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Abstract

A computational framework is developed to model the transverse failure of fiber-reinforced

polymer-matrix composites, with an emphasis on capturing fiber debonding with a co-

hesive failure model along the fiber/matrix interfaces. We introduce a nonlinear mate-

rial sensitivity formulation to quantify how variations in the interfacial cohesive zone

properties affect the transverse failure response. The analytic sensitivity formulation

is implemented in an Interface-enriched Generalized Finite Element Method (IGFEM)

framework that allows for the simulation of transverse failure in a composite layer con-

sisting of hundreds of closely packed fibers discretized with finite element meshes that

do not need to conform to the composite microstructure.

Keywords: Polymer-matrix composites (A), Transverse cracking (C), Computational

mechanics (C), Analytical sensitivity, Carbon fiber (A)

1. Introduction

In fiber-reinforced polymer-matrix composite laminates, transverse plies are needed

to provide stiffness and strength under multi-axial loading. However, unidirectional

plies typically have a relatively low transverse strength [1]. Transverse cracking in
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these plies results in degraded material properties and often leads to further degrada-5

tion of the laminate, such as induced delamination between plies and fiber breakage [2].

Characterizing and modeling the transverse failure of composites are complicated by

the variability present not only in the material microstructure (i.e., the fiber size distri-

bution and placement), but also in the local constitutive and failure properties of the

constituents. The interaction between failure mechanisms such as fiber/matrix inter-10

face debonding and matrix cracking further complicates the prediction of the transverse

strength of the composite laminate [1].

Multiple analytical and numerical models have been developed over the past decades

to predict transverse cracking in composite laminates. In analytical models, it is of-

ten assumed that sequential cracks occur midway between existing cracks [3, 4], while15

numerical models, which tend to rely on periodic boundary conditions, simulate only

a small portion of the experimental microstructure [5, 6, 7] and/or assume a uniform,

structured packing [8, 9]. However, there is an increasing need to model larger, more

realistic composite microstructures, as complex interactions between phases result in

effective properties that are highly dependent on microstructural details [10].20

In unidirectional composites with a high fiber volume fraction under transverse

tensile loading, failure typically occurs at the interfaces between the fibers and the

matrix. One of the most successful numerical methods used to capture this type of

failure relies on a cohesive failure law relating the cohesive traction to the displacement

jump along the fiber/matrix interfaces [11, 12]. This approach is also the basis of the25

present study, which relies on a nonlinear, discontinuous extension of a recently intro-

duced Interface-enriched Generalized Finite Element Method (IGFEM) [13, 14] that

allows for the modeling of transverse failure in realistic virtual composite microstruc-

tures with hundreds of fibers discretized with non-conforming finite element meshes.

Beyond the development of this special form of the IGFEM, a key goal of this work30

is to compute the sensitivity of the transverse failure response of the transverse ply

to the cohesive properties of the fiber/matrix interfaces. To that effect, we present an

analytic material sensitivity formulation based on the direct differentiation method and
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implement it in the nonlinear, cohesive IGFEM solver. Related work on IGFEM-based

sensitivity analysis in the context of multi-scale material design can be found in [15]35

and [16].

The manuscript is organized as follows: in Section 2, the material system of interest

and experimental observations are presented. Next, Section 3 summarizes the com-

putational method used to simulate the initiation and propagation of the transverse

cracks. Section 4 describes the sensitivity analysis adopted in this work to capture the40

dependence of the transverse failure response of the transverse ply on the cohesive fail-

ure properties of the fiber/matrix interfaces. Additional derivations of the sensitivity to

the critical displacement jumps are provided in the Appendix. The sensitivity formu-

lations are verified against finite difference approximations in Section 5, while Section

6 summarizes the results of a sensitivity analysis performed on a virtual composite45

laminate composed of hundreds of fibers.

2. Experimental Observations

The material system under investigation is a [0/90/0]T composite laminate (Fig-

ure 1). The 90◦ ply is made of AS4 carbon fibers (Hexcel Corporation, Stamford, CT)

embedded in an Araldite/Aradur 8605 epoxy system, while the 0◦ plies, which serve as50

barriers to the transverse cracks propagating in the 90◦ ply, consist of glass fibers (PPG

industries, Pittsburgh, PA) in the same epoxy matrix. Glass fibers are used in the top

and bottom layers to allow for the initiation of transverse cracks in the carbon/epoxy

ply at lower loads. The manufacturing of the composite specimen involves using an

in-house pre-impregnator to create pre-preg plies from a carbon fiber or glass fiber55

spool. The composites are consolidated under vacuum bag pressure and temperature

according to manufacturer recommended cure cycle. The composite panels are then

cut into rectangular coupons.
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Figure 1: Left: Optical image of the [0/90/0]T composite laminate used in the transverse failure ex-

periments. The 0◦ plies are glass/epoxy while the 90◦ ply consists of carbon fibers embedded in the

epoxy matrix. Right: Representative image of a transverse crack spanning the 90◦ ply. The crack

path was identified visually after unloading by the introduction of a fluorescent penetrant while the

specimen is under loading. As apparent from this optical image, the transverse cracks extend pri-

marily along fiber/matrix interfaces.

Six composite samples with thickness 0.7 mm, width 2 mm, and a guage length of 25

mm were tested in an Instron loadframe. The composite specimens were subjected to60

quasi-static longitudinal tension at a displacement rate of 5 µm/sec (SEMtester, MTI

Instruments, Albany, NY) to obtain the composite stress-strain response. A custom

LabVIEW virtual instrument was used to record load and displacement data. Samples

were loaded under an optical microscope (DMR-R, Leica Microsystems, Buffalo Grove,

IL) to record failure mechanisms in the transverse ply optically during the test.65

The main failure mechanisms in this composite system are fiber/matrix debonding

and matrix cracking, and a typical transverse crack from these experiments is shown

in Figure 1. A detailed analysis of the fracture surface indicates that transverse cracks

predominantly (in excess of 95% of the crack path) extend along the fiber/matrix inter-

faces, in agreement with results reported in [17, 18]. This observation motivates the em-70

phasis placed in this computational work on the cohesive modeling of the fiber/matrix

interface failure, as described in Section 3.

Small windows of the 90◦ ply were imaged using a Leica DMR optical micro-

scope with 50X objective to capture the microstructure with enough resolution (9.3
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pixels/µm) to make morphological reconstruction possible. Otsu’s method for thresh-75

olding [19] was used to reduce the image to a binary representation. This method

computes an optimum threshold intensity level to separate the pixels in the image into

two pixel classes following a bi-modal histogram to minimize intra-class variance. Com-

puting a single global threshold value may not be appropriate in large images due to

non-uniform contrast across the image, which makes it difficult to classify pixels as80

foreground or background based on pixel intensity [20]. For this reason, local threshold

intensity values were used to threshold smaller portions of the microstructure.

The reconstruction of the microstructure used Generalized Hough transforms, which

have been adopted by multiple previous studies to find geometric parameters describing

instances of geometric shapes [21, 22]. We adopted the circular Hough transform to85

identify individual fibers in the experimental micrographs [23], as illustrated in Fig-

ure 2a. To avoid the stress singularity associated with direct fiber-fiber contact, a

one-pixel minimum spacing between fibers is enforced, which is of the order of 100 nm

(or about 1/70 of a typical fiber diameter) for the image presented.

Figure 2: Reconstruction of fiber placement in the 90◦ ply.

The microstructure from Figure 2b, which is used in the simulations presented in90

Section 3, is composed of 751 fibers and has a fiber volume fraction of 55%. The

fiber radius distribution is shown in Figure 3a, while the nearest-neighbor distance
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distribution is presented in Figure 3b, with the majority of fibers having a nearest

neighbor closer than 135 nm.

Figure 3: Fiber radius (a) and nearest-neighbor distance (b) distributions of the reconstructed com-

posite microstructure taken from Figure 2b.

3. Modeling95

To simulate the initiation and propagation of transverse cracks in the 90◦ ply,

a plane strain finite element model is constructed directly from the reconstructed mi-

crostructure. As indicated earlier, the transverse cracks predominantly extend along the

fiber/matrix interfaces, thereby motivating the use of a cohesive failure law to describe

the progressive failure of the fiber/matrix interfaces.100

One of the key challenges in modeling transverse failure in composite plies with

high fiber volume fractions is associated with the very small distance between adjacent

fibers. Using a conventional finite element method that relies on elements that conform

to the fiber/matrix interfaces leads to extremely fine meshes, and therefore prohibitively

expensive models. To address this challenge, which has limited most existing numer-105

ical analyses to small computational domains and/or unrealistically low fiber volume

fractions, we have adopted a special form of a recently introduced IGFEM that allows

for the modeling of non-conforming elements containing multiple cohesive interfaces.
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Details on the numerical method adopted in this study are provided hereafter,

together with the results of a typical mesoscale analysis of transverse failure in the110

[0/90/0]T laminate described in Section 2.

3.1. Cohesive Zone Model

For the cohesive failure of the fiber/matrix interfaces, we adopt the modified trilin-

ear traction-separation law of Scheider et al. [24]. Five material properties characterize

the cohesive response: the cohesive strength (σc), the three critical opening displace-115

ments (δc1, δc2, and δc3), and the ratio between shear and normal critical tractions (β).

Defining the scalar effective displacement δ by

δ =
√
β2 δ2s + δ2n, (1)

where δs and δn are the shear and normal components of the displacement jump vector

(δ), the cohesive traction vector t takes the form

t =
t

δ
[β2 δ + (1 − β2)(δ · n)n], (2)

where n is the normal vector of the interface and the scalar effective traction t is120

t(δ) = σc



2( δ
δc1

) − ( δ
δc1

)
2

if 0 ≤ δ < δc1,

1 if δc1 ≤ δ < δc2,

2( δ−δc2
δc3−δc2 )

3 − 3( δ−δc2
δc3−δc2 )

2
+ 1 if δc2 ≤ δ < δc3,

0 if δ ≥ δc3.

(3)

For unloading, when δ ≤ δmax, a linear cohesive relation is adopted:

t =
δ

δmax
t∗, (4)

where t∗ = t(δmax).
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Figure 4: Smooth “trilinear” cohesive law corresponding to σc = 50MPa, δc1 = 1nm, δc2 = 4nm,

and δc3 = 8nm. The area under the curve Gc denotes the cohesive fracture toughness of the

fiber/matrix interface.

As shown in Figure 4, the nonlinear relations in the first and third segments of

the cohesive law are introduced to ensure the C1 continuity of the traction-separation

law. The area under the traction-separation law, which denotes the cohesive fracture125

toughness, Gc, of the interface is given by

Gc = σc(
δc2
2

+
δc3
2

− δc1
3

). (5)

The initial slope of the cohesive law, which describes the initial compliance of the

cohesive interface prior to failure (i.e., for δ < δc1) is given by 2σc/δc1.

Finally, a numerical damping scheme is used to stabilize the solution [25]:

t = f(σc, δc1, δc2, δc3, β) + ξ
σc
δc1

dδ

dt
, (6)

where the first term on the right-hand-side denotes the modified trilinear cohesive model130

described in Figure 4. To minimize the impact of the numerical damping term (ξ) on the

solution, an adaptive scheme is adopted in which the damping parameter is progressively

increased to the point where the solution is stabilized and decreased thereafter.
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3.2. Interface-enriched Generalized Finite Element Method (IGFEM)

One of the key challenges in the modeling of transverse failure in composite layers135

with high fiber volume fraction is associated with the very small distance separating

adjacent fibers. To address this challenge and allow for the simulation of transverse

failure in realistic virtual models of a composite layer consisting of hundreds of closely

packed fibers, we have adopted a special form of IGFEM. The method was originally

introduced in [13, 14] to simulate the thermal and structural response of heterogeneous140

materials with meshes that do not conform to the material interfaces by using enrich-

ment functions and generalized degrees of freedom that allow for capturing the gradient

discontinuity present across these material interfaces.

For the present application, the method is modified in two ways. Firstly, while the

traditional IGFEM utilizes C0 enrichment functions to capture the gradient discontinu-145

ity of the solution across “intact” material interfaces, the method is extended hereafter

to the use of C−1 enrichment functions to capture the discontinuity in the displace-

ment solution field associated with the cohesive failure of the fiber/matrix interfaces

[26]. In this discontinuous extension of the IGFEM, two enrichment nodes are placed

at every intersection of the material interface with an element edge. Generalized de-150

grees of freedom are then associated with the original enrichment node and its “mirror”

node, allowing for the introduction of a cohesive failure model used to describe their

progressive normal and tangential separations.

Beyond the ability to model cohesive failure with non-conforming discontinuous

elements, the second modification to the conventional IGFEM used in this study consists155

of the introduction of enriched elements with two cohesive interfaces which are used to

model the potential failure of two very close fiber/matrix interfaces when they intersect

the same element [27].

The remainder of the implementation of the nonlinear IGFEM solver is relatively

conventional and consists of a Newton-Raphson scheme with adaptive load stepping,160

and a parallel C++ framework using the Message Passing Interface (MPI). PETSc [28]

is used to solve the linearized system of equations using Krylov subspace methods.
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3.3. Mesoscale Simulations

The mesoscale computational model, created from the reconstructed microstruc-

ture shown previously in Figure 2b, is presented schematically in Figure 5, together165

with details of the non-conforming IGFEM mesh. The model, which spans the entire

thickness of the 90◦ ply, contains 751 fibers. The width (L1) is approximately 325 µm,

the height of the 90◦ ply (H2) is 162 µm and each of the 0◦ plies (H1) has a height of 28

µm. The non-conforming triangular elements intersected by the fiber/matrix interfaces

contain one or two cohesive interfaces. The other elements are conventional 3-node lin-170

ear elements. The IGFEM computational model is made of 512, 025 elements, 321, 975

nodes, and 643, 950 degrees of freedom.

Figure 5: (Left) Schematic of mesoscale computational model used to simulate the transverse fail-

ure of the reconstructed microstructure shown in Figure 2b, with (right) details of the IGFEM

mesh consisting of non-conforming triangular elements. Cohesive interfaces are placed along each

fiber/matrix interface.

The in-plane properties of the various constituents are summarized in Table 1. The

cohesive properties used to model the failure of the fiber/epoxy matrix interfaces are

derived from a numerical analysis of microbond experiments [29]. The homogenized175

properties used in the 0◦ plies are obtained using the classical Halpin-Tsai relations

[1, 30], with a fiber volume fraction of 69% in these 0◦ plies.
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Table 1: Material properties used in the mesoscale simulations.

Carbon fibers E = 19.5 GPa, ν = 0.45

Epoxy matrix E = 2.38 GPa, ν = 0.43

Cohesive interfaces σc = 50 MPa, δc1 = 1 nm, δc2 = 4 nm,

δc3 = 8 nm, β = 1

0◦ glass-epoxy plies E1 = 49.2 GPa, E2 = 7.21 GPa, ν12 = 0.298,

G12 = 3.96 GPa, G23 = 2.08 GPa

Under the effect of a 0.43% transverse strain, a complex heterogeneous stress state

and transverse cracking pattern develop in the composite laminate, as illustrated in

Figure 6a, in which the deformations have been scaled by a factor of five. The fig-180

ure clearly shows distinct transverse cracks consisting of failed cohesive interfaces that

span the 90◦ ply. Due to stiffness of the 0◦ plies, the corresponding evolution of the

transverse stress (Figure 6b) computed from the reaction forces along the right edge

of the computational domain remains almost linear up to the point where the cohesive

elements in the vicinity of the crack path begin to fail and subsequently reduce the185

overall modulus of the composite.
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Figure 6: (Left) Von Mises stress distribution in the composite laminate subjected to a 0.43% ap-

plied transverse strain with the deformations scaled by a factor of five, showing the appearance of a

transverse crack spanning the width of the 90◦ ply. (Right) Corresponding transverse stress-strain

curve.

3.4. Validation

The IGFEM model for transverse composite failure was validated by comparing

the statistical distribution of the predicted linear elastic response and onset of failure

with experimental measurements. A reconstructed microstructure of approximately190

6000 fibers was split into 9 and 18 sections of about 700 and 350 fibers, respectively.

These results are compared with experimental measurements of the initial stiffness and

of the strain at the first transverse crack obtained from tensile tests performed on

the same [0/90/0]T carbon/glass-epoxy system, with the onset of transverse cracking

captured through acoustic emission.195

These virtual specimens were subjected to a tensile loading up to a transverse strain

of about 0.5%. The resulting stress-strain curves are plotted in Figure 7 with the

characteristic first crack marked for each computational case. The cohesive traction-

separation law for this set of validation simulations is the same as outlined in Table 1

and the previous example of a mesoscale simulation using the IGFEM computational200

model. Table 2 presents a comparison between experimental and numerical values of

the initial composite stiffness and the strain corresponding to the formation of the first
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transverse crack, measured through decreases in the macroscopic stress-strain curve,

and indicates good agreement between measured and predicted values.

Table 2: Validation of computational model based on the initial composite stiffness and the strain at

the onset of transverse cracking. N denotes the number of sections into which the large composite

sample was split for the mesoscale validation. The experimental values of the initial stiffness are

obtained by scaling the measured data using an isostrain relation of the [0/90/0]T laminate to reflect

the reduced thickness of the simulated 0◦ plies.

Initial stiff-

ness [GPa]

Initial stiff-

ness error [%]

Strain at first

crack [%]

First crack

error [%]

Experimental 14.03 ± 0.363 N/A 0.34 ± 0.06 N/A

IGFEM (N=9) 13.06 ± 0.396 6.91 0.345 ± 0.026 1.47

IGFEM (N=18) 12.80 ± 0.266 8.77 0.358 ± 0.022 5.29

Figure 7: Numerical stress-strain curves associated with 9 (a) and 18 (b) virtual microstructures

composed of approximately 700 and 350 fibers, respectively. The diamond-shaped symbols denote

the strains at which the first transverse crack for each microstructure is predicted.

4. Sensitivity Analysis - Formulation205

Beyond the simulation of transverse failure in realistic composite layers recon-

structed directly from optical images, a key objective of this work is the analytical
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extraction of the sensitivity of the transverse failure response on the parameters defin-

ing the cohesive failure of the fiber/matrix interfaces. In particular, we derive the

IGFEM-based analytic material sensitivity of the macroscopic transverse stress (de-210

noted hereafter simply as σ) with respect to the interface variables (denoted as ηi). A

direct method is used here because of the costly nature of the nonlinear simulations

which would make finite difference extremely expensive, while the direct method allows

us to compute sensitivities at very low cost.

For this problem, the response functional at every load step n can be written as215

nσ = LT nFext
p

1

2H1 +H2

, (7)

where LT is a constant vector of 0’s and 1’s to select the correct degrees of freedom

from the external force vector Fext, the subscript p denotes the prescribed degrees of

freedom, and H1 and H2 are the ply thicknesses introduced in Figure 5. Unit depth is

assumed here. The sensitivity of the macroscopic transverse stress at load step n with

respect to the design variable ηi can then be expressed as220

dnσ

dηi
= LT

dnFext
p

dηi

1

2H1 +H2

. (8)

The partitioned system of nonlinear equations,

nFint
(
ηi,

n−1δmax(ηi),
nU(ηi,

n−1δmax(ηi))
)

=

 nFint
f

nFint
p

 =

 0

nFext
p

 = nFext, (9)

where the subscript f denotes the free degrees of freedom, is solved incrementally.

Because no external loads are applied, nFext
f vanishes. nδmax denotes the vector of

internal state variables computed at each cohesive integration point:

nδmax =


√
β2 nδ2s + nδ2n if loading,

n−1δmax if unloading.
(10)
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Differentiation of (9) yields225

nKff d
nUf

dηi
= −

(
∂nFint

f

∂ηi
+

∂nFf
int

∂n−1δmax

dn−1δmax
dηi

)
(11)

and

dnFext
p

dηi
= nKpf d

nUf

dηi
+
∂nFint

p

∂ηi
+

∂nFp
int

∂n−1δmax

dn−1δmax
dηi

. (12)

Note that dnUp

dηi
= 0 since nUp is a prescribed value applied at each load step. nKff and

nKpf are the partial derivatives of the free and prescribed internal force vectors with

respect to the free displacements, respectively.

To compute dnσ
dηi

in Equation (8), the right-hand side of Equation (12) must be evalu-230

ated which requires the solution of the linear system given by Equation (11) to compute

dnUf

dηi
. The right-hand sides of Equations (11) and (12) contain the partial derivative

of the internal force with respect to the internal variables n−1δmax, which is computed

only over the cohesive elements. The elemental internal force vector contribution from

a cohesive element has the form235

nF
int,{cohesive}
elem =

ngp∑
gp=1

wgpN
T
gp
ntgpdA, (13)

where wgp is the Gauss integration weight, Ngp is a matrix arrangement of the dis-

continuous enrichment functions used to compute the displacement jump vector, and

ntgp is the traction vector defined in Equation (2). Differentiating Equation (13) with

respect to the internal variables yields

∂F
int,{cohesive}
gp

∂n−1δgpmax
= wgpN

T
gp

∂ntgp
∂n−1δgpmax

dA,

∂ntgp
∂n−1δgpmax

=

 0 if loading,

1
n−1δgpmax

(
dt∗

dn−1δgpmax
− t∗

n−1δgpmax

)
[β2 δ + (1 − β2)(δ · n)n] if unloading,

(14)

where t∗ is defined in Equation (4) and dt∗

dn−1δmax
is easily computed from Equation (3).240
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The right-hand sides of Equations (11) and (12) also contain the derivatives of the

internal variables with respect to the parameters from the previous load step. These

derivatives are simply stored as additional internal variables for each quadrature point

and initialized as d0δmax

dηi
= 0. For subsequent steps, the components of the vector are

updated using245

dnδmax
dηi

=

 1
2 nδ

(2β2 nδs
dnδs
dηi

+ 2 nδn
dnδn
dηi

) if loading,

dn−1δmax

dηi
if unloading,

(15)

where

dnδgp
dηi

= Ngp
dnUelem

dηi
. (16)

In Equation (16), dnUelem

dηi
can be solved using Equation (11). These updated internal

variable derivatives are then used used in the sensitivity analysis at the end of the next

load step.

The last missing term is the partial derivative of the internal force with respect to250

specific interface parameters. The sensitivity derivations presented in the remainder of

this section are specific to ηi = σc, leaving a summary of the derivations of the sensitivity

with respect to the critical displacement jumps δci (i = 1, 2, 3) for the Appendix.

Again, the contributions from the linear elastic bulk elements to the partial deriva-

tive vanish as the stress does not depend explicitly on the cohesive internal strength.255

The partial derivative of Equation (13) with respect to σc is

∂nF
int,{cohesive}
elem

∂σc
=

ngp∑
gp=1

wgpN
T
gp

∂ntgp
∂σc

dA. (17)

The explicit partial derivative of Equation (2) with respect to σc yields

∂ntgp
∂σc

=
∂nt

∂σc

1
nδ

[β2 nδ + (1 − β2)(nδ · n)n], (18)
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where ∂t
∂σc

is readily obtained from Equation (3) as

∂t

∂σc
=



2( δ
δc1

) − ( δ
δc1

)
2

if 0 ≤ δ < δc1,

1 if δc1 ≤ δ < δc2,

2( δ−δc2
δc3−δc2 )

3 − 3( δ−δc2
δc3−δc2 )

2
+ 1 if δc2 ≤ δ < δc3,

0 if δ ≥ δc3.

(19)

5. Sensitivity Analysis - Verification

To verify the material sensitivity analysis described in Section 4, the simple prob-260

lem shown in Figure 8 is solved. The verification problem consists of a small square

domain containing two fibers of different sizes. The larger and smaller fibers have a

diameter of 8 µm and 6 µm, respectively, which correspond to the upper and lower

sizes of the carbon fibers used in the experiments.

Figure 8: Schematic of two-fiber problem used to verify the analytic sensitivity formulation.

The cohesive properties for this simulation are chosen as σc = 50 MPa, δc1 = 10 nm,265

δc2 = 40 nm, δc3 = 80 nm, and β = 1. The domain is subjected to a 2% traverse strain

and the results computed by the direct analytical sensitivity formulation described in

the previous section are compared to those obtained with a central finite difference

scheme.
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Figure 9: Verification of the material sensitivities for the two-fiber problem shown in Figure 8. (a)

Transverse stress-strain response and sensitivity of the transverse stress with respect to σc; (b) Sen-

sitivity with respect to δc1.

As shown in Figure 9, there is a very good agreement between the analytic and270

finite difference sensitivity results for both the sensitivities with respect to the cohesive

strength and to δc1. The first and second peaks observed in the sensitivity curves are

associated with the debonding failure of the larger and smaller fibers, respectively. As

expected, the sensitivity of the transverse stress with respect to σc remains positive

through the entire range of applied strains as the incremental increase of the cohesive275

strength leads to an overall increase of σ over the entire traction-separation curve as

seen in Figure 10 which shows the effect of differential changes in both σc and δc1 on a

example traction-separation curve. The sensitivity of the transverse stress with respect
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to δc1 is first negative, as a higher value of the critical displacement jump for a fixed

cohesive strength leads to a more compliant cohesive model, and therefore a decrease280

in σ. Once the interfaces start to fail, the δc1 sensitivity of σ switches sign, as a larger

value of δc1 leads to a delayed failure, and therefore a higher value of σ for a given

applied strain.

Figure 10: Schematic illustration of the impact on the cohesive traction-separation curve for an in-

cremental increase in σc (a) and in δc1 (b).

6. Sensitivity Analysis - Results

In this section, a 406-fiber microstructure is simulated to extract the sensitivity of285

the transverse stress with respect to the cohesive strength and the critical displacement

jumps. The simulated microstructure is presented in Figure 11 at εapplied = 0.5% show-

ing a large transverse crack. The macroscopic transverse stress curve, along with the

evolution of the sensitivity with respect to the cohesive strength, is plotted against the

applied strain in Figure 12, and the sensitivities with respect to the critical displacement290

jumps are presented in Figure 13.

19



Figure 11: Formation of a large transverse crack at 0.5% strain in the 90◦ ply of the [0/90/0]T com-

posite laminate. The 90◦ ply is composed of 406 fibers. The deformation has been scaled by a factor

of five.

Figure 12: Evolution of the transverse stress σ and of the σc-sensitivity of σ versus the applied

transverse strain for the 406-fiber problem shown in Figure 11.

As apparent in Figure 12, the sensitivity of the transverse stress-strain curve with

respect to σc remains positive throughout the transverse failure process. This result

can be again explained by the effect of differential changes in σc on the cohesive law

illustrated in Figure 10a.295
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Figure 13: Evolution of the sensitivities of the transverse stress σ with respect to the critical dis-

placement jumps δci for the trilinear cohesive law versus the applied transverse strain for the 406-

fiber problem.

The sensitivity of the transverse stress with respect to δc1 is initially negative due to

the increase cohesive compliance of the interfaces, as illustrated in Figure 10b. During

the failure events the δc1-sensitivity becomes positive due to the delayed failure response.

The sensitivities with respect to δc2 and δc3 initially vanish before becoming positive

during the failure events. It should also be noted that the sensitivity with respect to300

δc3 is substantially smaller than the sensitivity with respect to δc2.

Due to the complexity of the large 406-fiber microstructure and of the stress field

in the 90◦ ply, the failure of the fiber/matrix interfaces is a complex function of the

applied strain, rendering a precise determination of the onset of transverse cracking

difficult when only inspecting the stress-strain response or deformed geometry. However,305

the evolution of the sensitivities of the transverse stress with respect to the cohesive

parameters provides a clear insight on the correlation between applied strain and the

onset of transverse cracking.
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7. Conclusion

A computational framework has been presented for the modeling of transverse310

cracking in realistic virtual microstructures of 90◦ composite plies reconstructed directly

from optical images. The underlying numerical method relies on a discontinuous, multi-

interface extension of an Interface-enriched Generalized Finite Element Method, which

allows for the simulation of fiber/matrix debonding in composite layers with high fiber

volume fractions. This computational model has been validated against strain measure-315

ments of the onset of transverse cracking performed on a [0/90/0]T carbon/glass-epoxy

laminate. Also included in the computational framework is the analytic extraction

of the sensitivity of the macroscopic transverse stress with respect to the parameters

that define the cohesive failure law. By monitoring the evolution of these sensitivities,

the onset and propagation of transverse cracks can be assessed. It should be noted,320

however, that in the present study all fiber/matrix interfaces are assumed to have the

same cohesive properties. The next steps include relaxing that assumption and deriving

individual interface property sensitivities, i.e., extracting how sensitive the transverse

stress is to the critical stress of individual fibers. With these individual sensitivities,

one could study the sensitivity to the parameters that define the distributions of the325

interface properties, e.g., the sensitivity to the average and standard deviation of the

interface strength.
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Appendix A. Sensitivity to Critical Displacement Jumps

For completeness, a summary of the sensitivity formulation with respect to the420

critical displacement jumps δc1, δc2, and δc3 is included hereafter, starting from Equation

(18) in Section 4.

For linearly elastic volumetric elements, again there is no explicit dependence of

the internal force contribution on δci and no displacement discontinuity. Therefore,

Equation (18) simply becomes425

∂ntgp
∂δci

=
∂nt

∂δci

1
nδ

[β2 nδ + (1 − β2)(nδ · n)n]. (A.1)
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From Equation (3), the partial derivatives of the scalar effective traction are

∂t

∂ηi
=

 −2σc

(
1 − δe

δc1

)(
δe
δ2c1

)
0 ≤ δe < δc1

0 else
for ηi = δc1 6σc

(
δe−δc2
δc3−δc2 − 1

)(
δe−δc2
δc3−δc2

)(
δe−δc3

(δc3−δc2)2

)
δc2 ≤ δe < δc3

0 else
for ηi = δc2 −6σc

(
δe−δc2
δc3−δc2 − 1

)(
δe−δc2
δc3−δc2

)(
δe−δc2

(δc3−δc2)2

)
δc2 ≤ δe < δc3

0 else.
for ηi = δc3

(A.2)
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