

TornadoSimulator

Authors: Ashley Criger, Kaylee Esgar, Josiah Kull, Ethan Moore, Teagan Riedel, Morgan Voss Client: Ramsankar Veerakumar

PROJECT DESCRIPTION

The Mechanical Engineering Department has commissioned the design and fabrication of a small-scale tornado simulator. The Tornado Simulator will enable vortex wind research at the University of Wyoming. The simulator consists of the following subassemblies: the inner and outer shell, fan, vane, and frame. The project features variable fan speeds, vane angles, and test platform heights, allowing researchers to study a range of vortex effects on scale models.

DESIGN REQUIREMENTS

Flow Rate: 5 m³/s (11,000 cfm)

Vane Movement: 10° to 60° minimum

Fan Motor Speeds: 0 to 1,800 rpm

Individual Component Dimensions: 80" by 36" (Standard doorway)

Individual Component Weight: 100 lbs maximum
Test Platform Movement: Z axis movement

SUBASSEMBLIES

Figure 1. Fan Subassembly

Figure 2. Vane Subassembly

Figure 3. Inner and Outer Shell Subassembly

Figure 4. Cross-Sectional View of Simulator

COMPLETE ASSEMBLY

Figure 5. Complete Tornado Simulator Assembly

DESIGN PROCESS

This simulator was designed referencing the Tornado Simulator at lowa State that was fabricated in 2005. After preliminary designs, the computational fluid dynamics of the small-scale tornado simulator were validated using ANSYS by our collaborator Utsav Purkait.

Figure 6. Model Simulated Vortex Validation of Final Design

FABRICATION

- Sheet metal pieces of each shell and all fan bracing components were water jetted.
- Shell pieces were welded into quarters by the machine shop.
- Frame pieces were cut to length by team.
- Holes were milled into frame pieces by team for bolts and all thread.
- All shell pieces and fan bracing pieces were conditioned to help prevent rust and wear.
- Vanes will be 3D printed using PLA.
- Team will assemble frame and simulator shells using bolts.

TESTING

- Structural testing and calculations of frame before simulator is hung
- Circuit analysis and system set up validation for electrical
- Use of fog machine for visual representation of vortices
- Operation Manual written for use of Simulator
- Manual written for assembly of simulator
- Data taken for vortex diameter and height at differing fan speeds.