

Frame 68

A. The role of photosynthetic pigments

Chlorophylls, carotenoids and phycobilins =

. They vary in color depending upon the wavelength of light that they absorb.

- 1. (cyanobacteria)
- (purple and green bacteria) absorbs than those absorbed by chlorophyll a.
- Carotenoids and phycobilins accessory pigments that light utilization.

*These pigments are organized in protein complexes called

```
10 [Internal] Text
Sprite 1: (26,55,761,459) Copy, 100%
```

B. Photophosphorylation **Photosystem**

3. When a cell needs to synthesize ATP and reducing power, it will use photosystem I and photosystem II in a process called

Photosystems in oxygenic phototrophs Non-cyclic photophosphorylation

Remember the combustion reaction that represents the catabolism of glucose:

$$C_6H_{12}O_6 + 6O_2 ----> 6CO_2 + 6H_2O \qquad \Delta G = -686 \text{ kcal/mol}$$

How does this reaction relate to carbon fixation (a.k.a dark rxns)??

What other group of organisms must be able to "fix" carbon?

VII. Carbon fixation

The Calvin Cycle (The dark reactions)

TOTAL YIELD: ATP and NADPH are used to yield

IX. Anabolic pathways

- A. Lipid synthesis
 - 1. Fatty acids are synthesized when from acetyl-CoA are added to a constantly elongating chain of carbon atoms. The chain is held by .
 - 2. Glycerol is synthesized from
- B. Amino acid synthesis
 - 1. Some are synthesized from precursor metabolites formed during
 - 2. Some are derived from compounds of the (e.g. α-ketoglutarate is used to synthesize)
 - 3. Aromatic amino acids are sometimes synthesized from precursors of the
 - 4. Synthesis pathways are often regulated by
- C. Nucleotide synthesis
 - -complex construction. Purine and pyrimidine rings are constructed from