
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Using NCAR’s High Performance Computing Resources
With Focus on the New

Supercomputer Derecho

September 25, 2023

Computational & Information Systems Lab (CISL)
High Performance Computing Division (HPCD)

Agenda

2

Agendas

10:00 – 10:30 Welcome, Introduction & Overview of NCAR’s HPC Resources – Irfan Elahi
NCAR HPC Resource Allocations for University of Wyoming Projects – Dave Hart

10:30 – 12:00 System Access, Storage, & Software Environment – NCAR Consulting Services
Group

Batch Job Submission, Data Analysis Resources

12:00 – 13:00 Lunch

13:00 – 14:00 Additional Resources & Getting Help – CSG
Open Discussion / Q&A / Support "Office Hours"

https://docs.google.com/spreadsheets/d/1Ed0ZPWmWZ52Lbw2SfKSL4eVO5uyO49n1hZ493MvKPEA/edit?usp=sharing

Introduction -

Overall HPCD Resources &
NCAR/Wyoming Supercomputing Center

3

4

• Planning, Procurement, Facility Modifications
• Acceptance Test Phase (ATP) March-May

– Functional & Resilience Tests
– NWSC-3 Benchmark Tests
– Availability Tests

• System Acceptance
• Accelerated Science Discovery (ASD)

– June 5, 2023

• Open Derecho to all users
– August 9, 2023+

• Decommission Cheyenne and GLADE -2

NWSC-3 (Derecho & Destor) Project Status

NCAR’s High -Performance Computing, Data, & Analysis Resources: 2023

2017 2023

H
PC

 S
ys

te
m

s

mid-2023

SGI/HPE
4032 Nodes, 145,152 Cores , 313 TB total memory, 4.79 PFlop/s
#21 Supercomputer in the world at debut

Cray/HPE
2570 Nodes, 323,712 CPU Cores , 680 TB total memory
3.5X performance vs Cheyenne
328 NVidia A100 GPUs provides 20% overall performance, 19.87 PFlop/s (projected)

D
at

a
An

al
ys

is
 &

Vi

su
al

iz
at

io
n

H
ig

h
Pe

rfo
rm

an
ce

St

or
ag

e

Casper: heterogeneous system for data analysis & viz.
- 75 High-Throughput Computing nodes
- 9 visualization nodes with accelerated graphics
- 10 dense GPU nodes for AI/ML, Code Development
- 4 nodes for Research Data processing
- 2 1.5TB large memory nodes

GLADE & Campaign Storage
- 132PB long-term, online

storage
- 17,464 hard drives
- 56 servers

CISL develops specialized visualization software &
services for Earth Science applications

Derecho ‘scratch’ Storage
- 60PB short-term storage
- Principally supports HPC jobs
- 5,088 hard drives
- 24 servers

Stratus Object Storage
- 5PB object storage

system
- 588 hard drives
- 6 servers

https://geocat.ucar.ed
u

http://projectpythia.org

Quasar Tape Library
- 35PB long term archival storage
- 22 IBM TS1160 tape drives
- 1774 20TB tape cartridges
- 216 hard drives
- 2PB disk cache
- 5 data mover servers

5

Cheyenne & Derecho side -by-side (Hardware)

6

Number of
Cores

145,152 processor
cores

2.3-GHz Intel Xeon E5-2697V4 (Broadwell)
processors. 16 flops per clock

323,712 processor
cores

3rd Gen AMD EPYC™ 7763 Milan processors

Number of
Nodes 4,032 comp nodes Dual-socket nodes, 18 cores per socket

2,488 CPU-only
computation nodes
+ 82 GPU nodes

Dual-socket nodes, 64 cores per socket 256GB DDR4 memory per
node. GPUs are Single-socket nodes, 64 cores per socket 512GB
DDR4 memory per node, 4 x NVIDIA 1.41 GHz A100 Tensor Core
GPUs per node and 600 GB/s NVIDIA NVLink GPU intercont.

Number of
Login Nodes 6 login nodes Dual-socket nodes, 18 cores per socket. 256 GB

memory/node

6 CPU login nodes
+ 2 GPU develop
and testing nodes

Dual-socket nodes with AMD EPYC™ 7763 Milan CPUs, 64 cores
per socket, 512GB DDR4-3200 memory. Dual-socket nodes with
AMD EPYC™ 7543 Milan CPUs, 32 cores per socket, 2 NVIDIA
1.41 GHz A100 Tensor Core GPUs per node
512GB DDR4-3200 memory

Total Memory 313 TB total system
memory

64 GB/node on 3,168 nodes, DDR4-2400. 128
GB/node on 864 nodes, DDR4-2400

692 TB total
system memory

637 TB DDR4 memory on 2,488 CPU nodes
42 TB DDR4 memory on 82 GPU nodes
13 TB HBM2 memory on 82 GPU nodes

Interconnect Mellanox EDR
InfiniBand
high-speed
interconnect

Partial 9D Enhanced Hypercube single-plane
interconnect topology. Bandwidth: 25 GBps
bidirectional per link Latency: MPI ping-pong < 1
µs; hardware link 130 ns

HPE Slingshot v11
high-speed
interconnect

Dragonfly topology, 200 Gb/sec per port per direction. 1.7-2.6
usec MPI latency. CPU-only nodes - one Slingshot injection port.
GPU nodes - 4 Slingshot injection ports per node

Sust Equiv Perf
(SEP) 3 times Yellowstone

computational capacity

Comparison based on the relative performance of
CISL High Performance Computing Benchmarks
run on each system.

~3.5 times
Cheyenne
computational
capacity

Comparison based on the relative performance of CISL's High
Performance Computing Benchmarks run on each system.

Peak
Performance

3.5x Yellowstone peak
perf

5.34 peak petaflops (vs. 1.504) 3.5x Cheyenne
peak perf 19.87 peak petaflops (vs 5.34)

Sustainability: Power Efficiency (Sustained MFLOP/sec per Watt)

Derecho

2023 Casper Augmentation

• CISL is currently refreshing components of Casper with a new
hardware procurement this fiscal year.

– We solicited user feedback during the planning phase of this procurement
to select the hardware “flavor(s)” included in this purchase.

– Procurements underway, with initial additional components expected in
the coming months.

• We are continuously seeking user feedback on impressions of
the current generation of Casper resources as well as desires or
hard requirements for the future hardware and software
environment.

Campaign Storage Tape HSM Tier Concept

- Goal: Expand Campaign Storage capacity for users
- Constraint: Budgetary limits makes it hard to buy more hard disks and filesystem

licenses.
- Solution: use a lower cost tape backend
- Manual and automatic migration and recall options

Campaign Storage Quasar Tape Archive
Hard Disk Archival Resource (92 PB capacity) Tape Archive Resource (50 PB capacity)

Large, inactive files migrated to tape

Files can be recalled from tape

Hard Disk Storage: Cost Trends

10

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte

• For decades a constant budget would routinely
support massive increases in storage as hard drive
capacity quickly grew

– Unfortunately this “free lunch” phase of disk capacity is over

• Between 2009-2016,
– Drive Capacity increased ~8X,
– Cost/GB decreased ~3X

• Between 2016-2023,
– Drive Capacity increased ~3-4X,
– Cost/GB decreased ~2X

• To realize more capacity we can no longer rely on
larger drives, rather we need many more drives (and
servers, network, power)→ $$$

October 2011
Thailand Flooding

Caused Supply
Chain Disruption

https://www.thegreengrid.org/en/newsroom/blog/storage-future

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://www.thegreengrid.org/en/newsroom/blog/storage-future

April 2023 CISL HPC Allocations Panel Meeting - irfan@ucar.edu

http://www.youtube.com/watch?v=t8mzKSJkeqI

12

Resource Allocations
University of Wyoming Process

Derecho Community Portions

Community Annual Portion

University 981 million core-hours

1 million GPU-hours

NCAR 825 million core-hours

850,000 GPU-hours

CESM 451 million core-hours

465,000 GPU-hours

Wyoming 345 million core-hours

355,000 GPU-hours

AMPS 53 million core-hours

55,000 GPU-hours

Allocations for the University of Wyoming

• Information on U Wyoming allocations is at https://www.uwyo.edu/nwsc/
• Allocations are available for

– Classroom activities
– Small-scale research (up to ~2 million core-hours or ~3,000 GPU-hours)
– Large-scale research (the sky’s the limit, within the amounts available to U Wyoming)

• Small-scale and classroom project requests are accepted anytime
• Large-scale project requests are accepted twice per year for review by

the Wyoming Resource Allocation Panel (WRAP)
• Projects are available to support a wide range of domains, in an “Earth system

science–first” approach
– I.e., priority given to Earth system science activities, and other strategic Wyoming activities approved

as resources are available — and space is available!
• Projects with collaborators from NCAR or other institutions are particularly encouraged
• For questions, contact wrap@uwyo. edu

14

https://www.uwyo.edu/nwsc/
mailto:wrap@uwyo.edu

Migrating Cheyenne allocations to Derecho

• All projects currently using Cheyenne need to move their work to Derecho at
their earliest convenience

• Cheyenne will be retired at the end of 2023

• To move core-hours from Cheyenne, simply email help@ucar.edu and we’ll take care
of the transfer

• To add GPU-hours to your project, contact wrap @uwyo.edu to see how best to make
that request

15

mailto:help@ucar.edu
mailto:wrap@ucar.edu

(Transition to NCAR HPC Training Slides)

The following reference material provides additional
Derecho -specific hardware and configuration

details that may benefit users familiar with
Cheyenne

16

NWSC Facility and Supporting
Infrastructure

Preparing a NSF Large Facility for
Expanded HPC Operations

17

18Supercomputing System Efficiency - Historical Overview

NWSC - Derecho By The Numbers

• System Power Requirements
– (33) 150 Amp 480v Circuits (Compute)
– (6) 60 Amp 480v Circuits (CDUs)
– (20) 60 Amp 208v Circuits (Storage and River Racks)
– 2.32 mW (Compute)
– 60 kW (Storage)

• System Cooling Requirements
– (6) 4 Inch 65 deg F Chilled Water Supply and Return Connections (CDUs)
– (8) 2 Inch 65 deg F Chilled Water Supply and Return Connections (CRACS)
– 366 kBTU / HR
– 650 - 800 Gallons Per Minute Chilled Water Flow

• Floor Weight / Dimension Requirements
– 100,467 Pounds - Derecho Compute System

• 800 Square Feet
– 10,320 Pounds - Derecho Storage System

• 225 Square Feet

• Hardware Components
– 5,072 CPU sockets across >2,500 nodes with 323,712 processor cores total
– 332 NVIDIA A100 GPUs with 6912 CUDA cores each, 2,294,784 CUDA cores total
– >22,500 hard disks in GLADE, Campaign Storage, and Derecho Scratch
– 5.565 miles of network cables

19

NWSC-3 Infrastructure Preparation Steps

Four major initiatives required before Derecho installation could begin:

1. Forecasting Future Loads
– 2-3 years before CISL HPC deployment
– NWSC-3 initial load forecasts were 2-4 additional Megawatts (MW)

• Module B HPC Power Source 1.7 MW Availability- Module A capacity needed

2. Capacity Construction
– Large Block Load Mechanical and Electrical Components
– Supports Multiple Generation of HPC Systems

3. Fit-up
– Specific Mechanical and Electrical components for awarded HPC system
– Potential re-use of infrastructure in future HPC systems

4. Planned Outages
– Utility level alterations
– Safety Concerns

20

Capacity: Mechanical Construction

18” Chilled Water
Piping Header

Installation - Lower
Module A

These images show the
18” piping being installed
from delivery to the
NWSC, the welding
installation, and finally the
pipe being insulated.

21

Capacity: Electrical Construction

24kV to 480v
Transformer Utility
HPC Substation -2

(TUSH-2) Installation

These images show some
of the prep work needed
to augment the
underground for the new
transformer, and then the
process of setting the new
25,000 pound transformer
in place. Finally the
secondary side wiring is
shown in the vault below
Module A.

22

Fit-Up: High -Level Statement of Work

Derecho Fit-up Handled as a Design / Build Project:

• Saunders Construction won procurement May 2021
– RMH Engineering used to complete the design of the system
– Encore Electric and Murphy Mechanical sub-contracted partners
– Same team as the Capacity Construction Project

• Workflow
– MUS for Derecho and NCAR requirements shared
– RMH creates Construction Documents (CDs)

• Saunders / Encore / Murphy participate in design
– Electrical Component Selection
– Mechanical Component Selection

• Many activities happening in parallel
– Construction starts / completes
– Derecho Delivery and final infrastructure connections completed

23

Fit-Up

24

Fit-up Update - Electrical

Production E1000 Pod Pin and Sleeve
Receptacles

480v Distribution and Branch Circuit
Panels - Derecho Compute

Pre-located J-boxes for HPC Rack Power Whips

Fit-Up

25

Fit-up Update - Mechanical
CRAC Installation for Derecho Air Cooled

Load and CDU Hose Mock-up CDU Lineset with Flowset and Hose Mock-up

Completed CRAC Lineset

Derecho Preparation Outages

Three types of outages were completed throughout the Derecho facility preparations:

1. Small Shutdowns (5 total)
– Single or Multiple Branch Circuits - No impact to computer room operations

2. Medium Shutdowns (4 total)
– Larger block loads that can potentially impact computer room operations

• Essential Power Modifications - Mechanical Redundancy
• Essential UPS Power Modifications - Networking Equipment at the NWSC
• Mechanical Equipment Start-ups and Commissioning

3. Large Shutdown (1 total)
– July 26th - July 30th 2021
– Medium Voltage (24,900 V) system augmentations
– Computer Room UPS alterations
– Mechanical Power Alterations
– Module A Mechanical Header Commissioning

26

Preparation Outages

Photos From Large
Shutdown

These images show some of the
work completed during the
NWSC large outage. The top (3)
photos are of the Medium
Voltage Crew pulling in the
24.9kV cables.

The pictures on the bottom half
show the UPS wiring being
pulled through the vaults.

Note the air purifying systems
being used when working in
vaults inside or outside the
facility.

27

NWSC Virtual Tour Links

For NWSC Virtual Tour visit:
https://bit.ly/NCAR360

28

Derecho Construction Virtual Tour is available for viewing at:
https://www.thinglink.com/mediacard/1510396772545986561

https://bit.ly/NCAR360
https://www.thinglink.com/mediacard/1510396772545986561

Derecho Architecture &
Technology Deep Dive

29

Derecho (NWSC -3) HPE/Cray Solution

• Complete proposal received
from HPE/Cray

– Includes HPC and PFS
– Peak: 19.87 PetaFlops
– 60PB usable file system

• HPE CSEP Exceeds RFP
requirement

– 3.51 CSEP
• CPU – 2.84 CSEP
• GPU – 0.67 CSEP

• Large installation base

• Includes onsite 3x FTE support

30

A100

A100

A100

To
Slingshot

DDR4 DDR4

CPU Cabinet

4 nodes per compute blade

1 slingshot injection

64 blades per cabinet

256 nodes per cabinet

210.7 kW

0.65 tons of mech cooling

~1.3 PFLOPS

0.29 CSEP

GPU Cabinet

2 nodes per compute blade

4 x GPU per node

4 Slingshot Injections

64 blades per cabinet

128 nodes per cabinet

190 kW

0.59 tons of mech cooling

~10.3 PFLOPS

1.04 CSEP

CPU Node

GPU Node

31

A100

To Slingshot

DDR
DRAMDD

R
DR

AM

Derecho CPU Node Anatomy

32

Each CPU compute blade holds 4 liquid cooled nodes, each containing
• 2 AMD EPYC Zen3 “Milan” processors, 64 cores/128 threads per socket
• 16 DDR4 DIMMS, 256GB total RAM
• 1 200 Gb/sec Cray Cassini Slingshot 11 network interface

Derecho GPU Node Anatomy

33

Each GPU compute blade holds 2 liquid cooled nodes, each containing
• 1 AMD EPYC Zen3 “Milan” processor, 64 cores/128 threads
• 8 DDR4 DIMMS, 512GB total RAM (host)
• 4 NVIDIA A100 Ampere GPUs, each with 40GB RAM (device)
• 4 200 Gb/sec Cray Cassini Slingshot 11 network interfaces

Derecho Slingshot Network Overview

The network path begins at the chassis

• Derecho CPU chassis are composed of
– 8 physical blades with
– 4 nodes per blade
– 2 Slingshot switches

• Derecho GPU rack units composed of
– 8 physical blades with
– 2 nodes per blade
– 4 Slingshot switches

• Blades are mounted vertically from the
front of a rack, while the switches are
mounted horizontally from the back

– For awareness, nodes in the same blade
reside on different switches

34

Derecho Slingshot Dragonfly Topology Overview

35

The Slingshot dragonfly network establishes 3 types of
fabric connections:

1. Edge (compute nodes, external network
connectivity)

2. Local - In-switch group connectivity
3. Global - Switch group interconnect

This can be thought of as small islands of compute
systems with dedicated shipping lanes to their peer
islands.

Derecho contains 13 switch groups comprised of:
• 1x switch group for River racks (login nodes,

Arista router connectivity, PBS, etc.)
• 10x switch groups for Mountain CPU racks
• 2x switch groups for the single GPU Mountain

rack

Destor : Derecho - Storage & Scratch File System

• 6 x HPE/Cray ClusterStor E1000 systems
• 60 petabytes of usable file system space

– Can be expanded to 120 petabytes
• 300 GB/s aggregate I/O bandwidth
• 5,088 × 16-TB drives
• 40TB SSD for Lustre file system metadata
• Two metadata management units (MDU)

with 4 metadata targets (MDTs)
– One MDT exported per one MDS
– Configured in highly available storage pairs

• Cray Lustre Parallel File System

36

Destor Performance - So far

37

Derecho Production HPC System

Slingshot Interconnect Fabric

11 Olympus Cabinets
Direct Water-cooled cabinets

2488 CPU-only Compute Nodes
82 GPU Compute Nodes

CPU-only Compute Nodes:
2 x 64c 2.45GHz AMD Milan

16x 16GB DIMMs (256GB Total)
1 x 200 Gb SS-11 NIC

GPU Compute Nodes:
1 x 64c 2.45GHz AMD Milan
8x 64GB DIMMs (512GB Total)

1x NVIDIA SXM4 A100 Redstone 4 GPU
4 x 200 Gb SS-11 NICs

2 River Racks
Air-cooled 19” 42u Racks

20 Management Servers:
3 Cluster Managers, 9 Support, 2

Scheduler, 2 Fabric Managers

6 Login Nodes:
2 x 64c 2.45/3.5 GHz AMD Milan 7763

16x 32GB DIMMs (512GB Total)
1x 100Gb Ethernet adapter

1 x 200 Gb SS-11 NIC

2 GPU Login Nodes:
2 x 64c 2.45GHz AMD Milan

16x 32GB DIMMs (512GB Total)
2x NVIDIA GPU

1 x 200 Gb SS-11 NIC

Production PFS E1000
Storage

60PB Usable Capacity
300GB/s Bandwidth

NCAR Bifrost (Ethernet)

Arista 400Gb Ethernet
Edge Router

Arista 400Gb Ethernet
Edge Router

MLAG

Partner Sites
Remote

Viz

ACCESS
Internet

CASPER

Glade/Campaign
Storage

38

Derecho Network Environment

Compute Node Internet Access

• General compute node internet access is provided through a set of Network Address
Translation gateways such that outbound access to internet is possible. However,
direct inbound will not be allowed.

• This will allow for access to source control sites (e.g., github.com)

• Allows users to fetch smaller data sets at runtime

39

Login Environment / Scheduler Infrastructure

Derecho Login Nodes

• 6x CPU based login nodes that will be served out in a round-robin DNS fashion, each
with a 200Gb/s Bifrost connection as an internet routable host.

• 2x GPU login nodes that is served out in the same round robin DNS fashion, each with
a 200Gb/s Bifrost connection as an internet routable host and has 2x NVIDIA A100
PCIe-based GPU.

• Control Groups are used to limit the abuse of login nodes and automated emails to
users and support teams will be sent out during notifications.

PBS Professional Infrastructure

• 2 systems dedicated to PBS workload management that leverages a IBM Spectrum file
system as an underlying High Availability state directory for PBS Professional.

• Filesystem is made up of a RAID 10-like storage array with SSDs to maximize the IOPS
of the PBS server.

40

Job Scheduling & Resource Allocation

41

• Semi-Homogenous resources with no resource specific
queues

• All queues aside from share were standalone

• Queue name denoted the priority it received when evaluated
by the scheduler

• Placement sets for describing node locality requirements

Cheyenne Queue Structure

premium
High priority, high cost

regular
Standard submissions

economy
Low priority, low cost

share
CPU-utilization cost

42

Derecho Queues: Improvements over Cheyenne

Currently…
• Routing queue based structure
• Queues for specific hardware types (CPU / GPU)
• Job Priority as a requestable resource
• Job sort formula
• cgroups for effectively sharing node resources
• Multi-Process Service (MPS) support for GPU
• Preemption queues

Eventually…
• Lustre scratch job statistics
• Power usage for exclusive resource jobs in job records
• Power profile selection for exclusive resource jobs
• Cloud bursting capability
• GPU utilization and memory statistics in job records

43

Derecho Queue Structure

main
(default)

cpudev

cpu

gpu

Exec Queue

Routing Queue

Restricted Queue

system

gpudev

develop
development queue

pgpu

Derecho

preempt
preemption queue

pcpu

hybrid

44

hybriddev

Derecho Queue Structure

• Two primary submission routing queues
– main for all production workloads
– develop for all development workloads or testing

• CPU and GPU nodes allocated to queues
• Access to production GPU queues will require membership in a project

that has been granted GPU core hours
• Preemption queues are also provided for CPU and GPU resources

– preempt routing queue suitable for jobs that can be interrupted
• Job Priority is now a resource flag you can provide for a job

– Plays heavy part in job sort formula determining order in which jobs are executed

qsub - I - q main - A <ACCOUNT> - l select=2:ncpus=64:ngpus=4
- l job_priority=economy - l gpu_type=a100 - l walltime=00:20:00

45

Job Priority and Job Sort Formula

• With Derecho, in the absence of specific queues for priority, we will be
offering the option for users to request a job priority as part of their job
request (-l job_priority=...)

• This option is taken into consideration for the job sort formula
– economy
– regular (default)
– premium

• A job sort formula will be used on Derecho, similar to the scheduling
environment of Casper

• The formula takes into consideration the following
– job_priority
– fairshare factor
– eligible time (time spent in the queue)
– requested CPUs
– requested GPUs

46

Multi -Process Service (MPS) support for GPU

• With Derecho we will be offering support for NVIDIA’s Multi-Process Service (MPS)
on the A100 equipped nodes

• MPS can be requested when requesting a job by requesting a mps resource of 1

qsub - I - q main - A <ACCOUNT> - l walltime=00:20:00
- l select=2:ncpus=64:mpiprocs=4:ngpus=4: mps=1

• MPS server and user daemons created automatically, and then torn down once
the job is finished

• MPS has also been deployed on Casper and can be used there with the V100
and A100 equipped nodes

47

Lustre Job Statistics

• With Derecho we have the ability to poll Lustre job statistics (for the scratch filesystem)
and report on certain metrics so that we can have a better understanding of any issues
with performance or operation of the scratch file system

• Lustre job statistics are provided for jobs covering several key metrics:

• These metrics are aggregated by PBS_JOBID and can be useful for uncovering
application performance bottlenecks, including opaque filesystem access patterns such
as excessive ${TMPDIR} use by underlying libraries.

48

Metadata Operations Data Operations

• open / close
• link / unlink
• mkdir / rmdir
• getattr / getxattr ; setattr / setxattr
• statfs

• reads / writes
– counts & bytes

• sync

Lustre Job Statistics

49

In Development…

Power Reporting and Power Management

• We are working with HPE and Altair to develop a power hook that can
integrate with the Cray EX hardware used for Derecho

• The hook will report power usage for resources assigned to a job requesting
exclusive access to nodes

• It will also be able to set power profiles for nodes based on user requested
flags for job submission

• We plan to also integrate the ability to power down nodes when not being
used for jobs, and power on when they are needed

• Development is currently taking place on Gust

50

51

Power Reporting and Power Management

PBS can report the cumulative power (kWh) per job
gust01:~ # qstat -fx 12462
Job Id: 12462.gusched01

Job_Name = wrf
Job_Owner = kmanning@gust02.hsn.gu.hpc.ucar.edu
resources_used.cpupercent = 164
resources_used.cput = 02:58:08
resources_used.energy = 0.0169
resources_used.mem = 28700464kb
resources_used.ncpus = 128

Power Monitoring with qhist

qhist - which displays historical job data - will show energy use on Derecho!

• By default, node energy usage will be shown in kWh

52

* Note that averages are weighted by (walltime x nodes)…

Derecho User Access, Software,
User Environment, & Best Practices

53

Derecho User Access, Software, and User Environment

• Login Environment

• Spack-based software deployment

• Modules

• Filesystems & Storage Spaces

54

Derecho Login Environment

The system will undergo scheduled maintenance on the first Tuesday of each
month for the foreseeable future.

• User login to Derecho is through ssh at derecho.hpc.ucar.edu
– This will place you on 1 of 8 login nodes

• As typical, login node use should be limited to
– Reading and writing text/code
– Compiling smaller programs
– Performing data transfers
– Interacting with the job scheduler

• User resource utilization is monitored and throttled using the Arbiter2 utility
– User sessions are placed in a Linux cgroup whose resources can be restricted based on usage

policy
– Intent is to prevent users from monopolizing the login resources while also not being abruptly

“kicked off” the login nodes for resource exceedance

55

https://github.com/CHPC-UofU/arbiter2

Login Environment: User Resource Restrictions

• As typical in a shared HPC environment,
login nodes are a shared resource and
users must be considerate of their resource
utilization

– Resource intensive workflows should be routed
through the queue system

• CISL using the Arbiter2 utility to detect and
restrict excessive resource consumption,
with automated emails sent to users

– This involves “squeezing” the CPUs allocated to
a given users’ login session to prevent
overloading the shared resource

– If you receive such an email and need help
refactoring your workflow, reach out to
Consulting

56

https://github.com/CHPC-UofU/arbiter2
https://rchelp.ucar.edu/

Login Environment: User Resource Restrictions

• As typical in a shared HPC environment,
login nodes are a shared resource and
users must be considerate of their resource
utilization

– Resource intensive workflows should be routed
through the queue system

• CISL using the Arbiter2 utility to detect and
restrict excessive resource consumption,
with automated emails sent to users

– This involves “squeezing” the CPUs allocated to
a given users’ login session to prevent
overloading the shared resource

– If you receive such an email and need help
refactoring your workflow, reach out to
Consulting

57

https://github.com/CHPC-UofU/arbiter2
https://rchelp.ucar.edu/

A nimble software stack provided by Spack, Cray, and Lmod

Derecho features a familiar collection of environment modules
(provided via Lmod) with some notable differences from
Cheyenne:

Cheyenne
Internal tooling to
manually build user
software stack

Derecho
Spack package manager used to build
software and generate modules

+
Cray Programming Environment
integrated into Spack stack to reduce
complexity

Spack provides 1000s of
software recipes provided
by a large community

Our Spack stack is:
• Easier to update
• Publicly visible via

GitHub repo
• Extensible by users via

Spack upstream
support

Casper will use the same operating system as Derecho ,
which should enable compatible Spack stacks and binaries
where possible (Cray tools will not be on Casper)

58

Cray functionality is available with simplified access

If you have used Cray modules on other systems, you may expect certain modules which
are missing on Derecho…

We have simplified the module structure but all Cray functionality should be
available. These two lists of modules are equivalent:

60

Traditional Cray environment
1) crayenv/23.03 (S) 3) cce/15.0.1 5) cray-libsci/23.02.1.1 7) craype/2.7.20
9) craype-x86-milan 11) craype-network-ofi 2) cray-pmi/6.1.10 4) PrgEnv-cray/8.3.3
6) cray-dsmml/0.2.2 8) cray-pals/1.2.11 10) libfabric/1.15.0.0 12) cray-mpich/8.1.25

Simplified Cray environment on Derecho
1) ncarenv/23.04 (S) 2) craype/2.7.20 3) cce/15.0.1 4) cray-mpich/8.1.25
5) cray-libsci/23.02.1.1

Prototyping and Version Control Allows for User Testing and Co -design

Easy switching to testing module tree

61

use_modules allows
us to involve users in
testing modules before
we make them public

Software changes are publicly tracked and debugging is collaborative

https://github.com/NCAR/spack-gust

User Software Environment: Known Issues and Limitations

• MPI
– Cray-MPICH is the only reliable MPI implementation currently available on Slingshot 11

• Cray-MPICH is CUDA-Aware, and works with CUDA Managed Memory, but is not particularly performant
in this case (automated host-buffer copies occur behind the scenes).

– Optimal CUDA/MPI performance should avoid sending managed memory buffers, if possible
• We strive to ensure MPICH_GPU_SUPPORT_ENABLED and

MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED are automatically set on GPU nodes.
DO NOT UNSET THESE ENVIRONMENT VARIABLES AS NODES WILL HARD -CRASH!!

– MVAPICH2 support for Slingshot 11 is in beta and will be fully evaluated once officially released,
– Intel MPI is currently installed for CPU-only nodes,
– OpenMPI is currently not available on Derecho.

• We are pursuing OpenMPI with high priority, but currently have no target date for availability

• Compiler Issues
– Several, tracked separately

• Cray’s LibSci, Intel’s MKL, and other numerical libraries
– LibSci works best with Cray-provided compilers (CCE and GCC). We have seen problems when mixing

libraries across toolchains
– MKL is available and works with most compilers to provide a performant BLAS/LAPACK
– NVHPC provides BLAS and LAPACK libraries - we recommend you use those with its compiler

62

https://docs.google.com/spreadsheets/d/1AgXtFnr0C77ukCxI9Nlx21yTZyjJTi0HygLjhvyP2GY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1AgXtFnr0C77ukCxI9Nlx21yTZyjJTi0HygLjhvyP2GY/edit?usp=sharing

Cheyenne → Derecho Modules Cheatsheet

While we aim to provide a familiar
experience, some notable differences
from Cheyenne modules do exist:

• ncarenv is now the top-level
module, providing access to all
other software (versions indicate
entirely different software
stacks)

• Some former modules (e.g., git)
are now in your environment by
default

• Some packages will autoload
dependencies (e.g., netcdf will
autoload hdf5)

63

Cheyenne

gnu gcc

intel intel -classic

pnetcdf parallel -netcdf

pio parallelio

impi intel -mpi

Derecho

Module Name
Changes

arm -forge linaro -forge

GLADE File Spaces

Users can access several distinct “file spaces” under NCAR’s
GLobally Accessible Data Environment (GLADE):

64

File Space Quota Backups Technology Uses

Home
/glade/u/home/${USER}

50 GB Yes IBM
Spectrum Scale

Users’ settings, source code, scripts

Work
/glade/work/${USER}

1 TB* No IBM
Spectrum Scale

Compiled codes, models

Scratch (Derecho)
/glade/derecho/scratch/${USER} 30 TB NO!!

Purged!
Cray ClusterStor

Lustre
Run Directories, Temporary outputs
Purged at 180 days

Scratch (Cheyenne)
/glade/cheyenne/scratch/${USER} 10 TB NO!!

Purged!
IBM

Spectrum Scale
Run Directories, Temporary outputs
Purged at 120 days

Campaign Storage
/glade/campaign/<PROJECTS>

Allocated,
Project
Specific

No IBM
Spectrum Scale

Project Spaces, Long-term Curated Data
Sets. Automated file compression.

GLADE will undergo a significant transformation throughout the calendar year to
accommodate Cheyenne/Derecho overlap and eventual Cheyenne retirement.

GLADE File Spaces

GLADE filespaces visible from Derecho compute nodes:

We provide several environment variables through the ncarenv module to
facilitate data access across systems.
Key points:

• Users’ Cheyenne scratch data are accessible on Derecho and can be read directly during system overlap
• If you need assistance moving large quantities of data, reach out to Consulting or consider sample migration

script in backup .

65

/glade/u/home/${USER} # ${HOME} common across systems
/glade/u/apps/
/glade/work/${USER} # ${WORK} common across systems
/glade/cheyenne/scratch/${USER} # ${CHEYENNE_SCRATCH}
/glade/derecho/scratch/${USER} # ${SCRATCH} & ${DERECHO_SCRATCH}
/glade/campaign/

GLADE / Derecho / Cheyenne Overlap & Decommission Plan

66

GLADE will undergo a significant transformation throughout the calendar year to
accommodate Cheyenne/Derecho overlap and eventual Cheyenne retirement.
Key Points :

• Cheyenne will run its last job on 12/31/23, with its scratch file system available only for an additional ~60
days (through 2/28/2024),

• /glade/p and /glade/collections live on this same hardware that will be retired 2/28/2024,

• /glade/campaign has been mounted more broadly, can take the place of p and collections

*GLADE2 is the storage hardware associated with the lifetime of Cheyenne - if you
hear us speak of GLADE2 it really means a particular hardware subcomponent of the
logical concept that is GLADE

Toda
y

Workflow Migration

67

Overview

• Compiling Software

• Job Monitoring and Execution

• Job Submission
– MPI & hybrid MPI/Threads jobs
– GPU jobs
– NUMA Domains & Binding

• Scratch Lustre File System and MPI-IO

68

Compiling Code on Derecho

69

Compiling Code on Derecho

Derecho users have access to :

– Intel (Classic/OneAPI)
– Cray Compiling Environment (CCE)
– GNU Compiler Collection (GCC)
– NVIDIA HPC Software Development Kit (SDK).

70

Wrapper scripts are loaded by default (ncarcompilers module) to streamline the compiling and
linking process by adding include header and library path flags for you. Unlike on Cheyenne, the
wrapper will not explicitly add library references (-lnetcdf for example).

Example :

• Building with netCDF using wrappers:
ifort model.f90 -lnetcdff -o model

• Building with netCDF without the wrappers:
setenv NETCDF /path/to/netcdf
ifort -I${NETCDF}/include model.f90 -L${NETCDF}/lib -lnetcdff -o model

Compilers Available on Derecho

Compiler Language Commands for serial
programs

Commands for MPI programs
(with ncarcompilers)

Flags to enable OpenMP
(for serial and MPI)

Intel
(Classic/OneAPI)

Fortran ifort/ifx foo.f90 mpif90 foo.f90

-qopenmpC icc/icx foo.c mpicc foo.c

C++ icpc/icpx foo.C mpicxx foo.C

Cray Compiler
(CCE)

Fortran ftn foo.f90 mpif90 foo.f90

-fopenmpC cc foo.c mpicc foo.c

C++ CC foo.C mpicxx foo.C

GNU (GCC)

Fortran gfortran foo.f90 mpif90 foo.f90

-fopenmpC gcc foo.c mpicc foo.c

C++ g++ foo.C mpicxx foo.C

NVIDIA HPC SDK

Fortran nvfortran foo.f90 mpif90 foo.f90

-mpC nvc foo.c mpicc foo.c

C++ nvc++ foo.C mpicxx foo.C

71

Compiler Language Commands for serial
programs

Commands for MPI programs
(with ncarcompilers)

Flags to enable OpenMP
(for serial and MPI)

Intel (Classic/OneAPI)

Fortran ifort/ifx foo.f90 mpif90 foo.f90

-qopenmpC icc/icx foo.c mpicc foo.c

C++ icpc/icpx foo.C mpicxx foo.C

Cray Compiler (CCE)

Fortran ftn foo.f90 mpif90 foo.f90

-fopenmpC cc foo.c mpicc foo.c

C++ CC foo.C mpicxx foo.C

GNU (GCC)

Fortran gfortran foo.f90 mpif90 foo.f90

-fopenmpC gcc foo.c mpicc foo.c

C++ g++ foo.C mpicxx foo.C

NVIDIA HPC SDK

Fortran nvfortran foo.f90 mpif90 foo.f90

-mpC nvc foo.c mpicc foo.c

C++ nvc++ foo.C mpicxx foo.C

Intel Compilers on Derecho

• Similar to the previous NCAR systems, the Intel compiler suite is available via the intel
compiler module. It includes compilers for C, C++, and Fortran codes.

72

Compiler Language Commands for serial
programs

Commands for MPI programs
(with ncarcompilers)

Flags to enable OpenMP
(for serial and MPI)

Intel (Classic/OneAPI)

Fortran ifort/ifx foo.f90 mpif90 foo.f90

-qopenmpC icc/icx foo.c mpicc foo.c

C++ icpc/icpx foo.C mpicxx foo.C

• Derecho supports both Intel OneAPI and Intel Classic Compilers. Intel is planning to retire the
Intel Classic compilers and is moving toward Intel OneAPI. Intel Classic Compiler commands
(ifort, icc, and icpc) will be replaced by the Intel OneAPI compilers (ifx, icx, and icpx)
in future. Permutations available through the modules:

– intel*
– intel-classic
– intel-oneapi

Intel Compilers on Derecho

• Intel compilers provide several different optimization and vectorization options. Please
refer to compiler manual page to explore available optimization options. (e.g. man
ifort) or use help menu (ifort --help).

Be aware that compiling CPU code with the Intel compiler on Derecho is subtly
different from using the Intel compiler on the Cheyenne system due to different
architecture:

Flags that are commonly used on Cheyenne might cause Derecho jobs to fail or run much
more slowly than otherwise possible.

● On Derecho, Do Use : -march=core-avx2
● On Derecho, Do NOT Use: -xHost, -axHost, -xCORE-AVX2, -axCORE-AVX2

73

Cray Compiling Environment (CCE)

• Derecho users can access the Cray compilers using the cce module.
• The Cray compiler collection provides Cray Fortran and Cray C/C++ compilers using cc/CC

and ftn commands.

• Unlike other MPI libraries, Cray MPICH does not provide MPI wrapper commands like
mpicc, mpicxx, and mpif90. Rather, use the same cc, CC, and ftn commands you use
to compile a serial code.

• But the ncarcompilers module will translate a call to “mpicc” to “cc” (and likewise for the
other languages) as a convenience.

• Cray compilers enables offloading of computation from CPUs to GPUs via OpenMP and
OpenACC.

74

Compiler Language Commands for serial
programs

Commands for MPI programs
(with ncarcompilers)

Flags to enable OpenMP
(for serial and MPI)

Cray Compiler (CCE)

Fortran ftn foo.f90 mpif90 foo.f90

-fopenmpC cc foo.c mpicc foo.c

C++ CC foo.C mpicxx foo.C

Compiling GPU codes on Derecho

• GPU applications should be built with either the Cray compilers or the NVIDIA HPC SDK
compilers and libraries.

NVIDIA HPC SDK (Software Development Kit)
NVIDIA HPC SDK is a comprehensive suite of tools, compilers, and libraries designed to help
developers build and optimize HPC applications for NVIDIA GPUs, as well as multicore CPUs. It
includes:

– NVIDIA Compilers including nvfortran, nvc, and nvc++.
– CUDA / OpenACC / OpenMP support for GPU nodes
– NSight & more for performance analysis

• Compilation flags for GPU code will depend in large part on the GPU-programming paradigm
used (e.g., OpenACC, OpenMP, CUDA).

• Read the relevant man page for the chosen compiler for customizations and optimizations
options.

75

Compiling GPU codes on Derecho

OpenACC

• Compile with OpenACC directives using nvc, nvc++, or nvfortran and adding -acc flag:
nvfortran -o acc_bin -acc acc_code.f90

• Gain insights into GPU acceleration decisions with the -Minfo=accel flag.
• Target specific GPU architectures (V100 or A100) with the -gpu=cc70,cc80 flag:

nvfortran -o acc_bin -acc -gpu=cc70,cc80 acc_code.f90

OpenMP

• compile with GPU offloading using the -mp=gpu flag:
nvfortran -o omp_gpu -mp=gpu omp.f90

• Diagnostic and target flags from OpenACC examples also apply to OpenMP offloading.

76

Compiling GPU codes on Derecho

CUDA

● Fortran example:
● Use nvfortran as it supports CUDA directly.
● Enable CUDA automatically with .cuf file extension or use the -Mcuda flag:

nvfortran -Mcuda -o cf_bin cf_code.f90

● C++ example (two-stage process using nvcc and g++):
● Use nvcc, the nvidia CUDA compiler, to compile the CUDA code:

nvcc -c -arch=sm_80 cuda_code.cu
● Load the appropriate cuda environment module with a non-NVIDIA C++ compiler.
● Link CUDA objects with C++ main:

g++ -o cuda_bin -lcuda -lcudart main.cpp cuda_code.o

77

Cray Programming Environment (CrayPE module)

78

• CrayPE module loaded by default contains drivers, cc, CC, and ftn to compile for the CCE, GNU,
NVHPC, and Intel Programming Environments.

• CrayPE module is needed for building MPI applications with Cray MPICH MPI.

Intel Compilers (default)
module reset
ftn model.f90 -o model # Fortran
cc model.c -o model # C
CC model.C -o model # C++

GNU Compiler
module swap intel gcc/12.2.0
ftn model.f90 -o model # Fortran
cc model.c -o model # C
CC model.C -o model # C++

Please note that the compiler wrappers - cc/CC and ftn - are not Cray compilers themselves.
Instead, they call Intel, GNU, or Cray compilers based on the programming environment module that is
loaded.

Cray Compilers
module swap intel cce/15.0.1
ftn model.f90 -o model # Fortran
cc model.c -o model # C
CC model.C -o model # C++

NVHPC compiler
module swap intel nvhpc/23.1
ftn model.f90 -o model # Fortran
cc model.c -o model # C
CC model.C -o model # C++

Cray Programming Environment (CrayPE module)

79

Intel Compiler (default)
[negins@derecho3 ~]: module reset && module list
Currently Loaded Modules:

1) ncarenv/23.04 (S) 4) ncarcompilers/0.8.0 7) netcdf/4.9.1
2) craype/2.7.20 5) cray-mpich/8.1.25
3) intel/2023.0.0 6) hdf5/1.12.2

[negins@derecho3 ~]: ftn --version
ifort (IFORT) 2021.8.0 20221119
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

NVHPC Compiler
[negins@derecho3 ~]: module swap intel nvhpc/23.1

[negins@derecho3 ~]: ftn --version
nvfortran 23.1-0 64-bit target on x86-64 Linux -tp zen3-64
NVIDIA Compilers and Tools
Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.

Please note that the compiler wrappers - ftn, cc, and CC - are not Cray compilers themselves. Instead,
they call Intel, GNU, or Cray compilers based on the programming environment module that is loaded.
Users can use -V or --version to see which base compiler the wrapper is pointing to.

Clang 16+ compilers and older C code

Recent C compilers based on Clang - including intel/2023 and cce/16 (Cray) have turned
C-standard compliance checks from warnings to errors.

For example, if you compile non-standard C code, you may see errors like this:

error: ...; ISO C99 and later do not support implicit
function declarations [-Wimplicit-function-declaration]

The best solution to these errors is to update the code to be compliant to the
specified standard (contact us if you need help)!

However, a corresponding fix may force these errors back to warnings. For example:

icx -Wno-error=implicit-function-declaration ...

80

https://rchelp.ucar.edu/

Cross -Compiler & Cross -System Development Strategies

With the new Spack user software environment we have introduced several environment
variables developers may find useful when switching between compilers, MPIs and even
systems:

81

benkirk@derecho1(26)$ module list && env | grep NCAR_BUILD

Currently Loaded Modules:
1) ncarenv/23.04 (S) 4) ncarcompilers/0.8.0 7) cray-mpich/8.1.25
2) craype/2.7.20 5) hdf5/1.12.2
3) gcc/12.2.0 6) netcdf/4.9.1

...

NCAR_BUILD_ENV_COMPILER=derecho-gcc-12.2.0
NCAR_BUILD_ENV_MPI=derecho-gcc-12.2.0-cray-mpich-8.1.25
NCAR_BUILD_ENV=derecho-gcc-12.2.0-cray-mpich-8.1.25

Will be deployed on the new Casper OS too

Cross -Compiler & Cross -System Development Strategies

With the new Spack user software environment we have introduced several environment
variables developers may find useful when switching between compilers, MPIs and even
systems:

82

benkirk@derecho1(27)$ module load nvhpc && \
module list && env | grep NCAR_BUILD

Currently Loaded Modules:
1) ncarenv/23.04 (S) 4) ncarcompilers/0.8.0 7) cray-mpich/8.1.25
2) craype/2.7.20 5) hdf5/1.12.2
3) nvhpc/23.1 6) netcdf/4.9.1

...

NCAR_BUILD_ENV_COMPILER=derecho-nvhpc-23.1
NCAR_BUILD_ENV_MPI=derecho-nvhpc-23.1-cray-mpich-8.1.25
NCAR_BUILD_ENV=derecho-nvhpc-23.1-cray-mpich-8.1.25

Will be deployed on the new Casper OS too

Running Jobs on Derecho

83

Job Monitoring and Execution

• Derecho job monitoring and execution is nearly identical to the user
experience on Cheyenne and Casper

• PBS commands
– qsub
– qdel
– qstat
– qhist (NCAR-specific query tool)

• Complete documentation is available online, what follows are Derecho-
specific details important for users familiar with PBS batch submission in
general

84

https://arc.ucar.edu/knowledge_base/124518554

Running Jobs on Derecho

• Use the PBS qsub command to submit batch jobs to the “main ” queue

• Resource requests will determine if the job is routed to the cpu or gpu
queues for execution

• Binding MPI ranks and OpenMP threads is important for performance

• GPU to MPI rank assignment can be controlled via the
CUDA_VISIBLE_DEVICES environment variable, or programmatically in
source code

• Placement of MPI ranks for GPU code can affect performance due to multiple
NICs on the GPU nodes

85

Running Jobs on Derecho: NUMA Domains

• Nonuniform Memory Access (NUMA) has important performance implications, especially for
Derecho’s multi-socket CPU compute nodes

• Derecho’s GPU Nodes have only a single socket, but GPU ↔ Network Interface Card
mapping is also important

86

Running Jobs on Derecho

• Binding is important for performance of MPI and hybrid jobs

• MPI Example: 2-nodes, 128 ranks/node
mpiexec -n 256 -ppn 128 ./executable_name
by default this will bind to a “thread”
various other ways to bind: “core”, “numa”, “list”
mpiexec -n 256 -ppn 128 --cpu-bind core ./executable_name

• Hybrid Example: 2-nodes, 32 ranks/node, 4 threads per rank
this should be bound as:
mpiexec --cpu-bind depth -n 64 -ppn 32 -d 4 ./executable_name

Binding of threads can be additionally controlled via OpenMP env vars
export OMP_PLACES=threads
export OMP_PROC_BIND=close

mpiexec --cpu-bind depth -n 64 -ppn 32 -d 4 ./executable_name

Binding MPI and Hybrid MPI + OpenMP Jobs

87

The mpiexec binding options do not work well when oversubscribing hardware
resources. We recommend a maximum of one rank or thread per physical CPU core.

Running Jobs on Derecho

Pure MPI Job example

#!/bin/bash
#PBS -A project_code
#PBS -N mpi_job
#PBS -q main
#PBS -l walltime=01:00:00
#PBS -l select=2:ncpus=128:mpiprocs=128

load necessary module environment
module purge
module load ncarenv craype cce cray-mpich

Run application using cray-mpich MPI
mpiexec -n 256 -ppn 128 ./executable_name

88

Running Jobs on Derecho: CPU Binding

Hybrid MPI + OpenMP Job example

#!/bin/bash
#PBS -A project_code
#PBS -N hybrid_job
#PBS -q main
#PBS -l walltime=01:00:00
#PBS -l select=2:ncpus=128:mpiprocs=32:ompthreads=4

load necessary module environment
module purge
module load ncarenv craype cce cray-mpich

Run application using cray-mpich MPI
export OMP_PLACES=threads
export OMP_PROC_BIND=close
mpiexec --cpu-bind depth -n 64 -ppn 32 -d 4 ./executable_name

89

Running Jobs on Derecho

• Setting MPICH_OFI_NIC_POLICY=GPU will assign MPI ranks to the NIC
closest to its associated GPU

• The mapping between MPI ranks and GPU device IDs can be done
programmatically, or can leverage the CUDA_VISIBLE_DEVICES
environment variable.

• As a convenience a script, set_gpu_rank, is provided as part of the
ncarenv module that will set CUDA_VISIBLE_DEVICES individually for each
MPI rank, to ensure balanced use of the 4 available GPUs on a node.

• The set_gpu_rank script is called on the mpiexec command line before the
executable to be launched

export MPICH_OFI_NIC_POLICY=GPU
mpiexec -n 16 -ppn 4 set_gpu_rank ./executable

Mapping MPI Ranks to GPUs and NICs

90

Running Jobs on Derecho

MPI enabled GPU example (NVHPC and Cray MPICH)

#!/bin/bash
#PBS -A project_code
#PBS -N gpu_job
#PBS -q main
#PBS -l walltime=01:00:00
#PBS -l select=2:ncpus=64:mpiprocs=4:ngpus=4

load necessary module environment
module purge
module load ncarenv nvhpc cuda cray-mpich

Run application with efficient mapping to GPUs and NICs
export MPICH_OFI_NIC_POLICY=GPU
mpiexec -n 8 -ppn 4 set_gpu_rank ./executable_name

91

Running Jobs on Derecho

MPI enabled GPU example with MPS (NVHPC and Cray MPICH)

#!/bin/bash
#PBS -A project_code
#PBS -N gpu_job
#PBS -q main
#PBS -l walltime=01:00:00
#PBS -l select=2:ncpus=64:mpiprocs=16:ngpus=4:mps=1

load necessary module environment
module purge
module load ncarenv nvhpc cuda cray-mpich

Run application with efficient mapping to GPUs and NICs
export MPICH_OFI_NIC_POLICY=GPU
mpiexec -n 32 -ppn 16 set_gpu_rank ./executable_name

92

Running Jobs on Derecho

Single Node / Multi-GPU PyTorch Example

#!/bin/bash -l
#PBS -l select=1:ncpus=64:ngpus=4
#PBS -l walltime=1:00:00
#PBS -N ptbench
#PBS -j oe
#PBS -o ptbench.out
#PBS -A SCSG0001
#PBS -q main
module --force purge
module load ncarenv/23.04 cuda/11.7.1 cudnn/8.5.0.96-11.7 conda/latest
conda activate pytorch_bench
run pytorch model on 4 GPUs
python3 benchmark_models.py -g 4

93

ML frameworks like PyTorch and TensorFlow handle GPU assignment internally

Running Jobs on Derecho

Additional MPI Environment Variables

• There are many environment settings that can affect MPI launching,
performance, rank mappings, error and output handling, binding and so on.
Very useful to read the man pages (man mpi / man mpiexec)

• A few settings that may be helpful in debugging MPI and Slingshot issues

94

MPICH_OFI_VERBOSE=1

MPICH_OFI_NIC_VERBOSE=1,2

MPICH_OFI_CXI_COUNTER_REPORT=1,2,3,4,5

MPICH_OFI_CXI_COUNTER_VERBOSE=1

MPICH_MEMORY_REPORT=1,2,3

Scratch Lustre File System and MPI -IO

Lustre, Cray -MPICH, and MPI -IO
• Derecho’s /glade/derecho/scratch Lustre file system is the preferred

location for staging large model data

• Lustre achieves high performance through “striping” files over many storage
servers
– Sensible defaults are applied system-wide, however users may want to alter

the striping parameters for a specific workflow
– lfs <getstripe|setstripe> can be used to view/set striping

parameters

• Additionally, Lustre provides a number of user-facing tools specifically designed to
ease the pain of working with large parallel file systems
– lfs find is an efficient find replacement; lfs df -h can indicate capacity

and health

• Cray-MPICH supports MPI-IO through ROMIO and has additional tuning
parameters and diagnostics specifically relevant to Lustre

95

Lustre File Striping

• Lustre achieves high performance through file striping:

Here File A is broken into segments of a given stripe width . These segments
are then striped across one or more storage devices according to the stripe
count .

• The historical challenge of finding a “one-size-fits-all” striping pattern for a
general purpose file system is largely mitigated by the use of Progressive
File Layouts in modern versions of Lustre.

96
See our ARC Portal Documentation for more information

https://arc.ucar.edu/knowledge_base/131596384

Lustre Progressive File Layouts

• PFLs allow both the stripe size and count to change as the file data extent grows.

• Most frequently used to stripe small files only over 1 or few OSTs, adding additional OSTs as
the file size increases.

97
See our ARC Portal Documentation for more information

https://arc.ucar.edu/knowledge_base/131596384

Lustre File Striping

Sample lfs setstripe command for Derecho’s default
configuration:
lfs setstripe -E 16M -c 1 -S 1M \

-E 16G -c 4 -S 16M \
-E 64G -c 12 -S 16M \
-E -1 -c 24 -S 16M

General Striping Considerations & Tradeoffs :
• For large, aggregated files (MPI-IO or NetCDF Parallel files) the default striping

should be adequate. In general you will want large stripe counts to increase
read/write bandwidth.

• For applications that perform per-rank file I/O (many, many files of modest
size) you might want to decrease the stripe count to as low as 1-2.

This is because the separate files themselves will naturally spread across
storage devices through round-robin allocation, and additional striping simply
increases the number of remote procedure calls (RPCs) the filesystem
performs, potentially negatively impacting performance.

• File striping is inherited from a parent directory, or can be set directly prior to
file creation.

• lfs getstripe <file|dir> reports stripe configuration

98

File
Segment

Stripe
Count

Stripe
Size

0 - 16MB 1 1MB

16MB - 16GB 4 16MB

16GB - 64GB 12 16MB

64GB + 24 16MB

Cray-MPICH and MPI -IO

• Cray-MPICH uses the ROMIO MPI-IO implementation and can be controlled through a
large number tuning environment variables.
See man MPI for a full lis ting.

Key variables for performance tuning and experimentation :

• MPICH_MPIIO_HINTS can be used to set many parameters, difficult at this point to
provide general guidance.

– Experiment and let us know what you find!
– Can control stripe size & count, but only effective when creating a new file (not when

overwriting an existing one) so remove intermediate files if you are experimenting with different
values.

• MPICH_MPIIO_TIMERS & MPICH_MPIIO_STATS are key for performance profiling
diagnostic output.

99

MPICH_MPIIO_HINTS="*:striping_factor=<STRIPE_COUNT>:striping_unit=<STRIPE_WIDTH (bytes)>"
MPICH_MPIIO_HINTS_DISPLAY=1
MPICH_MPIIO_TIMERS=1
MPICH_MPIIO_STATS=1

Cray-MPICH and MPI -IO

MPICH_MPIIO_TIMERS & MPICH_MPIIO_STATS diagnostic output
(# ranks=7680, # nodes=240/ppn=32, 502GB file, 96 stripes, 32MB stripe width):

100

| MPIIO write by phases, writers only, for rico.rst
| min max ave
| ---------- ---------- ----------
| file write time = 3.01 3.57 3.23
|
| time scale: 1 = 2**5 clock ticks min max ave
| ---------- ---------- ---------- ---
| total = 570943385
|
| imbalance = 51743 71793 62964 0%
| local compute = 6882480 7395141 7083814 1%
| wait for coll = 11317159 18393655 15796415 2%
| collective = 1272223 1353043 1313908 0%
| exchange/write = 892269 1257552 1015762 0%
| data send = 139823769 174452729 158803482 27%
| sieve read = 2601 4964 4465 0%
| file write = 276359086 328204673 296420695 51%
| other = 66542347 109511397 89235916 15%
|
| data send BW (MiB/s) = 3716.457
| raw write BW (MiB/s) = 159118.185
| net write BW (MiB/s) = 82610.508
+--+

Additional Resources

101

102

Resource Cheyenne (docs) Derecho (docs)

Login Nodes cheyenne.ucar.edu ; 6 CPU derecho.hpc.ucar.edu ; 6 CPU + 2 GPU

Compute Nodes

● 145,152 total CPU cores
● 4,032 CPU nodes: 36 cores dual socket Intel Xeon E5-2697V4 (Broadwell)

processors, single 25 Gb/s Mellanox EDR Infiniband port per node
○ 3,168 64 GB/node “smallmem” nodes
○ 864 128 GB/node “largemem” nodes

● 323,712 total CPU cores
● 2,488 CPU nodes: 128 cores (dual socket) 3rd Gen AMD EPYC™ 7763 Milan

processors with 256GB DDR4 RAM, single 200Gb/s Slingshot injection port per
node

● 82 GPU nodes: 64 core 3rd Gen AMD EPYC™ 7763 Milan processors with 512GB
DDR4 RAM, (4x) NVidia A100 40GB GPU, (4x) 200Gb/s Slingshot injection port
per node

Interconnect
Mellanox EDR InfiniBand high-speed interconnect.
Partial 9D Enhanced Hypercube single-plane interconnect topology with 25Gb/s
bidirectional bandwidth per link.

HPE Slingshot v11 high-speed interconnect.
Dragonfly topology with 200Gb/s bidirectional bandwidth per link.

PBS
queues &
sample select

regular, premium, economy

#PBS -l select=NNodes:ncpus=36:mpiprocs=18:ompthreads=2

main, preempt, develop

#PBS -l select=NNodes:ncpus=128:mpiprocs=32:ompthreads=4
#PBS -l select=NNodes:ncpus=64:mpiprocs=4:ngpus=4

User Software &
Deployment

Lmod + Homegrown Installation Scripts Lmod + Spack deployment with spack-downstreams.sh support for
user extensions

Default Compiler Intel 19.1.1.217 20200306 Intel 2021.8.0 20221119, use -march=core-avx2

Default MPI SGI/HPE MPT v2.25, mpiexec_mpt -n … <exe> cray-MPICH v8.1.25, mpiexec -n … -ppn … <exe>

Process Binding omplace / dmplace mpiexec --cpu-bind (see man MPI),
set_gpu_rank for GPU jobs

Scratch Filesystem /glade/scratch/${USER}
GPFS, 10TB default quota, 120 day purge

/glade/derecho/scratch/${USER}
Lustre, 30TB default quota, 180 day purge

Outbound Internet
Access Login nodes only Login and Compute nodes

https://arc.ucar.edu/knowledge_base/70549542
https://arc.ucar.edu/knowledge_base/74317833

Getting Help & Reporting Issues

• Advanced Research Computing Documentation:
– https://arc.ucar.edu/knowledge_base_documentation

• CISL Help Desk:
– https://rchelp.ucar.edu
– Submit a ticket to request help with a particular issue.

• Virtual Consulting by Appointment
• Monthly Users Meetings
• HPC Tutorials:

– https://www2.cisl.ucar.edu/what -we-do/training -library/hpc -tutorials
– In-depth tutorials on numerous topics, including additional details on many of the items

covered here today.
• Introduction to NCAR HPC Systems
• Job Scheduling with PBS Pro
• JupyterHub at NCAR
• NCAR Storage Spaces
• Optimizing Resource Use in Scheduled Jobs
• Remote desktop services on Casper
• Starting Casper Jobs with PBS Pro
• Using Globus at NCAR

103

https://arc.ucar.edu/knowledge_base_documentation
https://rchelp.ucar.edu
https://arc.ucar.edu/knowledge_base/121077762
https://www2.cisl.ucar.edu/what-we-do/training-library/hpc-tutorials

Best Practices for Support Tickets

When submitting a support ticket please include as much detail as possible to
enable quicker resolution:

• Resource name (Derecho, Casper, JupyterHub,...),
• Exact error messages and/or paths to error output,
• Batch script location,
• PBS JobID(s) of failed effort,
• Run & source directory paths (ideally UNIX-readable by ‘others’),
• Any other pertinent information:

– Last time this exact workflow was successful, if any (or changes since last success),
– Troubleshooting steps already attempted, etc. …

And please remember to let us know when your issue is resolved!

https://rchelp.ucar.edu
104

https://rchelp.ucar.edu

Derecho -Specific Support Resources

• In addition to our Jira-based ticketing system at
https://rchelp.ucar.edu , Consulting Services has
implemented additional support formats suited for the
fast-paced environment of Derecho deployment

• Please consider joining the #derecho -users channel
on the NCAR HPC Users Slack workspace

– Monitored by admins, consultants, and other users
– Share experiences, ask questions, get rapid updates

• Issues relating to the software environment can be
reported and tracked on GitHub at
https://github.com/NCAR/spack -derecho

105

Slack
http://ncarhpcusergroup.slack.com

Check out
#derecho-users

#cheyenne-users
#casper-users

https://rchelp.ucar.edu
http://ncarhpcusergroup.slack.com
https://github.com/NCAR/spack-derecho
http://ncarhpcusergroup.slack.com
http://ncarhpcusergroup.slack.com

Office Hours / Advanced Topics

106

Advanced Topics

• Preemption
• Containers
• Extending the User Software Environment

107

Preemption

• Derecho provides a preempt queue which can be used to run jobs that might
be low priority or suitable for interruption.
Some possible examples:

– An archive process suitable for incremental progress,
– An analysis code with a robust checkpoint / restart mechanism.

• When a job is preempted by another job from a higher priority queue:
– It can be rescheduled automatically (default behavior)

• Controlled by the #PBS -r <y|n> rerunnable attribute (yes by default)
– It is first sent a Unix SIGTERM; if properly configured can perform a user-defined action. It

is killed 10 minutes later.

108

#!/bin/bash
#PBS -A project_code
#PBS -N preemptable_job
#PBS -q preempt
#PBS -r n
#PBS -l walltime=01:00:00
#PBS -l select=2:ncpus=64:mpiprocs=4:ngpus=4
...

PBS Job Preemption and Signal Handling

• Signal handling allows an application to “know” preemption has been requested and
that it will be terminated imminently:

– PBS will send a job SIGTERM, wait 10 minutes, and then kill the application with SIGKILL
– An application can ‘catch’ SIGTERM and invoke checkpoint or cleanup functions if desired

• Signal Handling General Process:
1. Provide a signal handler function which will receive the termination request (listing in

backup),
2. Registering this signal handler function with the operating system (listing in backup),
3. Application -specific checkpointing & termination , triggered by the signal handler.

For a complete demonstration - including integration with MPI - see
https://github.com/NCAR/hpc -demos/blob/main/PBS/preempt/minimal_mpi.cpp

109

https://github.com/NCAR/hpc-demos/blob/main/PBS/preempt/minimal_mpi.cpp

Containers

• Derecho (and Gust) provide several container runtimes with a mixed set of functionality:
– Singularity (via the Apptainer project)
– Charliecloud
– Podman

• For CPU applications, Singularity and Charliecloud have both been tested with cray-
mpich and found generally performant

– Requires some gymnastics to bind-mount the host MPI into the container.
• Practical implication is that you will want to use MPICH as the base MPI inside your container.

• Additionally, Singularity has been used to run GPU applications with cray-mpich
(notably, the open-source version of FastEddy®)

Details: 2023-04 State of Containers

110

https://github.com/NCAR/FastEddy-model
https://docs.google.com/presentation/d/1wB-E0NG-qAXTviI-p9C8OaNvfHcEI0jvXccYei8qLDw/edit?usp=sharing

Cray-MPICH & Containers

Running performant MPI inside a container requires judiciously bind-mounting the host MPI
“on top of” the container MPI. The two MPIs need to be ABI compatible, which is readily
accomplished by using MPICH 3.4.x inside the container.

mpiexec --np 2 --ppn 1 --no-transfer \
set_gpu_rank \
singularity exec \

--bind /run \
--bind /usr/lib64:/host/lib64 \
--bind /opt/cray \
--env LD_LIBRARY_PATH=${CRAY_MPICH_DIR}/lib-abi-mpich:/opt/cray/pe/lib64:${LD_LIBRARY_PATH}:/host/lib64 \

--env MPICH_SMP_SINGLE_COPY_MODE=NONE \ # necessary for successful execution
${container_image} ${exe}

Details: 2023-04 State of Containers

https://docs.google.com/presentation/d/1wB-E0NG-qAXTviI-p9C8OaNvfHcEI0jvXccYei8qLDw/edit?usp=sharing

CUDA-Aware Cray -MPICH & Containers

Running CUDA-Aware MPI inside a container can be integrated with Cray-MPICH in much
the same way. The final trick is to inject the missing GTL library with LD_PRELOAD.

mpiexec --np 2 --ppn 1 --no-transfer \
set_gpu_rank \
singularity exec \

--bind /run \
--bind /usr/lib64:/host/lib64 \
--bind /opt/cray \
--env LD_LIBRARY_PATH=${CRAY_MPICH_DIR}/lib-abi-mpich:/opt/cray/pe/lib64:${LD_LIBRARY_PATH}:/host/lib64 \

--env MPICH_SMP_SINGLE_COPY_MODE=NONE \ # necessary for successful execution
--env MPICH_GPU_SUPPORT_ENABLED=1 \ # typical MPI/GPU env vars
--env MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1 \ # typical MPI/GPU env vars
--env LD_PRELOAD=/opt/cray/pe/mpich/8.1.21/gtl/lib/libmpi_gtl_cuda.so.0 \
${container_image} ${exe}

Details: 2023-04 State of Containers

https://docs.google.com/presentation/d/1wB-E0NG-qAXTviI-p9C8OaNvfHcEI0jvXccYei8qLDw/edit?usp=sharing

Results: pt2pt osu_latency

Results: pt2pt osu_bw / osu_bibw

Extending the User Software Environment

• The Spack package manager allows for the extension of the system
environment with a connected user Spack installation

• This user Spack installation can be used to install software to the user’s
work directory

– Can utilize the system Spack packages as dependencies for any application a
user installs.

– Easily install versions of applications that may not be available on Derecho

• CISL managed installation and linking script: spack-downstreams.sh

115

Spack Downstream Setup

• Basic Usage: ./ spack - downstreams.sh

• Application pulls from spack from github and installs the application in a
default space on your work directory

• Clones over configuration from the system installation
• Adds a setup command in your bashrc

– Can opt out if you’d like to initialize it yourself!

116

- v| - - ve r bos e : pr i nt out e a c h i ns t a l l a t i on s t e p t o t he t e r mi na l
- - pr e f i x=<i ns t a l l - pa t h> : s pe c i f y s pa c k i ns t a l l a t i on l oc a t i on. De f a ul t :

/ gl a de / wor k/ <us e r >/ s pa c k_ve r s i on
- - modi f y- r c =<Tr ue | Fa l s e >. : modi f y . ba s hr c t o l oa d Spa c k a t s t a r t up.

- h | - - he l p : pr i nt t hi s me s s a ge

Spack Downstreams

117

Installation can be done in
any directory you need.

Applications you
install will detect any
dependencies in the
upstream spack
instance.

Spack Downstreams Planned features

• Support for tcsh and csh

• User spack module integration with upstream spack

• Additional chaining for multiple spack installations

• Better cleanup utilities for easy removal

To get started with spack upstreams, contact CISL help for the application

118

Backup

119

PBS Job Preemption and Signal Handling

120

#include <stdio.h>
#include <unistd.h>
#include <time.h>
#include <signal.h>

static int checkpoint_requested = 0;

/* a signal handler can be any function that takes an int and returns void */
void my_sig_handler (int signum)
{
time_t now;
time(&now);

switch (signum)
{
case SIGINT:
case SIGTERM:
case SIGUSR1:
checkpoint_requested = 1;
printf("...caught signal %d at %s", signum, ctime(&now));
break;

default:
printf("...caught other unknown signal: %d at %s", signum, ctime(&now));
printf(" see \"man 7 signal\" for a list of known signals\n");
break;

}
}

PBS Job Preemption and Signal Handling

121

#include <signal.h>

int main (int argc, char **argv)
{

/* register our user-defined signal handler, can be used to catch multiple signals */
signal(SIGINT, my_sig_handler);
signal(SIGTERM, my_sig_handler);
signal(SIGUSR1, my_sig_handler);

return 0;
}

Cross -Compiler & Cross -System Development Strategies

With the new Spack user software environment we have introduced several environment
variables developers may find useful when switching between compilers, MPIs and even
systems:

122

benkirk@casper16(2)$ module list && env | grep BUILD

Currently Loaded Modules:
1) ncarenv/23.04 (S) 4) cuda/11.7.1 7) hdf5/1.12.2
2) intel/2023.0.0 5) ucx/1.13.1 8) netcdf/4.9.1
3) ncarcompilers/0.8.0 6) openmpi/4.1.5

...

NCAR_BUILD_ENV_COMPILER=casper-oneapi-2023.0.0
NCAR_BUILD_ENV_MPI=casper-oneapi-2023.0.0-openmpi-4.1.5
NCAR_BUILD_ENV=casper-oneapi-2023.0.0-openmpi-4.1.5

Cross -Compiler & Cross -System Development Strategies

• The ${NCAR_BUILD_ENV*} and previous GLADE environment variables can be used to simplify
builds across systems, compiler stacks, and facilitate portable shell scripts.

• This is especially true when using properly configured Autotools or CMake packages that support
distinct source, build, and installation directories:

* Today we only have cray-mpich on Derecho, but are pursuing others.

123

check mytool builds with (6 compiler suites) X (3 MPI families)

$ cd ${WORK}/codes && git clone <mytool> && cd ./mytool && SRC_DIR=$(pwd)

$ for COMPILER in nvhpc gcc cce intel intel-oneapi intel-classic; do
for MPI in cray-mpich mvapich2 openmpi; do
module load ${COMPILER} ${MPI} || continue
cd ${SRC_DIR} && mkdir -p ${NCAR_BUILD_ENV} && cd ${NCAR_BUILD_ENV}
../configure --prefix=$(pwd)/install && make && make install

done
done

$ PATH=${WORK}/mytool/${NCAR_BUILD_ENV}/install/bin:${PATH}

Compiling code with Intel Compilers

124

[negins@derecho3 ~]:
└──> module list

Currently Loaded Modules:
1) ncarenv/23.04 (S) 4) ncarcompilers/0.8.0 7) netcdf/4.9.1
2) craype/2.7.20 5) cray-mpich/8.1.25
3) intel/2023.0.0 6) hdf5/1.12.2

[negins@derecho3 ~]:
└──> ifort model.f90 -o model -qopenmp

[negins@derecho3 ~]:
└──> ifx model.f90 -o model -qopenmp

Compiling with Intel Classic Compiler:

Compiling with Intel OneAPI :

Compiling code with Cray Compiling Environment (CCE)

125

[negins@derecho3 ~]:
└──> module swap intel/2023.0.0 cce/15.0.1

[negins@derecho3 ~]:
└──> ftn model.f90 -o model -fopenmp

[negins@derecho3 ~]:
└──> mpifort model.f90 -o model -fopenmp

Compiling with CCE

The ncarcompilers module will translate a call to “mpifort” to “ftn” :

Synchronizing Cheyenne Scratch → Derecho Scratch

126

• Derecho’s scratch filesystem:
– /glade/derecho/scratch/${USER}, also ${SCRATCH} and ${DERECHO_SCRATCH}

• Cheyenne’s scratch filesystem is also available on Derecho:
– /glade/cheyenne/scratch/${USER}, also ${CHEYENNE_SCRATCH}

• Small files or directories can be relocated using mv or cp
• Large directory trees can be synchronized with rsync or using Globus
• For users that want to move from Cheyenne scratch to Derecho entirely, we have

developed a utility PBS script.
– Replicates Cheyenne scratch contents into /glade/derecho/scratch/${USER}/FROM_CHEYENNE/
– Once files are synchronized (expensive), they can be mv’ed within the same filesystem (quick)

PBS Script to synchronize contents
From: /glade/cheyenne/scratch/${USER}/
To: /glade/derecho/scratch/${USER}/FROM_CHEYENNE/

$ qsub -A <ACCOUNT> \
/glade/u/home/benkirk/repos/csg-utils/filesystem/scratch_migration/sync_scratch.sh

Independent Tasks & PBS Job Arrays

127

• Derecho nodes are uniquely assigned to user jobs, therefore efficient user workflows
should make full use of these dedicated resources.

• Casper is the ideal for very small jobs, requiring only a handful of CPU cores.

• For large parametric sweeps of small jobs (e.g. 1000s), however, it is possible to
“pack” many each job onto Derecho nodes.

– On Cheyenne, this could be accomplished using MPT to launch a series of independent
processes .

– In the following, we demonstrate how to launch many similar, serial tasks with different inputs on
Derecho compute nodes using PBS Job Arrays.

The -J min-max syntax specifies a Job Array.
the script job.pbs will be executed repeatedly, each with a unique
PBS_ARRAY_INDEX in [min,max] (inclusive)
job.pbs can therefore be considered a template that is applied repeatedly

$ qsub -J 0-7 job.pbs

https://arc.ucar.edu/knowledge_base/72581486Cheyennejobscriptexamples-Batchscripttorunacommandfile(MPMD)job

Independent Tasks & PBS Job Arrays

128

$ git clone --branch derecho /glade/work/benkirk/consulting/ASD/job_arrays

$ cd job_arrays
$ cat README
test.py: demo python script that sleeps a few random seconds and prints whatever command

line arguments it was called with. Demonstration surrogate for user application.

inputs.txt: command-line arguments for each step.
'#' in the first column denotes a comment.
each non-comment line indicates a 'step' that will be run.

getline.sh: a simple bash script to return the requested (non-comment) line.
usage: ./getline.sh ./inputs.txt <linenumber>

job.pbs: A PBS script that uses PBS "job arrays" to execute each step in inputs.txt
Each PBS submission will request a full node, and use it to execute the number
of steps equal to to the number of processors on the node.
(the last node will be undersubscribed in general.)

Makefile: glues it all together.
change the project code on the first line.
ppn is set at 128, which is appropriate for Cheyenne or Casper.
determines the number of steps from inputs.txt
determines the number of PBS 'job array steps'
submits to derecho. make run to launch.

Replace with user -
provided
elements

Independent Tasks & PBS Job Arrays, PBS Script (1/2)

129

#!/bin/bash
#PBS -N array_example
#PBS -j oe
#PBS -l walltime=00:10:00
PBS_ARRAY_INDEX range, inclusive: (can be overridden by qsub command line arguments)
#PBS -J 0-3

Set temp to scratch
export TMPDIR=${SCRATCH}/tmp && mkdir -p ${TMPDIR}

determine the number of nodes, and processors per node we were assigned
(inferred based on select statement)
nodeslist=($(cat ${PBS_NODEFILE} | sort | uniq | cut -d'.' -f1))
nnodes=$(cat ${PBS_NODEFILE} | sort | uniq | wc -l)
nranks=$(cat ${PBS_NODEFILE} | sort | wc -l)
nranks_per_node=$((${nranks} / ${nnodes}))

[${nnodes} -eq 1] || { echo "ERROR: this example is for 1 node, but with perhaps many array steps"; exit 1; }

echo "${nranks} ${nnodes}x${nranks_per_node}"

nsteps=$(cat inputs.txt | grep -v '#' | wc -l)

this PBS_ARRAY_INDEX will compute multiple "steps" from inputs.txt, up to ppn
start_idx=$((${PBS_ARRAY_INDEX} * ${nranks_per_node}))
stop_idx=$((${start_idx} + ${nranks_per_node} - 1))

echo "nsteps: ${nsteps}, array index: ${PBS_ARRAY_INDEX}"
echo "start_idx=${start_idx} stop_idx=${stop_idx}"
...

Independent Tasks & PBS Job Arrays, PBS Script (2/2)

130

...
create a 'logs/ directory to hold stdout from each process
mkdir -p ./logs/

loop over each 'step' for which we are responsible.
launch our ./test.py process, in the background
for step in $(seq ${start_idx} ${stop_idx}); do

the last PBS_ARRAY_INDEX could go past nsteps if the number of inputs.txt
is not evenly divisible by ppn - don't let it
[${step} -ge ${nsteps}] && break

get the command line arguments from inputs.txt for this step
(note that the step counter is 0 based, so add 1)
cmdargs=$(./getline.sh ./inputs.txt $((${step} + 1)))
echo " PBS_ARRAY_INDEX=${PBS_ARRAY_INDEX} launching step ${step} / args=${cmdargs}"

finally, launch our desired application with the requested arguments.
Redirect stdout/stderr to the ./logs/ directory.
./test.py ${cmdargs} > ./logs/stdout-$(printf '%04d' $((${step}+1))).log 2>&1 &

done

wait for all the background processes to complete.
(otherwise, when this script exits, PBS thinks it is done and will kill any remaining processes...)
wait

echo "Done: PBS_ARRAY_INDEX=${PBS_ARRAY_INDEX} finished on $(date)"

✳This example works best when each “task” has a ~similar duration. If a small number of tasks take much longer than
average, this approach will lead to imbalance. Reach out to Consulting for other approaches to address this scenario.

Intel Modules available on Derecho

131

Module Fortran (ftn) C (cc) C++ (CC)

intel/2023.0.0 (D) ifort icx icpx

intel-oneapi/2023.0.0 ifx icx icpx

intel-classic/2023.0.0 ifort icc icpc

Intel C/C++ Compiler Classic (icc/icpc) is deprecated and will be removed in a oneAPI release in the
second half of 2023.
Intel recommends that customers transition now to using the LLVM-based Intel® oneAPI
DPC++/C++ Compiler (icx/icpx) for continued Windows* and Linux* support, new language support,
new language features, and optimizations.
Intel Fortran Compiler Classic (ifort) is going to be deprecated soon and replaced by ifx.

	Slide Number 1
	Agenda
	Slide Number 3
	NWSC-3 (Derecho & Destor) Project Status
	NCAR’s High-Performance Computing, Data, & Analysis Resources: 2023
	Cheyenne & Derecho side-by-side (Hardware)
	Sustainability: Power Efficiency (Sustained MFLOP/sec per Watt)
	2023 Casper Augmentation
	Campaign Storage Tape HSM Tier Concept
	Hard Disk Storage: Cost Trends
	Slide Number 11
	Slide Number 12
	Derecho Community Portions
	Allocations for the University of Wyoming
	Migrating Cheyenne allocations to Derecho
	Slide Number 16
	Slide Number 17
	Slide Number 18
	NWSC - Derecho By The Numbers
	NWSC-3 Infrastructure Preparation Steps
	Capacity: Mechanical Construction
	Capacity: Electrical Construction
	Fit-Up: High-Level Statement of Work
	Fit-Up
	Fit-Up
	Derecho Preparation Outages
	Preparation Outages
	NWSC Virtual Tour Links
	Slide Number 29
	Derecho (NWSC-3) HPE/Cray Solution
	Slide Number 31
	Derecho CPU Node Anatomy
	Derecho GPU Node Anatomy
	Derecho Slingshot Network Overview
	Derecho Slingshot Dragonfly Topology Overview
	Destor: Derecho - Storage & Scratch File System
	Destor Performance - So far
	Derecho Network Environment
	Compute Node Internet Access
	Login Environment / Scheduler Infrastructure
	Slide Number 41
	Cheyenne Queue Structure
	Derecho Queues: Improvements over Cheyenne
	Derecho Queue Structure
	Derecho Queue Structure
	Job Priority and Job Sort Formula
	Multi-Process Service (MPS) support for GPU
	Lustre Job Statistics
	Lustre Job Statistics
	Power Reporting and Power Management
	Power Reporting and Power Management
	Power Monitoring with qhist
	Slide Number 53
	Derecho User Access, Software, and User Environment
	Derecho Login Environment
	Login Environment: User Resource Restrictions
	Login Environment: User Resource Restrictions
	A nimble software stack provided by Spack, Cray, and Lmod
	Cray functionality is available with simplified access
	Prototyping and Version Control Allows for User Testing and Co-design
	User Software Environment: Known Issues and Limitations
	Cheyenne → Derecho Modules Cheatsheet
	GLADE File Spaces
	GLADE File Spaces
	GLADE / Derecho / Cheyenne Overlap & Decommission Plan
	Slide Number 67
	Overview
	Slide Number 69
	Compiling Code on Derecho
	Compilers Available on Derecho
	Intel Compilers on Derecho
	Intel Compilers on Derecho
	Cray Compiling Environment (CCE)
	Compiling GPU codes on Derecho
	Compiling GPU codes on Derecho
	Compiling GPU codes on Derecho
	Cray Programming Environment (CrayPE module)
	Cray Programming Environment (CrayPE module)
	Clang 16+ compilers and older C code
	Cross-Compiler & Cross-System Development Strategies
	Cross-Compiler & Cross-System Development Strategies
	Slide Number 83
	Job Monitoring and Execution
	Running Jobs on Derecho
	Running Jobs on Derecho: NUMA Domains
	Running Jobs on Derecho
	Running Jobs on Derecho
	Running Jobs on Derecho: CPU Binding
	Running Jobs on Derecho
	Running Jobs on Derecho
	Running Jobs on Derecho
	Running Jobs on Derecho
	Running Jobs on Derecho
	Scratch Lustre File System and MPI-IO
	Lustre File Striping
	Lustre Progressive File Layouts
	Lustre File Striping
	Cray-MPICH and MPI-IO
	Cray-MPICH and MPI-IO
	Slide Number 101
	Slide Number 102
	Getting Help & Reporting Issues
	Best Practices for Support Tickets
	Derecho-Specific Support Resources
	Slide Number 106
	Advanced Topics
	Preemption
	PBS Job Preemption and Signal Handling
	Containers
	Cray-MPICH & Containers
	CUDA-Aware Cray-MPICH & Containers
	Results: pt2pt osu_latency
	Results: pt2pt osu_bw / osu_bibw
	Extending the User Software Environment
	Spack Downstream Setup
	Spack Downstreams
	Spack Downstreams Planned features
	Slide Number 119
	PBS Job Preemption and Signal Handling
	PBS Job Preemption and Signal Handling
	Cross-Compiler & Cross-System Development Strategies
	Cross-Compiler & Cross-System Development Strategies
	Compiling code with Intel Compilers
	Compiling code with Cray Compiling Environment (CCE)
	Synchronizing Cheyenne Scratch → Derecho Scratch
	Independent Tasks & PBS Job Arrays
	Independent Tasks & PBS Job Arrays
	Independent Tasks & PBS Job Arrays, PBS Script (1/2)
	Independent Tasks & PBS Job Arrays, PBS Script (2/2)
	Intel Modules available on Derecho

