigated. The investigations are performed on an332

idealized microstructural configuration that contains 13 grains as shown in Fig. 10a. The ide-333

alized microstructure is subjected to uniaxial tension along the X direction up to 5 % total334

strain with 0.05 s−1 strain rate. Five different reduced order models with hierarchically in-335

creasing orders are considered starting from part-per-grain (i.e., 13 parts as shown in Fig. 10a)336

up to 136 parts (Fig. 10e). The grains are taken to be HCP with random orientations sampled337

from uniform orientation distribution. The material parameters summarized in Table 1 are338

used. For each DD-EHM model as well as the reference CPFEM approach, 50 simulations339

are performed using randomly sampled orientations for each grain. The full field CPFEM340

discretization contains 62,513 four-noded tetrahedra elements.341

(a) (b)

(c) (d) (e)

X

Y

Z

Figure 10: Partitioning schemes: (a) simple grain partition (13 parts); (b) triangular prism partition (36
parts); (c) surface grain contact partition (adjacent grain; 68 parts); (d) triple junction partition (92 parts);
(e) refined triangular prism partition (136 parts).

In comparison with the CPFEM model, the overall stress-strain curves and local stress342

distributions are presented in Fig. 11. The figure is from one out of 50 sets of simulations.343

All 50 sets exhibit relatively similar error distributions with the plots showing close to average344
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errors. The figure shows that as the partition number increases, the overall response of the345

DD-EHM model improves by a small amount. In contrast, the distribution of local stresses346

(Fig. 11b) significantly improves as a function of model order. This result indicates that model347

refinement would lead to further improvement in capturing the local response fields within the348

microstructure.
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Figure 11: DD-EHM model refinement study: (a) Overall stress vs. strain curves; (b) Local stress
distributions

349

Figure 12 shows the stress distributions predicted by the reduced order models at the350

peak strain amplitude and compared to that of the reference simulation. The figure indicates351

that not only that the local stress distributions improve as a function of the increased model352

order, but that the stress concentrations within the microstructures are predicted in reasonable353

accuracy. The high stress regions that occur near the triple points and grain boundaries are354

captured in a progressively more accurate manner as a function of the model hierarchy.355

The assessment of model error as a function of model order across all 50 sets of simulations356

are shown in Fig. 13. The error is defined as:357

error =

∫ ε

0

|σDD-EHM − σCPFEM|
σCPFEM

dε (19)

Figure 13a indicates that the error magnitude is stable and approximately range between 2 %358

and 10 % across 50 simulations regardless of the model order. While the mean error does not359

appear to be significantly reduced, confirming the above mentioned results, the variance in the360

predictions are smaller with higher model order as shown in Fig. 13b.361

The speedup Q of the DD-EHM model compared with CPFEM calculation,362

Q =
tCPFEM

tDD-EHM
(20)
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Figure 12: Local stress contours from: (a) DD-EHM grain partition; (b) DD-EHM triangular prism
partition; (c) DD-EHM surface grain interaction pattern; (d) DD-EHM triple junction partition; (e) DD-
EHM triangular partition with double precision; (f) CPFEM fully resolved mesh.
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Figure 13: Statistical error analysis of overall stress prediction using all 50 sets of grain orientations: (a)
error scattering pattern; (b) the stress error as a function of the DD-EHM model order.
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is a function of the partition scheme, the sparsity of the matrix calculation and the grain363

number, which were investigated in [22]. The computational speedup Q is 43 and 47 for BCC364

and HCP cases, respectively, using the 145-grain RVE. The slight variation is due to differences365

in number of iterations needed to convergence the equilibrium equations.366

This study demonstrates that the hierarchical model improvement capability allows more367

accurate model prediction with increasing model order, especially in better capturing the368

local (e.g., sub-grain) fields. Assessment of this feature is important for characterization of369

convergence of the reduced model to full CPFE simulations when sufficiently large number370

of parts are used. However, the cost of simulations naturally increases with refinement of371

the reduced order models. Efficiently employing hierarchical model improvement in structural372

simulations also require adaptive model refinement algorithms, which will be investigated and373

developed in the future.374

4 DD-EHM simulation for near-α Ti-6242S375

Ti-6242S, is a near-α titanium alloy that has been used in a variety of applications such as air-376

craft structure and turbine engine compressor. This material exhibits high resistance to failure377

associated with creep, fatigue and environmental degradation. Its hierarchical microstructure378

exhibits characteristic features, such as the primary α grains, matrix of lamellar α+β and379

microtextured regions of α particles with similar orientations, that contribute to the observed380

mechanical and physical properties [60, 61, 62]. Alloying elements Al, Sn and Zr primarily381

serve to stabilize the α phase, whereas Mo acts as a β phase stabilizer. Si is utilized to improve382

the creep resistance at high temperature.383

The experimental data of Ti-6242S in [59] is used as the input to generate the microstructure384

and to calibrate the proposed EHM model. The chemical composition of the Ti-6242S material385

is shown in Table 2. Here, the primary α occupies most of the material with the remainder386

occupied by the β phase. The duplex annealing process is applied to obtain this microstructure.387

The α phase has the crystal structure of HCP and the β phase is BCC. Above approximately388

990 °C, the fully transformed beta phase could be obtained. Its melting temperature is about389

1700 °C. Burgers orientation relationship (BOR) is usually observed in colony, Widmanstatten390

or Basketwave structure inside the (α + β) microstructure [63]. EBSD scans do not indicate391

that equiaxed alpha/beta phase forms BOR inside this type of Ti-6242S.392

Under service performance of cyclic loading, the inner dislocation behavior of plastic de-393

formation in Ti-6242S is quite different from that during the forming process. Under ex-394

perimental microscopy, a net dislocation accumulation is observed in each loading cycle of395

high cycle fatigue and very high cycle fatigue loading, and generation and annihilation of396

dislocations describes the nonlinear behavior and contributes to the onset of fatigue crack nu-397

cleation [64]. In addition, low angle boundaries are observed in the titanium alloys during the398

α to β phase transformation, which means that the sub-grain or dislocation substructure exists399
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inside individual grains [65]. In the micro-textured α/β colonies of titanium alloys, the sessile400

dislocation storage or pile-ups is promoted by the crystallographic and morphological features401

on both basal and prismatic slip, and mobile dislocation usually passes through the α/β in-402

terface [66, 67]. Under cyclic loading conditions at room temperature, plastic deformations403

are taken to be dominated by dislocation glide [68, 69]. Thus, the sub-grain sessile dislocation404

storage inside individual crystal [35] and the reversal dislocation under cyclic loading [48] in-405

troduced in Section 2.1 are applied here for better describing the dislocation mechanism inside406

Ti-6242S. This alloy does not exhibit significant deformation twinning at the relatively small407

strain levels [25].408

4.1 DD-EHM calibration409

The material used in this study follows ref. [59], which has 94 % stabilized primary α grains410

with no micro-texture zones or α/β colonies. Thus, the influence of the β phase on the411

mechanical response is relatively low [70]. In fact, the choice for the parameters for the beta412

phase is relatively insensitive to stress-strain data employed in model calibration. Since the413

volume fraction of β phase is low, the β-phase model is simplified by considering the same414

parameters for all the BCC slip systems shown in Fig. 3. The model parameters for β grains415

are chosen consistent with previous studies [71, 72].416

The 3D polycrystalline RVEs are generated from 2D SEM images assuming identical fea-417

tures in the orthogonal directions to the image. Experimentally characterized grain size dis-418

tribution, grain orientation and misorientation distribution functions are employed in the con-419

struction of the RVE to provide an accurate description of the crystallographic features. The420

beta phase volume fraction is much lower than that of the alpha phase. Only 8 small grains421

are identified as beta phase in the 145-grain RVE. Grain size distributions are fitted by two422

continuous probability distribution functions, i.e., lognormal distribution (σ, µ) = (10.21, 0.16)423

for the β phase and normal distribution with cutoff (σ, µ) = (0.43, 1.74) for the α phase. The424

chosen distribution functions are best fits to the experimental data provided in [59] as shown425

in Figs. 14(c)-(d). Misorientation distribution and the pole figures from [59] are shown in426

Fig. 14. The misorientation angle are the ones for each HCP grain boundaries. The misorien-427

tation angles are divided into 36 bins with the bin size of 2.5 degrees. The volume fraction of428

each bin is added up and collected into each bin. The misorientation distribution in the RVE429

are enforced by using the misorientation probability assignment method (MPAM) introduced430

by [71]. Consistent with the previous literatures [25, 73, 50], the evolution of sessile dislocation431

densities in basal, prismatic and pyramidal slip systems of HCP and three types of BCC slip432

systems are considered.433

The cyclic response of the polycrystalline Ti-6242S is described using the aforementioned434

dislocation density based crystal plasticity model. Two sets of information have been em-435

ployed to calibrate the model parameters of crystal plasticity model. The first set consists of436

the existing experimental datasets and corresponding calibrated models of Ti-6242S provided437
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Figure 14: (a) Orientation distribution in pole figure; (b) Misorientation distribution for Ti-6242S data
from [59]; (c) grain size distribution of α phase; and (d) grain size distribution of β phase.
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Figure 15: (a) Overall stress-strain behavior of Ti-6242S specimens from experiments and the calibrated
DD-EHM model; (b) Stress-strain loops under cyclic loading.

in [71, 74, 25, 75, 72]. The experiments and model predictions of these studies have been438

fitted with the proposed dislocation density based model. The model parameters were then439

further tuned to accurately capture the stress-strain curves performed at two strain rates at440

room temperature [59]. A single set of material parameters are obtained by matching experi-441

mental datasets for quasi-static uniaxial tension experiments under two constant strain rates442

(QS: 8.33× 10−5 s−1; HS: 0.01 s−1) at room temperature, summarized in Table 3. Figure 15443

(a) shows the comparison of the stress-strain curves from the experiments and the calibrated444

model.445

Table 2: Chemical composition in weight % of Ti-6242S [59].

Component Al Sn Zr Mo Si C N O

Measured 5.96 1.98 3.92 1.99 0.09 0.02 < 0.01 0.10

Table 3: Calibrated model parameters for Ti-6242S.

Parameters Slip Systems

Symbols Units Basal 〈a〉 Prismatic 〈a〉 Pyramidal 〈a〉 Pyramidal 〈c+ a〉 BCC Slip
∆F s J 3.95× 10−20 3.81× 10−20 4.27× 10−20 4.73× 10−20 3.74× 10−20

∆V s m3 5.91× 10−29 8.20× 10−29 7.40× 10−29 8.85× 10−29 6.30× 10−29

k J · K−1 1.381×10−23 1.381× 10−23 1.381× 10−23 1.381× 10−23 1.381×10−23

ρm m−2 5.00× 1012 5.00× 1012 5.00× 1012 5.00× 1012 5.00× 1012

νid Hz 1.00× 1012 1.00× 1012 1.00× 1012 1.00× 1012 1.00× 1012

bs µm 2.94× 10−4 2.95× 10−4 2.95× 10−4 4.68× 10−4 2.86× 10−4

ks1 m−1 1.80× 107 1.68× 107 1.67× 107 2.40× 107 1.03× 107

Ds MPa 300 330 100 90 230

RVE size convergence is investigated using both CPFEM and DD-EHM models to identify446

the proper size of the RVE that adequately resolves the local response fields under cyclic447
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Figure 16: Local stress distribution as a function of RVE size: (a) DD-EHM model; (b) CPFEM model
for RVEs with (c) 56 grains; (d) 97 grains; (e) 145 grains; (f) 245 grains; (g) 302 grains; and (h) 335 grains.

loading. Figure 16 shows the distribution of local stresses within the RVE as a function of RVE448

size (ranging from 56 to 335 grains). Figure 15 (b) shows that the stress-strain loops stabilize449

quickly under a pure fatigue load cycle by approximately the eighth cycle. The variation of450

the response fields is slight from cycle to cycle. Figure 16(a,b) captures the stress distributions451

at the peak of the first load cycle. Using both models, the local response of the microstructure452

converges when the edge length of RVE is larger than 19.58 µm (i.e., 145 grains). Thus, the453

145-grain microstructure is deemed representative for the overall mechanical response. Since454

CPFEM resolves the microstructure response, the stress distribution is smoother than that of455

the DD-EHM.456

4.2 Structural-scale simulation of near-α titanium during cyclic457

loading458

The capabilities of the proposed reduced order modeling approach in capturing crystal-scale459

characteristics is further assessed using structural simulation. The structural domain is an L-460

shaped bracket made of Ti-6242S. The geometry, discretization and the boundary conditions461

used for the structural scale problem are shown in Fig. 17. Displacement-controlled cyclic462

loading is applied at the anchors of the bottom edge. The applied displacement rate and463

maximum displacement amplitude are 12 mm/s and 3 mm, respectively. The geometry is464

discretized used 3,940 tri-linear eight-node hexahedral elements. Reduced order integration is465
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Figure 17: A L-shape plate of Ti-6242S under strain controlled cyclic loading: (a) geometry and loading
condition of the plate; (b) finite element mesh; (c) strain-controlled loading history.

employed with hourglass control to alleviate zero energy modes. Each quadrature point of the466

macroscale mesh is associated with a microstructure that consists of 145 grains with the edge467

length of 19.58 µm as shown in Fig. 16e. Identical microstructures have been used at each468

quadrature point. The simulation therefore tracks the response of a total of 571,300 grains.469

Simulations have been performed using the one-part-per-grain model reduction strategy. The470

simulation of the structure using the classical computational homogenization approach or the471

direct resolution (i.e., CPFEM) of the microstructure is computationally prohibitive, therefore472

not included in this study.473

4.2.1 Dislocation pile-ups at two spatial scales474

Transmission electron microscopy of Ti-6242S specimen indicate intense dislocation pile-ups475

at the grain boundaries slightly beneath the crack nucleation surface [68, 69]. Using scanning476

electron microscopy on the same material, the dislocation pile-ups are revealed as the zigzag477

boundary between hard and soft grain pairs [76]. Prior numerical investigations using CPFEM478

identified that the dislocation pile-up length is a critical parameter indicating fatigue crack479

nucleation [75, 20]. Accumulated dislocation pile-ups could induce crack nucleation through480

multiple mechanisms, including slip band localization [77, 78], stress concentrations at the481

alpha/alpha grain boundaries or at the alpha/beta phase boundaries [79] and basal stress482

concentration in the neighboring hard grain due to load shedding phenomenon inside hard-483

soft grain pairs [80, 81, 82].484

The experimental observations of Ti-6242S show that the dislocations prefer to directly485

transfer through the alpha/beta phase boundary [68]. Strong slip bands do not occur during the486

low-cycle fatigue loading [69] Thus, we assume that the dislocation pile-ups at the alpha/alpha487

grain boundary has the main effect on crack nucleation. The amount of pile-ups is quantified488
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by the relative dislocation density discrepancy ∆ρtot between neighboring grain pairs (Fig. 18).489

Since the plastic anisotropy of HCP crystal is involved and the slip system activation is mainly490

dominant by a single type of slip system [83, 43, 31], hence, the maximum dislocation pile-ups491

is obtained in the slip system with the highest sessile dislocation density regardless of the slip492

system type and the order of slip system.493

The maximum relative dislocation density discrepancy in an RVE is obtained using the494

following steps:495

1. At the beginning of the simulation: For each grain in the microstructure, identify all the496

neighboring grains that share surface facets with the grain to form the grain pairs.497

2. During the simulation at a given load increment:498

(a) For each grain, i, within the RVE, the maximum dislocation density is obtained by499

looping over all the slip systems (s = 1, . . . , n) inside the grain.500

(ρtot)
i = max

s∈{1,...,N}

{
(ρstot)

i
}

(21)

(b) For each grain, i, maximum dislocation discrepancy is set to the largest difference501

between the maximum dislocation density in grain i and that of all its neighboring502

grains (j = 1, . . . ,mi), where mi is the total number of neighbors of grain i.503

(∆ρtot)
i = max

j∈{1,...,mi}

{∣∣∣(ρtot)i − (ρtot)
k(j)
∣∣∣} (22)

where, k(j) is the grain ID for the jth neighbor of grain i.504

(c) Maximum dislocation discrepancy in the entire RVE is chosen as the highest value505

of the maximum dislocation discrepancies of all grains i within the RVE:506

∆ρtot = max
i∈{1,...,n}

{(∆ρtot)i} (23)

The time evolution of relative dislocation density distributions are reported from three507

different spatial positions within the structure as illustrated in Fig. 17a. Figure 19 shows508

the microstructure-maximum relative dislocation density distributions at six time instances509

at the three spatial positions (the time instances are identified in the inset figure). Two510

key observations are that the relative dislocation densities exhibit significant spatiotemporal511

variations and that the peak relative dislocation densities do not necessarily coincide with512

the peak loads (i.e., t = 0.25 s and t = 0.75 s). The spatial variations shown in Fig. 18a513

are naturally due to geometrically induced non-uniform stresses within the structure, but the514

spatial distributions also significantly change as a function of applied displacement amplitude515

and time due to load redistributions induced by viscoplasticity. At peak applied displacement516

amplitude (at t = 0.25 s), very small amount of plastic deformation and dislocation generation517

are observed at positions 2 and 3, whereas many of the grains undergo plastic deformation and518
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Figure 18: Schematic illustration of capturing dislocation pile-ups at grain boundary: (a) extract ∆ρtot
of a microstructure at a given macroscopic integration point; (b) identify neighboring grains according to
adjacent nodes; (c) potential crack interface.
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dislocation generation at position 1. The unloading and reloading (in the opposite direction)519

processes demonstrate a non-monotonic growth of relative dislocation density indicating a non-520

monotonic increase in dislocation pile-up. At the end of the loading process, (at t = 1.0 s),521

a much wider range of relative dislocation density levels are observed in position 1 compared522

with the positions 2 and 3. It is important to note that the tail ends of the distributions are523

likely to be more indicative of failure nucleation process than the distribution means, since524

failure is likely to nucleate near a few grains with high degree of dislocation pile-up.525

4.2.2 Effect of non-uniform texture526

Strain partitioning due to non-uniform texture is widely observed in the experimental studies527

of titanium alloys [84, 85, 86]. The strong anisotropic HCP crystals enhance strain localization528

due to hard or soft crystallographic orientations [87]. Recent studies suggested small clusters529

of similar crystal orientations, called micro-textured regions (MTR) or macrozones, can have530

a significant effect on the fatigue and dwell fatigue sensitivities in titanium alloys, even though531

no severe texture is observed in the experiments [88, 89]. However, the non-uniform texture532

could have the potential benefit of reducing the strain localization in specific locations, which533

might be a critical region during the service of the structural component. Through a selection534

of non-uniform texture, it might be possible to alleviate or defer crack nucleation in critical535

spots of the components.536

In this section, three different texture orientations are selected and assigned to different537

parts of the L-shape component in Fig. 20a to form a non-uniform textured structure. In part538

1, the α grain orientation selection in the RVE remains the same as the experiments by [59],539

and the dominant direction of crystal c-axis is along the Y axis. The orientations in part 2 and540

3 are such that the dominant c-axis directions are along Z and X axises, respectively. Same541

strain-controlled load is applied as shown in Fig. 17b. The L-shape geometry and the loading542

location at the edge result in a inhomogeneous stress distribution within the component.543

However, Fig. 20b shows compression- or tension-like behaviors (along X axis) at the top and544

bottom of the adjacent area between part 1 and part 2. The high stress levels at these spots545

contribute to local plastic slip and the corresponding strain concentration shown in Fig. 21a546

and b. Due to the geometry of the fillet, higher stress localization is observed and leads to more547

severe plastic deformation at the top area. While the texture of the component considered548

in this example is artificial, this study allows us to investigate the effect of microtexture, and549

demonstrate the capability of DD-EHM in quantifying the effect of microtextured regions at550

the scale of a structural component.551

The high spot zone of strain distribution occurs in part 1 and it diminishes in part 2552

in Fig. 21(b), whereas high strains are observed in both part 1 and part 2 in the original553

case. This is due to different dominant crystallographic orientations. Part 1 and 2 form a554

stress-state at the macro-scale similar to that near the hard-soft grain boundary observed at555

micro-scale. The crystal c-axis of part 1 is mainly perpendicular to the direction of maximum556
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principal stress which favors the prismatic dislocation activation to trigger the plastic slip557

near boundary of part 1 and 2, but only localized at part 1. In contrast, the c-axis of part 2558

is nearly parallel to the local load. Prismatic and basal dislocations are hard to activate at559

this crystal configuration and it needs much higher stresses to overcome the energy barrier of560

pyramidal slip. Thus, much less plastic deformation is observed in part 2 compared with part561

1. This strain partitioning phenomenon is analogous to the observations in the micro-textured562

regions of titanium [84, 62]. Individual hard or soft grains in the microstructure could not563

form the macro-scale strain partitioning. As the plastic slip is blocked in part 2, it could not564

be transferred to part 3 and no plastic deformation is observed in part 3.565

The maximum dislocation pile-ups inside hard-soft grain pairs are also investigated for the566

non-uniform-texture case in Fig. 21d. It is observed that the high dislocation pile-up is only567

observed in part 1. The bottom area of the panel contributes more dislocation pile-ups in the568

macro-scale hard-soft texture pairs than that in the uniform-texture case, which is consistent569

with the strain distribution. The reduction in strain and dislocation pile-up in part 2 indicate570

that non-uniform texture selections could be used to alleviate the local strain concentration571

and crack nucleation.572

5 Conclusions573

This manuscript presented an extension of the EHM approach to gain the ability to perform574

multiscale simulations of titanium alloy structures coupling the scale of representative volumes575

that resolve polycrystalline microstructure to the structural scale. The proposed approach was576

verified for accuracy in modeling the behavior of HCP and BCC polycrystals. This manuscript577

also investigated the evolution of dislocation pile-ups at grain boundaries, which serves as an578

important factor for fatigue crack nucleation in titanium alloys. The following main conclusions579

are drawn from our investigations:580

• The DD-EHM approach is extended to the HCP and BCC based polycrystal plasticity.581

A reversible dislocation density based model is utilized to capture physics beneath the582

crystal anisotropy and plastic slip during cyclic loading. RVE-level investigations on583

HCP and BCC polycrystal verify the macro- and micro-scale accuracy of the method.584

• The DD-EHM approach demonstrates high accuracy when compared with the CPFEM585

approach, but with significantly lower computational cost, allowing for relatively large586

structural scale simulations and accounting for grain interactions. The accuracy in cap-587

turing the localized behavior at sub-grain-scale is improved by proper selection of the588

reduced basis through appropriate microstructure partitioning.589

• Structural simulations on an L-shape panel shows that texture orientation has an impor-590

tant influence on the strain distribution, and could be leveraged at the structural scale591

to reduce strain concentrations and dislocation pile-ups thereby improving fatigue life.592
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The reduced order modeling approach, as well as the multi-scale fatigue nucleation modeling593

will be advanced in a number of fronts in the near future. Firstly, this manuscript focused594

on the verification of the EHM approach in the context of material behavior that does not595

exhibit severe strain softening. The presence of strain softening results in the formation of596

localization bands with length scales that may be lower than the size of the RVE. The EHM597

methodology will be extended to address problems that exhibit this phenomenon. Next, the598

proposed dislocation pile-up parameter is not the only factor in fatigue crack nucleation. It599

is reasonable to demonstrate a criterion of the combination of the dislocation pile-up and600

basal stress to predict the I-type crack nucleation observed in titanium under fatigue or dwell601

fatigue loading condition. The multi-scale fatigue nucleation site prediction approach will also602

be extended for life predictions and validated against experimental observations.603
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