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Our knowledge of pathogens and symbionts is heavily biased toward phyla containing
species that are straightforward to isolate in pure culture. Novel bacterial phyla are often
represented by a handful of strains, and the number of species interacting with eukaryotes
is likely underestimated. Identification of predicted pathogenesis and symbiosis determi-
nants such as theType III Secretion System (T3SS) in the genomes of “free-living” bacteria
suggests that these microbes participate in uncharacterized interactions with eukaryotes.
Our study aimed to test this hypothesis on Verrucomicrobium spinosum (phylum Verru-
comicrobia) and to begin characterization of its predicted T3SS. We showed the putative
T3SS structural genes to be transcriptionally active, and that expression of predicted effec-
tor proteins was toxic to yeast in an established functional screen. Our results suggest
that the predicted T3SS genes of V. spinosum could encode a functional T3SS, although
further work is needed to determine whether V. spinosum produces a T3SS injectisome
that delivers the predicted effectors. In the absence of a known eukaryotic host, we made
use of invertebrate infection models. The injection or feeding of V. spinosum to Drosophila
melanogaster and Caenorhabditis elegans, respectively, was shown to result in increased
mortality rates relative to controls, a phenomenon exaggerated in C. elegans mutants
hypersensitive to pathogen infection. This finding, although not conclusively demonstrat-
ing pathogenesis, suggests that V. spinosum is capable of pathogenic activity toward an
invertebrate host. Symbiotic interactions with a natural host provide an alternative explana-
tion for the results seen in the invertebrate models. Further work is needed to determine
whetherV. spinosum can establish and maintain interactions with eukaryotic species found
in its natural habitat, and whether the predicted T3SS is directly involved in pathogenic or
symbiotic activity.
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INTRODUCTION
For anthropocentric reasons, bacteria are often conceptually
divided into free-living and host-associated organisms. However,
we know that different members of the same bacterial phylum
can exhibit a multitude of lifestyles (free-living, pathogen, sym-
biont), and even that a single species can engage in different kinds
of relationships with different hosts. It is also clear that bacter-
ial phyla containing known pathogens and symbionts are enor-
mously over-represented in our culture collections and sequence
databases (Martiny and Field, 2005), whereas our knowledge of
many novel phyla is limited to a handful of strains. The rel-
atively obscure bacterium Verrucomicrobium spinosum (phylum
Verrucomicrobia) was isolated from a lake in northern Germany
(Schlesner, 1987), and its most interesting feature until now has
been its unusual cellular morphology, featuring wart-like cellular
protrusions (Schlesner, 1987) and a compartmentalized cell plan
shared with the planctomycetes (Lee et al., 2009). For two decades,
V. spinosum has been regarded as a free-living, non-pathogenic
microbe, but its genome sequence contains a predicted Type III
secretion system (T3SS; Pallen et al., 2005). T3SS is a hallmark

of bacteria–eukaryote interactions, chiefly known for its role as
a pathogenesis factor, delivering toxic effector proteins via direct
cell-to-cell contact with eukaryotic cells, but also involved in sym-
bioses (Galán and Wolf-Watz, 2006). It has been suggested that
“free-living” organisms possessing predicted T3SS may partici-
pate in uncharacterized interactions with eukaryotes (Pallen et al.,
2005). Our study aimed to test this hypothesis on Verrucomicro-
bium spinosum and to begin characterization of its predicted T3SS.
We achieved our aims by generating experimental data on the tran-
scriptional activity and protein–protein interactions of T3SS genes
and their gene products, respectively. We also demonstrated that
V. spinosum can kill two different model invertebrate hosts.

RESULTS
V. SPINOSUM POSSESSES AND EXPRESSES PREDICTED TYPE III
SECRETION SYSTEM GENES
The V. spinosum genome contains all required structural compo-
nents for a functional T3SS (Figure 1; Table A1 in Appendix).
The V. spinosum T3SS genes are found in a cluster with strikingly
similar organization to other T3SS gene clusters, particularly the
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FIGURE 1 | Verrucomicrobium spinosum possesses genes

predicted to encode aT3SS. (A) General organization of T3SS
structural components in experimentally characterized T3SS, labeled
according to the Yersinia T3SS nomenclature. (B) Organization of
predicted T3SS structural genes in the genomes of V. spinosum,
Desulfovibrio vulgaris, Lawsonia intracellularis, and Chlamydophila

pneumoniae. The latter is included because the chlamydiae are
generally considered to be more phylogenetically related to the
Verrucomicrobia than other phyla. Genes are colored to correspond to
the protein components depicted in part (A) of the figure. Double
vertical lines indicate that the T3SS genes are not immediately adjacent
to each other in the respective genomes.

well-characterized T3SS found in Yersinia species, and the T3SS
of desulfovibrios and related organisms (Heidelberg et al., 2004;
Pallen et al., 2005). All essential categories of T3SS structural
proteins were identified, including membrane anchors (VspC,
VspQ), candidate needle proteins (VspF1, VspF2), needle pro-
tein chaperones (VspE, VspG), and an ATPase (VspN; Table A1
in Appendix). Importantly, we found that several of these genes
were actively transcribed. Transcription of predicted outer and
inner bacterial membrane anchors of the T3SS, and candidate nee-
dle proteins, was detected by RT-PCR (Figure 2) under standard
growth conditions (described in Materials and Methods). Fur-
thermore, specialized cytoplasmic chaperones are usually required
for the stability of the T3SS, and the efficient translocation of
T3SS components and effectors (Galán and Wolf-Watz, 2006). We
demonstrated a physical association between one needle protein
(VspF1) and one chaperone (VspE; Table A2 in Appendix) by yeast
two-hybrid screening, thus supporting a functional interaction.

EXPRESSION OF PREDICTED V. SPINOSUM T3SS EFFECTOR PROTEINS
SUPPRESSES GROWTH OF YEAST
We next used a yeast functional screen (Lesser and Miller, 2001)
to experimentally confirm the toxicity of predicted T3SS effec-
tor proteins from V. spinosum. Expression of T3SS effectors, but
not other bacterial proteins, causes growth inhibition of Saccha-
romyces cerevisiae (Lesser and Miller, 2001; Slagowski et al., 2008).
We identified three candidate effectors, based on their proximity
to the T3SS structural gene cluster, sequence similarity to known
T3SS effectors, and/or sequence properties reported to be char-
acteristic of T3SS effectors (Schechter et al., 2006). Two of these,
open reading frame (ORF) 05930 (p = 7.9 e 10−17; t -test) and
ORF04374 (p = 3.3 e 10−7; t -test), showed a significant inhibition
of growth under inducing conditions (Figure 3). Expression of
control V. spinosum genes showed no such effect. While we have

FIGURE 2 | Detection of VspC,VspQ,VspF1, and VspF2 expression by

RT-PCR. Lane 1: V. spinosum RNA in the presence of reverse transcriptase
and DNA polymerase; Lane 2: water (PCR negative control); Lane 3: V.
spinosum RNA in the absence of reverse transcriptase and presence of
DNA polymerase; Lane 4: V. spinosum DNA in the absence of reverse
transcriptase and presence of DNA polymerase.

not directly demonstrated that the predicted T3SS secretes these
predicted effectors, our data suggest that injection of these effec-
tors into eukaryotic cells would be toxic, similar to other known
T3SS effectors.

V. SPINOSUM INCREASES MORTALITY OF D. MELANOGASTER
We next performed standard infection assays (Schneider et al.,
2007) with V. spinosum in Drosophila melanogaster. Drosophila
is an established model organism for examining T3SS-mediated
pathogenesis (Brandt et al., 2004). Although non-pathogenic
bacteria can elicit an immune response when injected into D.
melanogaster (Lemaitre et al., 1997), they have no effect on fly mor-
tality (Schneider et al., 2007). Wild-type (Oregon R) flies infected
with V. spinosum died more quickly than flies injected with buffer
alone (Figure 4), with approximately 40% survival after 20 days,
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FIGURE 3 | Optical density of yeast cultures expressing putative

effector genes (on right) and negative control genes (on left). Vertical
bar represents distribution of values for 12 individual clones repeated in
duplicate. *p = 7.9 e−17 (ORF05930, t -test) and 3.3 e10−7 (ORF04374, t -test).

FIGURE 4 | Drosophila melanogaster survival assays for V. spinosum

(squares) and PBS negative control (diamonds). Each experiment
comprised 100 male wild-type Oregon R flies. Infected flies died faster than
control flies according to log-rank analysis (p < 0.0001).

compared to 85% survival for negative control buffer-injected flies
(p = <1.0 × 10−4). A similar effect observed using wild-type Sal-
monella typhimurium was shown to be dependent on the T3SS
(Brandt et al., 2004).

V. SPINOSUM INCREASES MORTALITY OF C. ELEGANS
We also examined the effect of V. spinosum exposure on the mortal-
ity of Caenorhabditis elegans. Sterile mutant worms [fer-15(b26);
fem-1(hc17)] exposed to living V. spinosum exhibited increased
mortality relative to control worms feeding on Escherichia coli
(Figure 5A), whereas heat-killed V. spinosum cells had no such
effect (Figure A1A in Appendix). This suggested a direct and

adverse interaction between living V. spinosum and the worm
rather than a non-specific mortality increase due to provision
of a nutritionally inferior diet or similar non-specific effect. V.
spinosum-induced mortality was increased (Figure 5B) in a worm
deletion mutant [fshr-1(ok778)] previously shown to be hypersen-
sitive to pathogen infection by multiple agents (Powell et al., 2009).
Using a multi-copy extrachromosomal array that overexpresses
fshr-1 (Cho et al., 2007), we were able to completely reverse V.
spinosum-associated death in fshr-1(ok778) mutants (Figure 5B).
In fact, overexpression of fshr-1 substantially reduced mortality
of fshr-1(ok778) mutants exposed to V. spinosum to levels below
that observed for wild-type, similar to our observations with the
known pathogens, S. aureus, and E. faecalis (Figures A1B,C in
Appendix). In contrast, fshr-1 expression levels do not correlate to
life expectancy on a non-pathogenic strain (Figure A1D in Appen-
dix), indicating that the effects of fshr-1 on survival are specific to
pathogen exposure (Powell et al., 2009).

CAN WE PREDICT THE NATURAL EUKARYOTIC HOST OF V. SPINOSUM ?
Phylogenetic analysis of structural T3SS proteins has shown most
bacteria possessing T3SS to cluster according to their specific
interaction type, such as plant pathogen, obligate intracellular ani-
mal pathogen, or extracellular animal pathogen (Troisfontaines
and Cornelis, 2005). In an attempt to predict the nature of any
uncharacterized V. spinosum–eukaryote interaction, we conducted
phylogenetic analysis of YscN-like sequences (the T3SS ATPase
from Yersinia) from V. spinosum, all available free-living bacteria
carrying predicted T3SS genes, and reference pathogens and sym-
bionts (Figure 6). The V. spinosum YscN appeared most closely
related to those from strains of three deltaproteobacteria: Lawso-
nia intracellularis, Desulfovibrio piger and Desulfovibrio vulgaris.
This cluster was recovered with analysis of some, but not all,
additional T3SS genes (data not shown). L. intracellularis is an
obligate intracellular pathogen and causes proliferative enteritis in
pigs (Kroll et al., 2005). Members of the genus Desulfovibrio are
anaerobic sulfate-reducing bacteria and include both commen-
sals and pathogens of the human gastrointestinal tract (Gibson
et al., 1990, 1991; Willis et al., 1997; Zinkevich and Beech, 2000;
Loubinoux et al., 2002; Goldstein et al., 2003), as well as free-living
environmental bacteria. Specifically, strains of D. piger and D. vul-
garis are human intestinal commensals and D. piger also acts as
an occasional human opportunistic pathogen. Genes predicted to
encode T3SS in the L. intracellularis and D. vulgaris genomes have
been described previously (Heidelberg et al., 2004; Pallen et al.,
2005), and the T3SS of L. intracellularis has recently been linked
to pathogenesis in the porcine host (Alberdi et al., 2009). There are
no reports of infection of invertebrate models with these organ-
isms, so it is not clear whether their host range could extend to
invertebrates.

DISCUSSION
We have begun to address two questions, using Verrucomicrobium
spinosum as a test case. The first question is whether predicted
T3SS genes without established function in “free-living” bacteria
have the potential to encode a functional T3SS, i.e., an injecti-
some that translocates effector proteins into a eukaryotic host cell.
Our results showed that the predicted T3SS genes of V. spinosum
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FIGURE 5 | Caenorhabditis elegans survival assays. Each experiment
comprised of approximately 100 worms. (A) CF512 worms (sterile mutants)
exposed to E. faecalis and V. spinosum died faster than CF512 worms
exposed to E. coli, according to log-rank analysis (p = 0 for E. faecalis and

2.33e−15 for V. spinosum). (B) When exposed to V. spinosum, worm mutants
hypersensitive to pathogens (fshr-1) died faster than N2 wild-type worms
(p = 5.04 e−7). Worms over-expressing an fshr-1 multi-copy array died more
slowly than N2 wild-type worms (p = 7.18 e−13).

FIGURE 6 | Phylogenetic relationship ofT3SS ATPases from V. spinosum

and representatives of other bacterial groups containingT3SS; the

ATPase group associated with the flagellar apparatus was used as an

outgroup. Bootstrap values obtained based on 1000 bootstrap runs are
indicated by: O above 80%, Δ between 80 and 60%; values less than 60%
are not shown. Bar denotes 0.3 amino acid substitutions per site. Collapsed

clades indicate T3SS classes as described by Troisfontaines and Cornelis
(2005). Hrc1 and Hrc2 plant pathogen groups; intracellular survival; invasive
phenotype; Chlamydiales T3SS family (intracellular life-style); extracellular
pathogen life-style, resistance to phagocytosis, and triggering of apoptosis in
macrophages; Rhizobiales T3SS family (symbiotic relations with leguminous
plants). Open clusters contain at least one “free-living” organism.

are transcriptionally active and identify a candidate chaperone for
one of two predicted T3SS needle proteins. We also demonstrated

that expression of V. spinosum proteins inhibits growth in an
established yeast functional screen for T3SS effectors. Although
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the growth inhibition appears modest (Figure 3), use of this screen
with characterized virulence proteins from a known pathogen
(Shigella flexneri) showed that growth inhibition was variable (up
to 50% compared to controls; Slagowski et al., 2008). Thus the
50% growth inhibition observed for V. spinosum ORF05930 cor-
responded to the most toxic protein screen result from S. flexneri.
These findings represent only first steps toward characterizing
the putative V. spinosum T3SS. Future work includes determining
whether T3SS genes are expressed at the protein level, whether the
resulting proteins assemble to form an injectisome, and whether
the injectisome translocates the predicted effectors into a host cell.
It will also be necessary to pursue approaches complementary to
yeast two-hybrid screens to characterize chaperone interactions,
as it is possible that the very nature of chaperones leads them to
interact non-specifically with poorly folded proteins.

The second question is whether V. spinosum can interact with
eukaryotes. The results of our infection studies in two different
model invertebrates suggest that it can. In particular, the increased
mortality of C. elegans fshr-1 deletion mutants exposed to V. spin-
osum, relative to wild-type worms, strongly argues for a pathogenic
interaction in this model. However, we cannot presently extrap-
olate this result to the natural host(s) of V. spinosum, given that
mechanisms of bacterial pathogenesis (e.g., T3SS) are also used to
initiate and maintain symbiotic relationships (Viprey et al., 1998),
and that a given bacterium can engage in pathogenic and symbi-
otic interactions with different hosts (Preston, 2007). A symbiotic
relationship also appears plausible given the known symbiotic
associations of other verrucomicrobial species, such as Candidatus
Xiphinematobacter with nematodes (Vandekerckhove et al., 2000),
and the verrucomicrobial ectosymbiont that defends its ciliate host
from predation (Petroni et al., 2000). In addition, a verrucomicro-
bial species occurs as a dominant member of the mucin-degrading
bacterial population of the human intestine (Derrien et al., 2004).
Future work includes determining the natural host range of V.
spinosum, and the nature and route of the host interaction. This
is a challenging goal given the many possible host taxa. However,
our phylogenetic analysis of the V. spinosum T3SS proteins sug-
gests that they are related to those found within Desulfovibrio and
relatives, a group that includes known intestinal pathogens of ver-
tebrates, as well as free-living strains. This suggests a number of
possible avenues: to test vertebrate hosts for susceptibility to V.
spinosum infection, and to test ingestion as an infection route in
both vertebrate and invertebrate hosts. Interestingly, the role of
FSHR-1 in pathogen defense in C. elegans is specific to the intesti-
nal tract (Powell et al., 2009), consistent with V. spinosum acting
through this tissue.

Another obvious goal is determination of the role of the pre-
dicted V. spinosum T3SS in the mortality observed in inverte-
brate infection models. The major hurdle to this work is that
the development of genetic tools for V. spinosum is still in its
infancy. Although a method for random transposon mutage-
nesis of the V. spinosum genome has been recently described
(Domman et al., 2011), work is still underway to increase trans-
formation efficiency so that mutant libraries of adequate size can
be generated. In addition, neither transformation of V. spinosum
cells with plasmid DNA nor targeted knock-out of specific genes
via transposon mutagenesis has yet been achieved. With further

progress in development of genetic tools for V. spinosum, it should
also be possible to generate tagged V. spinosum mutants use-
ful for fulfilling Koch’s postulates (i.e., recovering the presumed
pathogen/symbiont from the host) and determining whether the
organism colonizes host tissue in the invertebrate infection mod-
els. In the absence of a selectable marker or fluorescent tag, it has
proven difficult to quantify V. spinosum in worm or fly tissue due
to overgrowth with normal fly/worm flora on artificial culture
media. This question could also be pursued with FISH probing of
host tissues with a V. spinosum-specific probe. An alternative, or
complementary approach, to determining whether the putative V.
spinosum T3SS is responsible for the observed invertebrate mor-
tality would be to test for up-regulation of the relevant genes in
the D. melanogaster or C. elegans infection models.

With the rapid development of sequencing technology, bac-
terial genome sequencing has revealed predicted pathogene-
sis/symbiosis determinants in several organisms not previously
known to interact with eukaryotes (Pallen et al., 2005). Fur-
ther examination of unpublished but publicly available genome
sequences reveals the presence of such determinants in multiple
other “free-living” genomes (http://img.jgi.doe.gov/cgi-bin/pub/
main.cgi). Here we map out a general methodology moving from
bioinformatics to experimental analysis, taking advantage of estab-
lished eukaryotic models from yeast to flies and worms to test the
potential eukaryotic interactions of bacterial strains.

MATERIALS AND METHODS
BIOINFORMATIC PREDICTIONS AND PHYLOGENETIC ANALYSIS
The V. spinosum genome sequence (accession ABIZ00000000) and
the sequences of reference genomes were obtained from GenBank.
Protein structure was predicted using the Phyre server (Kelley and
Sternberg, 2009). Protein sequences of the T3SS ATPase (YscN)
were identified using BLASTP (Altschul et al., 1990). The ATP
synthase of E. coli associated with the flagellar apparatus was
included in the analysis as an outgroup. Protein sequences were
aligned using MUSCLE (Edgar, 2004) with default parameters.
The WAG + I + GAMMA model (Whelan and Goldman, 2001)
was determined as the model of best fit [according to AIC (Sugiura,
1978)] using the ProtTest tool (Abascal et al., 2005) with default
parameters. Maximum likelihood phylogeny was obtained using
PhyML software (Guindon and Gascuel, 2003) implementing the
WAG + I + GAMMA evolutionary model, with 1000 bootstrap
runs.

BACTERIAL STRAINS AND CULTIVATION CONDITIONS
Verrucomicrobium spinosum type strain DSM 4136 was grown in
liquid M13 medium (Schlesner, 1987) incubated statically at 30˚C
for 72 h.

RNA ISOLATION AND RT-PCR
Ten milliliters of V. spinosum culture was collected by centrifu-
gation and frozen at −80˚C for 5 min. Cells were thawed, 250 μl
TriZol reagent was added, and RNA isolation performed as rec-
ommended by the manufacturer. Pellets were re-suspended and
incubated for 15 min at 55˚C in 100 μl RNase-free water, DNase-
treated, and subsequently passed through an RNeasy mini kit
(Qiagen) according to the manufacturer’s instructions. Reverse
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transcription was performed using the iScript cDNA synthesis kit
(Bio-rad) according to the manufacturer’s instructions. PCR tar-
geting VspC (ORF05910),VspQ (ORF05897),VspF1 (ORF05907),
and VspF2 (ORF05908) was performed using V. spinosum cDNA
or gDNA as the nucleic acid template. Reaction mixtures consisted
of 1 × PCR buffer (NEB), 1.5 mM MgCl2, 10 μM each primer
(Table A3 in Appendix), 200 μM each dNTP, 0.2 U Taq DNA
polymerase, 30 ng of cDNA in a 50-μl volume. Reaction condi-
tions consisted of an initial denaturation step of 95˚C for 3 min
followed by 35 repeat cycles of 95˚C for 10 s, 62˚C for 10 s, and
72˚C for 20 s, and a single final extension step at 72˚C for 5 min.

YEAST TWO-HYBRID SCREENS
Open reading frames were PCR-amplified from V. spinosum
genomic DNA (gDNA). PCR was performed in a mixture of
1 × iProof High-Fidelity DNA polymerase PCR reaction mix (Bio-
Rad), 25 μM each primer, and approximately 30 ng of V. spinosum
gDNA in a final volume of 50 μl. Reaction conditions consisted of
an initial denaturation step of 98˚C for 30 s followed by 30 cycles
of 98˚C for 10 s, 54–60˚C (see Table A3 in Appendix for primer
sequences and annealing temperatures) for 10 s and 72˚C for
1 min, followed by a single final extension step of 72˚C for 5 min.
PCR products were gel-purified using a QIAquick gel extraction kit
(Qiagen), and cloned into pENTR/SD/D-TOPO (Invitrogen). E.
coli NEB5α chemically competent cells (NEB) were transformed
with the resulting constructs to generate entry clones. Correct
sequence and orientation of each ORF was confirmed by DNA
sequencing of entry clones. ORF’s were transferred to pDEST22
(Prey) and pDEST32 (Bait) vectors (Invitrogen) by LR recombi-
nation and specific protein–protein interactions were tested using
the ProQuest Two-Hybrid System (Invitrogen), according to the
manufacturer’s instructions.

YEAST T3SS EFFECTOR SCREEN
Putative T3SS effectors were selected for yeast genetic screening
(Lesser and Miller, 2001) if they showed high BLASTP simi-
larity to known T3SS effectors in other organisms, or if they
yielded high scores in criteria for T3SS effectors described pre-
viously (Schechter et al., 2006). PCR primers were designed to
incorporate a yeast translation initiation sequence at the 5′ end
of the ORF and the stop codon was removed to allow fusion
with a V5 epitope and polyhistidine tag. Putative T3SS effec-
tors (ORF01842, ORF04374, ORF05930) and controls (ORF03840,
ORF04373, ORF05921) were amplified by PCR. PCR contained
1 × ReadyMix PCR reaction mix (Sigma), 25 μM each primer
(Table A3 in Appendix),30 ng V. spinosum gDNA,3% (v/v) DMSO,
1.5 mM MgCl2, and reaction conditions consisted of an initial
denaturation step of 94˚C for 5 min, followed by 35 cycles of 94˚C
for 15 s, 56˚C for 15 s and 72˚C for 1 min, and a single final exten-
sion step at 72˚C for 5 min. PCR products were gel-purified using a
QIAquick gel extraction kit (Qiagen), cloned into pYES2.1 TOPO
(Invitrogen). E. coli TOP10 chemically competent cells (Invitro-
gen) were transformed with the resulting constructs according to
the manufacturer’s instructions. Correct sequence and orientation
of each ORF was confirmed by DNA sequencing. Plasmids were

extracted from 5 ml E. coli TOP10 using the QiaQuick plasmid
miniprep kit (Qiagen). S. cerevisiae str. InvSc1 (Invitrogen) was
transformed with approximately 1 μg plasmid mixed with 100 μg
salmon sperm DNA, using a lithium acetate transformation proto-
col described by the manufacturer. Resulting transformants con-
taining expression plasmids were selected by growth on SM-Ura
media.

Saccharomyces cerevisiae InvSc1 clones containing expres-
sion plasmids were grown in 5 ml non-inducing media (SM-
ura + glucose) until culture had an OD600 of approximately 1.0.
Cultures were normalized and inoculated into induction media
(SM-ura + galactose) so that an OD600 of 0.05 was obtained. Tubes
were incubated for 48 h at 30˚C and the OD600 recorded. The final
OD600 recorded was the average of two replicate cultures of 12
individual clones for each putative T3SS effector or control.

FLY EXPERIMENTS
Survival assays in D. melanogaster were performed as previously
described (Schneider et al., 2007). 60–100 wild-type male Oregon
R flies were assayed per condition. Flies were infected with either
V. spinosum [concentrated in phosphate-buffered saline (PBS) to
an OD600 of 1.0] or PBS alone and incubated at 29˚C. Death was
recorded daily. Survival curves are plotted as Kaplan–Meier plots
and statistical significance tested using log-rank analysis using
GraphPad Prism software. All experiments were performed at least
three times and yielded similar results.

WORM EXPERIMENTS
Strains were maintained according to standard procedures (Stier-
nagle, 2006) and cultured at 20˚C, with the exception of experi-
ments conducted with CF512; such experiments were performed
at 25˚C. Strains used or generated included the following: N2, wild-
type; CF512, [fer-15(b26); fem-1(hc17)]; WY346, [fshr-1(ok778)];
WY335, [fshr-1(ok778); fdEx41] (this multi-copy extrachromoso-
mal array contains the wild-type fshr-1 locus as well as a sur-
5::GFP marker; Cho et al., 2007). Bacterial killing assays were
performed at 20˚C, unless otherwise noted, as previously described
(Powell and Ausubel, 2007). V. spinosum was cultivated in liq-
uid M13 medium as described above, while E. coli, S. aureus,
and E. faecalis were cultivated in tryptic soy broth at 37˚C. After
concentration of bacterial cultures by centrifugation, all bacter-
ial strains were applied to NGM plates (Stiernagle, 2006) for the
killing assays. Log-rank analysis was used to calculate mean sur-
vival for each population of worms, using the online server at
http://bioinf.wehi.edu.au/software/russell/logrank/. Each popula-
tion (biological replicate) was an average of two or three inde-
pendent plates containing 50 worms each. Figures show data from
representative biological replicates.
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APPENDIX

Table A1 |Type III Secretion System structural genes and chaperones in the V. spinosum genome, predicted on the basis of primary sequence

similarity (BLASTP comparison) and domain structure.

Open reading

frame

Description Top BLASTP match Required for

type III

secretion?

ORF02659 Type III secretion chaperone

DspF family

ZP_02197308.1 Vibrio campbellii AND4 hypothetical protein [Identities = 38/136

(27%), Positives = 57/136 (41%), Gaps = 0/136 (0%)] (4e-06)

No

ORF02982 Type III secretion chaperone

CesT family

YP_002436649.1 Desulfovibrio vulgaris str. “Miyazaki F” Tir chaperone family

protein [Identities = 41/138 (29%), Positives = 59/138 (42%), Gaps = 3/138 (2%)]

(2e-08)

No

ORF03096 Type III secretion chaperone

CesT family

YP_002436233.1 Desulfovibrio vulgaris str. “Miyazaki F” Tir chaperone family

[Identities = 43/139 (30%), Positives = 70/139 (50%), Gaps = 7/139 (5%)] (5e-07)

No

ORF03208 Type III secretion chaperone,

CesT family

ZP_03311875.1 Desulfovibrio piger ATCC 29098 hypothetical protein

[Identities = 36/119 (30%), Positives = 58/119 (48%), Gaps = 4/119 (3%)] (5e-05)

No

ORF04373 Type III secretion chaperone

CesT family

YP_002680810.1 Pseudovibrio sp. JE062 type III secretion chaperone, CesT

family [Identities = 33/123 (26%), Positives = 50/123 (40%), Gaps = 8/123 (6%)]

(0.081)

No

ORF04377 Type III secretion chaperone

CesT family

YP_002680810.1 Pseudovibrio sp. JE062 type III secretion chaperone, CesT

family [Identities = 40/144 (27%), Positives = 57/144 (39%), Gaps = 7/144 (4%)]

(0.007)

No

ORF04807 Type III secretion chaperone

CesT family

gb|AAY36239.1| Pseudomonas syringae pv. syringae B728a type III chaperone

protein ShcM [Identities = 29/111 (26%), Positives = 50/111 (45%), Gaps = 9/111

(8%)] (0.002)

No

ORF05889 Type III secretion chaperone

CesT family

ZP_02197308.1 Vibrio campbellii AND4 hypothetical protein AND4_08621

[Identities = 37/129 (28%), Positives = 66/129 (51%), Gaps = 0/129 (0%)] (5e-10)

No

ORF05893 Type III secretion protein

YscU/HrpY

ZP_01259729.1 Vibrio alginolyticus translocation protein in type III secretion

[Identities = 155/339 (45%), Positives = 237/339 (69%), Gaps = 0/339 (0%; 9e-97)

Yes

ORF05894 Type III secretion protein

SpaR/YscT/HrcT

NP_798053.1 Vibrio parahaemolyticus type III secretion apparatus protein

SpaR/YscT/HrcT [Identities = 106/237 (44%), Positives = 155/237 (65%),

Gaps = 3/237 (1%)] (6e-50)

Yes

ORF05895 Type III secretion protein HrpO

family (YscS/HrcS/SctS/EscS)

ZP_01550017.1 Stappia aggregata Type III secretory pathway, component EscS

[Identities = 48/89 (53%), Positives = 67/89 (75%), Gaps = 0/89 (0%)] (2e-20)

Yes

ORF05896 Type III secretion apparatus

protein YscR/HrcR

ZP_02195905.1 Vibrio campbellii translocation protein in type III secretion

[Identities = 133/215 (61%), Positives = 170/215 (79%), Gaps = 0/215 (0%)]

(4e-70)

Yes

ORF05897 Type III secretion apparatus

protein YscQ/HrcQ/SpaO

YP_001444923.1 Vibrio harveyi ATCC BAA-1116 type III secretion system protein

[Identities = 86/293 (29%), Positives = 131/293 (44%), Gaps = 25/293 (8%)]

(1e-15)

Yes

ORF05898 Putative T3SS needle length

determinant

YP_436215.1 Hahella chejuensis KCTC 2396 hypothetical protein HCH_05109

[Identities = 27/88 (30%), Positives = 51/88 (57%), Gaps = 5/88 (5%)] (4e-05)

No

ORF05899 Type III secretion protein O ABM29998.1 Desulfovibrio vulgaris spp. vulgaris DP4 type III secretion YscO

family protein [Identities = 57/155 (36%), Positives = 88/155 (56%), Gaps = 0/155

(0%)] (8e-11)

No

ORF05900 Type III secretion apparatus H +
transporting two-sector ATPase

YscN

YP_594915.1 Lawsonia intracellularis PHE/MN1-00 type III secretion system

ATPase [Identities = 307/435 (70%), Positives = 357/435 (82%), Gaps = 0/435

(0%)](4e-179)

Yes

ORF05901 Type III secretion apparatus

protein HrpE/YscL family

AAO18079.1 Photorhabdus luminescens LscL [Identities = 65/200 (32%),

Positives = 118/200 (59%), Gaps = 11/200 (5%)] (1e-26)

Yes

ORF05904 Type III secretion apparatus

lipoprotein YscJ/HrcJ

ZP_01769285.1 Burkholderia pseudomallei 305 type III secretion apparatus

lipoprotein, YscJ/HrcJ family [Identities = 101/245 (41%), Positives = 143/245

(58%), Gaps = 17/245 (6%)] (5e-44)

Yes

(Continued)
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Table A1 | Continued

Open reading

frame

Description Top BLASTP match Required for

type III

secretion?

ORF05909 Type III secretion apparatus

protein YscD/HrpQ family

ABC30002.1 Hahella chejuensis KCTC 2396 putative type III export protein YscD

[Length = 446 Identities = 83/330 (25%), Positives = 145/330 (43%),

Gaps = 24/330 (7%)] (2e-15)

Yes

ORF05910 Type III secretion outer

membrane pore YscC/HrcC

family

YP_434425.1 Hahella chejuensis KCTC 2396 putative type III secretion

[Identities = 179/568 (31%), Positives = 295/568 (51%), Gaps = 40/568 (7%)]

(5e-69)

Yes

ORF05911 Type III secretion chaperone

CesT family

YP_961197.1 Desulfovibrio vulgaris spp. vulgaris DP4 TIR chaperone family protein

[Identities = 36/127 (28%), Positives = 63/127 (49%), Gaps = 13/127 (10%)](2.9)

No

ORF05912 Type III secretion protein

LcrD/AscV/YscV

NP_863517.1 Yersinia enterocolitica LcrD [Identities = 388/692 (56%),

Positives = 537/692 (77%), Gaps = 17/692 (2%)] (0.0)

Yes

ORF05915 Type III secretion chaperone

SycN family

ZP_01259739.1 Vibrio alginolyticus 12G01 putative type III secretion protein

[Identities = 40/123 (32%), Positives = 61/123 (49%), Gaps = 5/123 (4%)] (2e-04)

No

ORF05917 Type III secretion regulator

YopN/LcrE/InvE/MxiC

YP_961203.1 Desulfovibrio vulgaris spp. vulgaris DP4 type III secretion regulator

YopN/LcrE/InvE/MxiC [Identities = 93/246 (37%), Positives = 136/246 (55%),

Gaps = 18/246 (7%)] (2e-28)

No

ORF05919 Putative Type III secretion

system protein EscC

YP_002932398.1 Edwardsiella ictaluri 93-146 EscC [Identities = 89/356 (25%),

Positives = 154/356 (43%), Gaps = 70/356 (19%)] (3e-08)

No

ORF05921 Type III secretion low calcium

response chaperone

LcrH/SycD/SpaT

ZP_01985138.1 Vibrio harveyi HY01 type III secretion low calcium response

chaperone LcrH/SycD [Identities = 52/149 (34%), Positives = 91/149 (61%),

Gaps = 0/149 (0%)] (4e-21)

No

ORF05929 Type III secretion chaperone

CesT family

YP_001906486.1 Erwinia tasmaniensis Et1/99 Potential ORFB-specific

chaperone, encodes a homolog of virulence/avirulence effector proteins secreted

via the type III pathway [Identities = 35/107 (32%), Positives = 55/107 (51%),

Gaps = 3/107 (2%)] (1e-08)

No

ORF05931 Type III secretion chaperone

CesT family

YP_002680810.1 Pseudovibrio sp. JE062 type III secretion chaperone, CesT

family [Identities = 31/124 (25%), Positives = 59/124 (47%), Gaps = 2/124 (1%)]

(1e-05)

No

ORF05932 Type III secretion chaperone

CesT family

YP_595407.1 Lawsonia intracellularis PHE/MN1-00 hypothetical protein LI1032

[Identities = 42/132 (31%), Positives = 65/132 (49%), Gaps = 3/132 (2%)] (1e-08)

No

ORF05933 Type III secretion chaperone

CesT family

YP_961179.1 Desulfovibrio vulgaris spp. vulgaris DP4TIR chaperone family protein

[Identities = 32/111 (28%), Positives = 54/111 (48%), Gaps = 5/111 (4%)] (3e-07)

No

ORF06015 Type III secretion chaperone

CesT family

YP_434498.1 Hahella chejuensis KCTC 2396 hypothetical protein HCH_03318

[Identities = 35/141 (24%), Positives = 61/141 (43%), Gaps = 7/141 (4%)] (0.001)

No
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Table A2 | Results of yeast two-hybrid screening to detect protein:protein interactions between putative needle proteins and putative

chaperones.

Bait/prey pair HIS3 induction B-Galactosidase induction Interaction

SC− SC− SC− SC− X-Gal assay

Leu− Leu− Leu− Leu−
Trp− Trp− Trp− Trp−
His+ His+ His+ His+
10 mM 25 mM 50 mM 100 mM

3AT 3AT 3AT 3AT

pEXP32Krev1/pEXPRalGDS-wt (control strong positive interaction) + + + + Blue Strong

pEXP32Krev1/pEXPRalGDS-m1 (control weak positive interaction) + + + + Blue Weak

pEXP32Krev1/pEXPRalGDS-m2 (control negative interaction) − − − − White No

pEXP32VspF1/pEXP22VspF2 − − − − White No

pEXP32VspF1/pEXP22VspE + + + + Blue Strong

pEXP32VspF1/pEXP22VspG − − − − White No

pEXP32VspF2/pEXP22VspF2 − − − − White No

pEXP32VspF2/pEXP22VspE − − − − White No

pEXP32VspF2/pEXP22VspG − − − − White No

Table A3 | Oligonucleotide primers used in this study.

Gene

product

Open Reading

frame

Oligonucleotide primers Primer binding

positions

Primer annealing

temp.˚C

Forward primer (5′→3′) Reverse primer (5′→3′)

VspC ORF05910 AAGACCAAGAACACCCGCCAGATA AAG AAG CGC TGT TTG CGC TCA TTC 1595f-1698r 62

VspQ ORF05897 AAGGTGCCTGTGAGGTGCTGATTT GCG GGA TCG CTC ATG ATG AAT TGT 567f-666r 62

VspF1 ORF05908 AGCTCACTGAATATCTCGGCACCT TTTCAGCCTGATCAATGCTGTGGG 71f-190r 62

VspF2 ORF05907 ACGAAGAAACCACCCAGGTGATGA TGGATCGCTTTCACAAGGTTGGAG 83f-221r 62

VspF1 ORF05908 CAC CAT GAC AGA CAT TGA TAC TCA GTC GTT TTG TTT ATC CCC 17f-235r 60

VspF2 ORF05907 CAC CAT GGC AAT TGA CTT TG CTA ACG AAG GTT GCT GAC AG 16f-239r 60

VspG ORF05906 CAC CAT GAT CCC CGT CGA T TCA TAG AAA GTT GCG TTT GGG 15f-388r 60

VspE ORF05905 CAC CAT GAG CGT ACC TCT TG TCA ACC GCC GCG GCT GAG 16f-439r 60

ORF05930 CAC CAT GCA CAA GAT TTC CG TCA GTC CCC GAT CTT GTC CG 16f-2044r 58

ORF05930 CCATA ATG CAC AAG ATT TCC G GTC CCC GAT CTT GTC CGA C 16f-2046r 58

ORF01842 CCATA ATG CCT CCT ATT TC CCT GGG GGA GTC CGG TC 14f-560r 56

ORF04374 CCATA ATG AAT AGC TTC C CAA GAG GAT GAT CGA TG 13f-1070r 56

ORF03840 CCATA ATG AAA ATC TCT AGC G GTCCG CGG AGC GCA AAG 16f-662r 56

ORF04373 CCATA ATG ATC GAC GAC TC GGCGC AGA GAT AGT GCG 14f-434r 58

ORF05921 CCATA ATG CCG ACG GGC TGA CTC GGA AGT GGC GG 12f-497r 56
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FIGURE A1 | Caenorhabditis elegans survival assays. Each

experiment comprised approximately 100 worms. (A) Wild-type
worms (N2) exposed to live V. spinosum died faster than worms exposed
to E. coli, according to log-rank analysis (p = 3.71 e−7), whereas worms
exposed to heat-killed V. spinosum died no faster than worms exposed
to E. coli (p = 0.319). (B) When exposed to S. aureus, worm mutants
hypersensitive to pathogens (fshr-1) died faster than N2 wild-type worms
(p = 9.66 e−15). fshr-1(ok778) worms over-expressing wild-type fshr-1
from a multi-copy transgenic array died more slowly than N2 wild-type

worms (p = 0.00114). (C) When exposed to E. faecalis, worm mutants
hypersensitive to pathogens (fshr-1) died faster than N2 wild-type worms
(p = 3.69 e−5). fshr-1(ok778) worms over-expressing wild-type fshr-1 from
a multi-copy transgenic array died more slowly than N2 wild-type worms
(p = 0.000799). (D) When exposed to E. coli, there was no difference in
the mortality rate between wild-type worms, fshr-1(ok778) mutants
(p = 0.541, relative to wild-type), and fshr-1(ok778) mutants
over-expressing wild-type fshr-1 from a transgenic multi-copy array
(p = 0.169, relative to wild-type).

www.frontiersin.org October 2011 | Volume 2 | Article 211 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive

	Genomic and experimental evidence suggests that Verrucomicrobium spinosum interacts with eukaryotes
	Introduction
	Results
	V. spinosum possesses and expresses predicted Type III Secretion System genes
	Expression of predicted V. spinosum T3SS effector proteins suppresses growth of yeast
	V. spinosum increases mortality of D. melanogaster
	V. spinosum increases mortality of C. elegans
	Can we predict the natural eukaryotic host of V. spinosum?

	Discussion
	Materials and Methods
	Bioinformatic predictions and phylogenetic analysis
	Bacterial strains and cultivation conditions
	RNA isolation and RT-PCR

	Yeast two-hybrid screens
	Yeast T3SS effector screen
	Fly experiments

	Worm experiments
	Acknowledgments
	References
	Appendix



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


