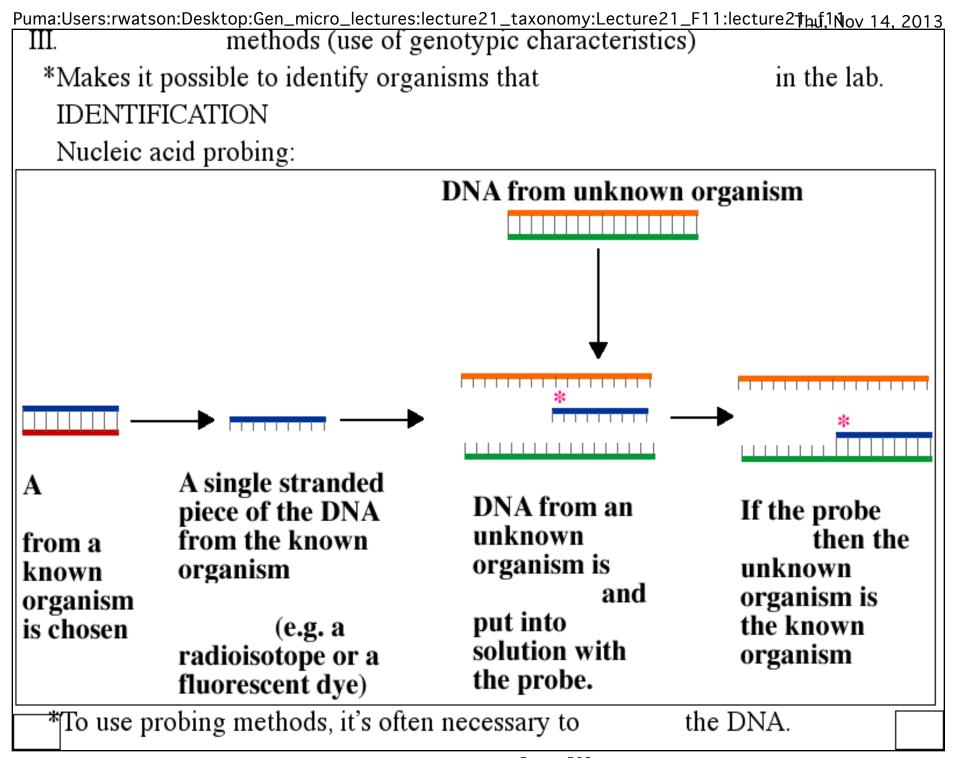

use the binomial system

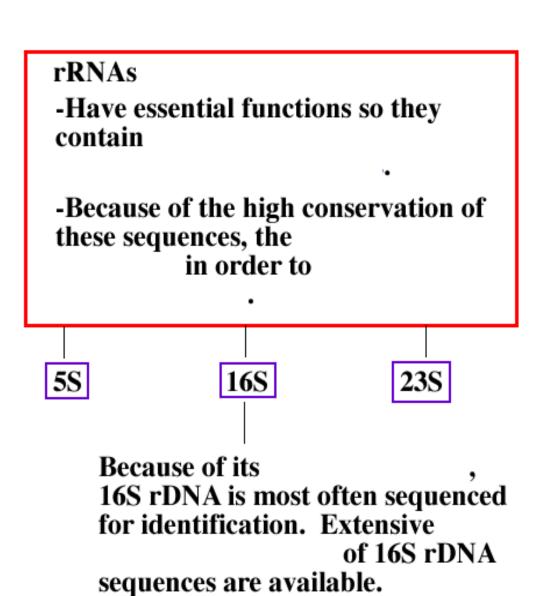
Puma:Users:rwa	son:Desktop:Gen_micro_lectures:lecture21_taxonomy:Lecture21_F11:lecture2†htf,1Nov 14,	2013
B.	: based on phenotypic and genotypic differences	
- Coi	nplicated by and inability to	
	(e.g species can not be defined as groups of	
inter	oreeding or potentially interbreeding populations).	
- Be	cause of these difficulties, the use of genotypic similarities and	
	is extremely useful in	
prok	aryotic classification.	
	r	

Puma:Users:rwatson:Desktop:Gen_micro_lectures:lecture21_taxonomy:Lecture21_F11:lecture2 1 իվ,1 N ov 14, 20	<u>13</u>
2. Classification systems	
In 1970, Carl Woese and colleagues proposed a	
based on sequences. The domains	
archaea and bacteria diverged first and the eukaryotic cell is thought to	
have arose ~	

Puma:Users:rwatson:Desktop:Gen_micro_lectures:lecture21_taxonomy:Lecture21_F11:lecture21ht[1Nov 14, 2013 II. (based on similarity of phenotypic characteristics): Numerical taxonomy A. Determines relatedness based on the percentage of (e.g. motility, ability to degrade lactose etc..) B. Between 50 and several hundred characteristics are tested and a (S_{SM}) is calculated: Total number of characteristics compared

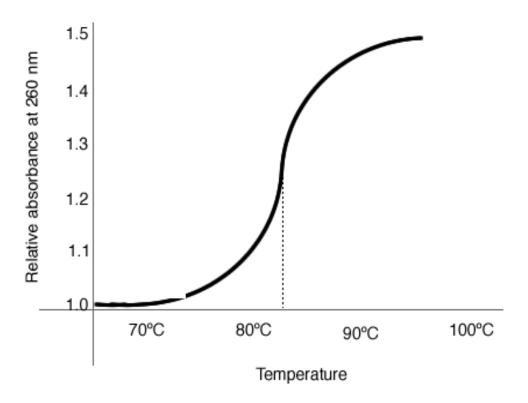

B. Simple matching coefficients are arranged to construct a

Example adapted from Prescott's Microbiology


Bacterium

		-	7	3	4	5	9
	1	1.0					
_	2	0.92	1.0				
Bacterium	3	0.81	0.77	1.0			
acte	4	0.27	0.31	0.29	1.0		
В	5	0.43	0.41	0.45	0.30	1.0	
	6	0.38	0.42	0.44	0.32	0.72	1.0

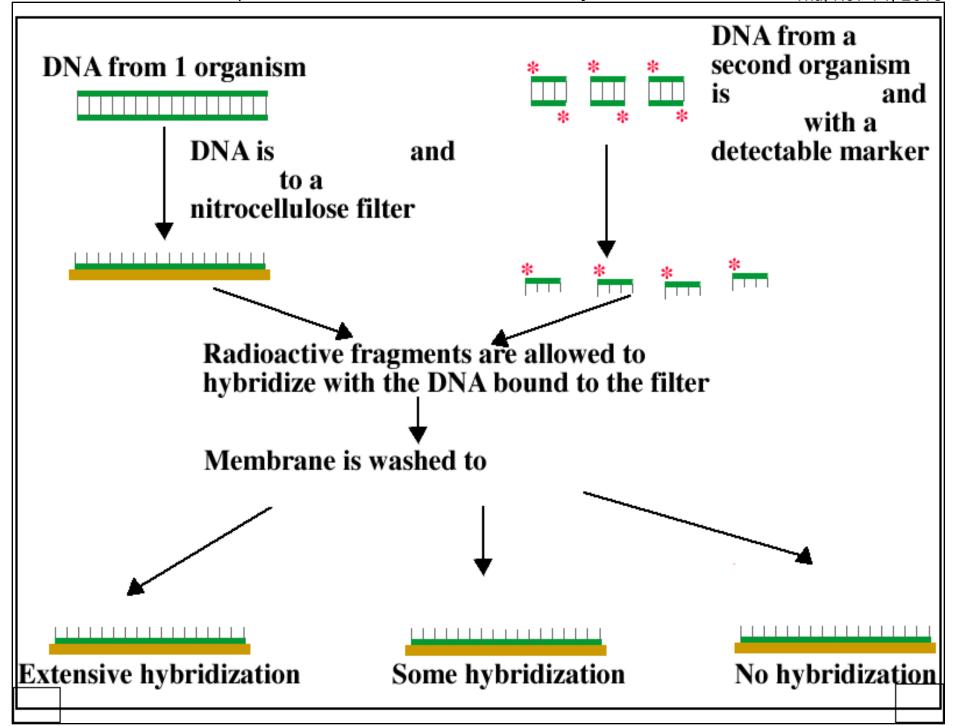
Which two strains are the most similar?


C. Sequencing rRNA genes

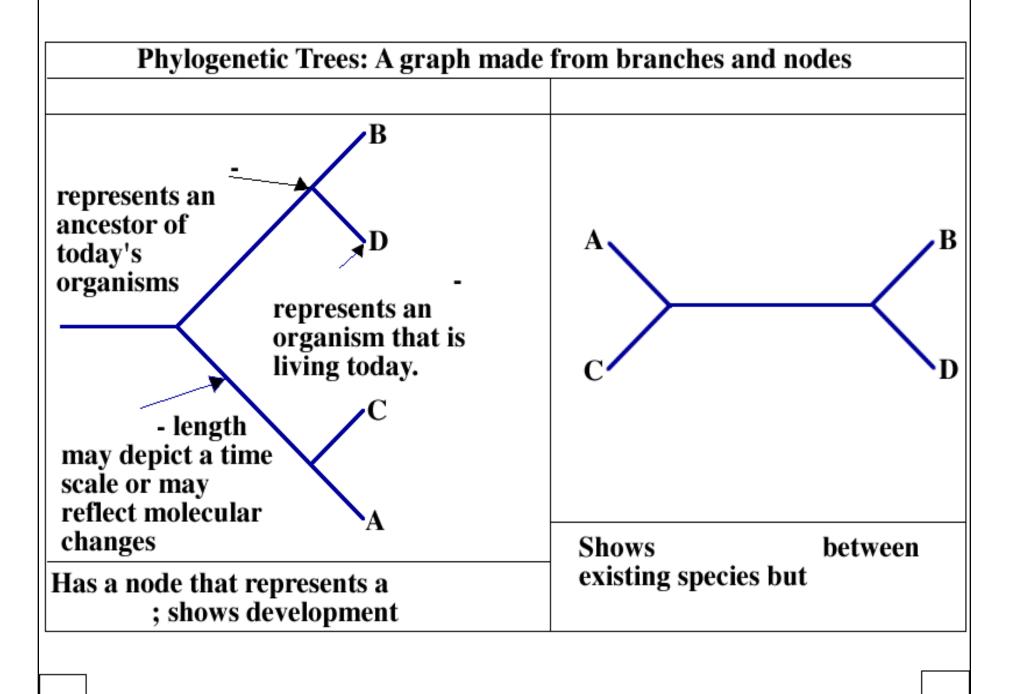
Puma:Users:rwatson:Desktop:Gen_micro_lectur	es:lecture21_taxonomy:Lectur	e21_F11:lecture2 † իմ[1 N ov 14, 2013
CLASSIFICATION		
A. DNA base ratio ()	
1. The relative amount of	A, T, G and C can be u	sed to
of different ba	cteria => expressed as	the
	(G + C or simply GC).	
*If GC content = ,	then the AT content m	ust be .
2. Often measured by dete	ermining the temperatu	re at which the
double-stranded DNA	. The	the GC content, the

the melting temperature ().

Frame 687


3. If the GC content varies by greater than $\sim 10\%$, the organisms

*Note-two organisms with the same GC content


(Bacillus subtilis and

both have 40% GC).

Puma:Users:rwatson:Desktop:Gen_micro_lectures:lecture21_taxonomy:Lecture21_F11:lecture2†եւմ,1Nov 14,	<u> 2013</u>
B. DNA hybridization	
The between two organisms	
can be determined by measuring how well single strands of their DNA	
will to eachother.	

Puma:Users:rwatson:D	esktop:Gen_micro_lectures:lecture21_taxonomy:	Lecture21_F11:lecture2†իլք,1Nov 14, 2013	
The	the degree of hybridization, the	the similarity. Strains	
that show	are often considere	ed the	
C. Because	of the high level of conservation in 1	6S rRNA, comparisons	
between	these sequences can show	by	
giving a measure of the time elapsed since the organisms			
. That is, 16S rRNAs make good			
	! In this way, rRNA sequences	s help with the	
construc	ction of .		

	Often can grow at low nutrient levels (purple nonsulfur bacteria, Nitrobacter, Rhizobium, Rickettsia, Brucella, Caulobacter)
	Many chemolithotrophic bacteria (Nitrosomonas, Thiobacillus, Neisseria)
(240 Families and 1194 (
	Predatory bacteria (Bdellovibrio) Sulfate and sulfur reducing bacteria (Desulfovibrio)

G+ with a low G+C content G+, aerobic or facultatively anaerobic rods and cocci, contain orders (Bacillus, Sporosarcina, Lactobacillus, Streptococcus, Staphylococcus, Lactococcus, Enterococcus and Listeria) 5 subclasses, 6 orders, 44 families (Actinomyces, Corynebacterium, Micrococcus,
G+, aerobic or facultatively anaerobic rods and cocci, contain orders (Bacillus, Sporosarcina, Lactobacillus, Streptococcus, Staphylococcus, Lactococcus, Enterococcus and Listeria) 5 subclasses, 6 orders, 44 families (Actinomyces, Corynebacterium, Micrococcus,
(Actinomyces, Corynebacterium, Micrococcus,
G+ with a high Mycobacterium, Streptomyces) G+C content
Phylum: Actinobacteria

9 different phyla (all G-) that vary considerably, some phyla include:	Coccoid to ovoid or pear-shaped, lack peptidoglycan, som have a membrane-enclosed nucleoid, many are aquatic an often have appendages Coccoid organisms with no appendages, lack peptidoglyca (Chlamydia) (Treponema and Borrelia)