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Abstract
In an effort to provide an alternativemethod to represent a quantum spin, a precise 3Dnonlinear
dynamicsmethod is used. A two-sided torque function is created tomimic the unique behavior of the
quantum spin. A full 3D representation of themagneticfield of a Stern–Gerlach device was used as in
the original experiment. Furthermore, the temporarily driven nonlinear dampedmodel exhibits
chaos, but struggles to be consistent through azimuthal angles in reproducing thewell known
quantum spin statistics.

1. Introduction

Scientists have questioned how a quantum spin evolves into one of two states [1–3]. In a recent publication it was
discussed that itmay be possible to understand the quantummechanical spin state evolution, or quantum
mechanical wave collapse, in a similarmethod used in deterministic chaos, which does not violate the Bell
inequalities [4, 5]. In follow up on that suggestion, a 2Dnonlinear semi-classical perturbationmodel was
developed and the results relatively produced the correct statistical quantum expectations [6]. Thismodel was
limited to amagnetic field froma current loop, but here themodel is expanded into 3D. Furthermore, the exact
3Dmagnetic field from a Stern–Gerlach device is calculated and used in this research publication. In essence,
this research is an attempt to replicate quantum spin statistics using an alternative semi-classical approach based
on nonlinear dynamics and routes to chaos.

The geometry used to describe the relationship between the unit quantum spin, m̂, and the unitmagnetic
field, B̂, (which is rapidly evolvingwith respect to the quantum spin) can be seen infigure 1, where the angle of
separation isβ, and the unit vector ofmagnetic torque rotation is represented as n̂.

The probability that the quantum spinwill collapse in the direction of themagnetic field, spin up, and the
probability that it will collapse in the opposite direction, spin down, is given as
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with the assumption that thermal energy ismuch larger than the energy separation between the spin up and spin
down states, k T B2B m .

In the presence of a nonuniformmagnetic field, once the spin has collapsed into the spin up or down state
therewill be a classical force that acts on the spinmagneticmoment. The force is written as
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where often the assumption inside the Stern–Gerlach device is
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and the force value can be either positive or negative depending on the direction ofμz [7].

OPEN ACCESS

RECEIVED

30November 2018

REVISED

6 February 2019

ACCEPTED FOR PUBLICATION

1April 2019

PUBLISHED

23April 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/ab14fd
https://orcid.org/0000-0001-9371-6195
https://orcid.org/0000-0001-9371-6195
mailto:jheiner2@uwyo.edu
mailto:jdbodyfelt@gmail.com
mailto:drthayer@uwyo.edu
https://doi.org/10.1088/2399-6528/ab14fd
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab14fd&domain=pdf&date_stamp=2019-04-23
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab14fd&domain=pdf&date_stamp=2019-04-23
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


2. Semi-classical torque:moment dynamics

As the spinmagneticmoment, m

, is not a classicalmagneticmoment, it is necessary to consider the very peculiar

aspect as there appears to exist two stable equilibrium locations.However, the classicalmagneticmoment torque
has two equilibria locationswhich depend on the angle,β, one being stable atβ=0 and the other being unstable
atβ=π. This can easily be observed in the torque of a classical dipolemoment in amagnetic field:

B B nsin , 4c cct m m b= ´ =  
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The sinusoidal function that arises in equation (4) can bemodified into a semi-classical torque
representation so there are two stable equilibria locations atβ=0 andβ=π (representing the final evolution
state of the quantum spin). A function thatfills this unique semi-classical torque behavior is

B c nsin tanh 2 , 6sct m b b p= - - ( ) ( ( )) ˆ ( )

where c is a parameter to change the sharpness of the hyperbolic tangent function (the negative arises due to the
hyperbolic tangent function). The comparison of this new semi-classical torque to the classical torque can be
seen infigure 2, as normalized figures.

It is important to conclude thatmany torquemodelsfit the qualifications of two stable equilibria. For
example figure 3 shows a normalized 3Dplot surface, which is symmetric about themagnetic field, B


, and

follows it as it dynamically evolves.
By treating themagneticmoment, m


, as a rod, r


, an evolution in time under spherical coordinates wheref is

the angle off of the z axis and θ is the azimuthal angle around the z axis, starting at the x axis as infigure 4, the
angular velocity for the spinmoment in cartesian coordinates is

r v

r
. 7

2
w =

´
 

( )

Differentiating angular velocity gives angular acceleration:

ð8Þ

Figure 1. 3DGeometry for the Semi-Classical SpinModel in the presence of amagneticfield, B

, alongwith the normalized torque n̂.
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which in terms of our coordinate system can bewritten3 as
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With the angular acceleration being in cartesian coordinates, it can be related to the torque as

I , 10a t= ˆ ( )

Figure 2.The normalized semi-classical spin torque is shown from equation (6)with c=2. The classical torque function, as a
reminder, is in the inset.

Figure 3.Anormalized 3D semi-classical dual torque of a quantum spin subjected to amagnetic field pointing along the x axis. As
further explained in supplementary II, the torquemagnitudemodel can easily be changed and adapted.

3
For the full derivation see section I of the supplementary information available online at stacks.iop.org/JPCO/3/045009/mmedia
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where the torque term is the sumof all torques. Included in the torque terms is a linear angular dissipation force,
i.e. bdisst w=
 

, where
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and b is a dissipation factor.
Although a threshold criterion has been presented in terms of amoment of inertia, Î , that roughly separates

quantumbehavior from classical [8], this research publication proposes and is not the first to use amoment of
inertia tensor for a quantum spinmoment [9]. Tofirst order approximation, themoment of inertia tensor for a
quantum spin should be a thin rod, which the reader is reminded:

I I
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0 1 0
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, 12=
⎡
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⎤
⎦
⎥⎥ˆ ( )

where the scaler I alongwith bwill be used as adjustable parameters in the simulation.
To obtain the two acceleration equations ofmotion4 for the quantum spin, namely q̈ and f̈, linear algebra is

used to solve equation (10).

3. 3Dmagneticfield of the SGD

The force on a quantum spin is due to amagnetic field; therefore, themagnetic field of the Stern–Gerlach device
will be discussed first. Since a full representation of themagnetic fieldwas needed, and there exist amagnetic
field prior to the spin entering the Stern–Gerlach device, the fullmagnetic field is calculated. Although some
have calulated a 2Dmagnetic field using afinite elementmethod [10], the complete 3Dmagnetic fieldwas
obtained by the Biot-Savart law:

Figure 4.The overall view of the Stern–Gerlach device and the definition of the coordinate systembeing used by themagneticfield and
the quantum spinmoment.

4
See section II of the supplementary information for equations ofmotion for q̈ and f̈.

4

J. Phys. Commun. 3 (2019) 045009 J JHeiner et al



B r
J r r r

r r
d

4
, 130

3ò
m
p

t=
¢ ´ - ¢

- ¢
¢

 

 ( ) ( ) ( )
∣ ∣

( )

where r ¢

is the vector from the origin to the source point and r


is the vector from the origin to the field point.

J r ¢( ) is the current density written also in terms of themagnetization,M, as a bound volume current,
Jb=∇×M,plus the bound surface current, Kb=M×n̂ where n̂ is the normal to the surface unit vector.

An analytical solution for themagneticfield of the Stern–Gerlach device,modeled after figure 4, was
obtained usingmathematica5. A stream slice of themagnetic field can be seen infigure 5. Since an analytical
solutionwas obtained, it was easy to also obtain analytical solutions for the individual curl and divergence-like
terms of themagnetic field to be used in the force kinematics.

4. Force: carrier kinematics

Many studies acknowledge that there also exists a gradient in the x and y directions since B 0 =
 

· [11–16].
Although
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inside the Stern–Gerlach, sinceμy averages to zero this force termwill also average to zero [17] (themagnitudes
of the divergence can be seen infigure 6). However, few analyze and fail tomention the full force which includes
individual curling-like terms on the same order ofmagnitude as the divergence terms [18]:
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Due to the uncertainty principle, all knowledge of m

in either the x̂ or ŷ direction is unknown and random.

Over time the averaged value of the force due to the quantum spin in theμx andμy directions will be zero:

Figure 5.This stream slice view of the Stern–Gerlach device is headon in the y–z plane at x=0. Themagnetic fieldwas obtained from
the Biot-Savart law.

5
The dimension definitions used in the Stern–Gerlach device can be seen in the supplementary information section III.
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where the divergence-like term corresponds to a traditional lateral force, z ˆ, whereas one of the curling-like
terms leads to a drifting force, y ˆ (since the trajectorymeasurment is confined to the y-z plane, forces in the x̂
direction can be neglected).

It is important to discuss the divergence of themagnetic field infigure 6. In looking closer at the inset, the
divergence force goes frompositive to negative. In the negative region, a spin that is pointing upwill now feel a
force that is negative. This is amathematical treatment irrelevant of the semi-classical torquemodel that is being
presented. As this is an attribute of themagnetic field of the Stern–Gerlach device, even the traditional wave
quantummechanics would arrive at the same conclusion. Since there is amagnetic thresholdmagnitude, under
which a spinmagneticmoment will not collapse into a state due to time restraints, this ismodeled by reducing
the force in the negative region:

B

z
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z
e , 18z z y y

2¶
¶


¶
¶

s- ( )( )

whereσy is approximately thewidth of the positive divergence.

5.Quantum spin opposingmagneticflux

This research project was interested in describing asmany variables as possible to describe the proposed
quantum spinmodel. As a result, it is often stated as a universal law [19–21] that nature anhors a change influx
and therefore attempts to counter the change influx. Since every particle containing a quantum spin has afinite
size, that particle will experience a change influxwhile exposed to a changingmagnetic field.

A search through literature failed to unveil any type of research or prediction into the dynamics thatmust
exist when a quantum spin is opposing themagnetic flux through it’sfinite size.

Knowing the change inmagnetic flux due to the Stern–Gerlach device where tenter is the time to get from
initially outside, i, to the finalmax field, f,

d

dt
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and the change inmagnetic flux from the quantum spin,
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»
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a decision can bemadewhether to include dynamics from the quantum spin opposing/correcting themagnetic
flux from the Stern–Gerlach device:

Figure 6.The divergence of themagneticfield of the Stern–Gerlach device along the y axis at x=0 and z=0. The values from∂Bx /
∂ x are not included as it was relatively zero since B 0 =

 
· . The inset is the blown up shot of the divergence around y=0.
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Themagnetic field from the quantum spin can be approximated by using the residualmagnetic field,Br, from a
dipolemoment:
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whereV is the quantum spinmoment volume. Therefore,
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24SG
0

f 
mm

( )

by approximately 14 orders ofmagnitude6.
Seeing that themangetic field from the quantum spin can overpower themangetic field due to the Stern–

Gerlach device, the dynamics for such an effect was logically ignored in this research.

6.Driven-damped pendulum

Although the similarities between the driven-damped pendulum and the 2D semi-classical spinmodel have
been recently discussed [6], it is important that it be discussed here aswell.

The equation ofmotion for a classical driven-damped pendulum,where q¢ is the angle between themass
vector and gravity, is

a b c F t¨ sin , 25q q q¢ = - ¢ ¢ - ¢ ¢ + ¢˙ ( ) ( ) ( )

where the constants a¢, b¢, and c¢ are well known constants and F(t) is a driving force [22].
One representation for the equation ofmotion for the 3D semi-classical spinmodel, in it’s simplest form is

b f g f B x y z
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, , , , , , 26

z

x
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where g is a constant and the primes indicate a different function. Also, the force due toBywas neglected in this
comparision due to it being relatively small at y=0.

Chaos for a pendulum, equation (25), can only occurwhen the driving force is stronger than the gravity
force, i.e. c’F(t)/b>1 [23–26]. Similarly the semi-classical spinmodel can only be chaotic whenBx/Bz>1.
Therefore,Bx serves the same purpose as F(t) in that it is a driving force.

The simulation for a quantum spin begins outside the Stern–Gerlach device and travels in the x̂ direction,
figure 4. As seen infigure 7, themagnetic field is dominatly in the z- ˆ direction. Then as the spin approaches the
Stern–Gerlach device themagneitc field is dominatly in the x- ˆ direction. It is during this small area of space
where B B 1x z  that the spinwill be exposed to only a driving force. This area is what causes chaos to occur
and the quantum statistics to be acheived, i.e. the peculiar idea that a spinwhich is pointingmostly up has a
probability offlipping down as seen from equation (1). Furthermore, since B 0 =

 
· , there will always exist a

Stern–Gerlach-like device where an entering spinwill be exposed to a dominately perpendicularmagnetic field.

7. Code

The numericalmethod used to step through the resulting equations ofmotion from equation (10), as fully
shown in equation (S15), that describes themoment dynamics is the forth order Runge-Kuttamethod. Since the
moment dynamics, which is equatted to a quantum effect, happen at small time scales, only a second order
Runge-Kuttamethod is used to describe the carrier kinematics, equation (17).

Furthermore, since themoment dynamics is a quantum effect, the forces on the quantum spinwere zero
until the spin entered the Stern–Gerlach device. The simulation terminates at the end of the device. To show the
classical trajectory split in the y–z plane some distance d away, an elementary physics approach is taken once
outside the Stern–Gerlach device:

6
Letting themagneticfield equal∼1T and the radius r∼10−15m; 1 10 10

10

24 7

15 3
- -

( )
. (It should be noted that the upper limit was taken for the

radius. Had the lower limit been taken the approximationwould have been even higher.)
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z v d v , 27z xD = ( ) ( )

where a similar equation can bewritten forΔ y.
The initial velocity in the x̂ direction is randomly assigned from a gaussian distribution centered at 550 m/s,

which is very similar to the original Stern–Gerlach experiment.
In solving for q̈, there is a sinf in the denominator. Therefore as 0, ;f p q̈  ¥. The time step can

always be decreased to surpress this issue (more than two orders ofmagnitude for this simulation), but for this
research presentation the coordinate system for the spinmoment dynamics was rotated about the x axis byπ/2.
Then once the simulationwas complete the results were rotated back into the original coordinate system.

Initial spin orientation values,fi are divided equally from0 toπ in increments ofπ/1000 (since the
experiment starts well outside the Stern–Gerlach device, and inside the device themagnetic field is;Bz, thefi

angles are comparable toβ andwill be compared as such). Eachfi value is given a random θi value and the
simulation begins. This action is repeated 1000 times for eachfiwith a new random θi resulting in a total of one
million simulations.

8. Carrier kinematic results

The trajectory due to the carrier kinematics are broken into twomain sections: onewhere the usual
oversimplification of the force is used, as in equation (3), andwhere a full force is calculated, equation (17).

Figure 8 shows the results of the simplified force. It is interesting to note, that had themagnetic field been
stronger, then the original Stern–Gerlach experiment would have had features similar to the top left graphwhere
additional ’eyes’ appear. Once again that feature is due strictly from the field of the Stern–Gerlach device as seen
infigure 6. The other trajectories take into account aminimummagnetic field needed to induce a quantum spin
via equation (18).

The top right graph is themost commonly perceived trajectory from the Stern–GerlachDevice. The spins
alignedwith themagnetic field, spin up, experience a positive force as seen infigure 6.Had the experiment been
rotated byπ around the y axis and themagnetic field still pointing in the ẑ direction, the gradient would be
negative,−∂B /∂ z, whichwould result in the spin up to go in the z- ˆ direction. This concept is still
misrepresented bymany authors [27–29] that a spin alignedwith themagnetic field, spin up, will always have a
lateral force towards the physical point-like structure in the Stern–Gerlach device.

The bottom trajectories infigure 8 are implementing classical torque on a classical dipolemoment. The only
difference is the plot to the right has two orders ofmagnitude highermoment of inertia than the plot on the left,
which is the same as the quantum spinmoment.

A full force calculation of the carrier kinematics is shown infigure 9. It is important to note that the drifting is
caused due to the individual curling-like terms from analyzing the full force, equation (17). Spins aligned in the

Figure 7.This view of the Stern–Gerlach device is from the side in the x-z plane at y=0. The shaded portion indicates the tip of the
Stern–Gerlach device.

8
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direction of themagnetic field, spin up, will always drift towards the center, y=0, whereas spin down particles
will always drift away from the center regardless offlipping themagnetic field.

In comparing the full force calculation results offigure 9, it looks very similar to the original results from the
Stern–Gerlach experiment [7], as seen infigure 10. In the original work, a depletion of spin up particles at y=0
is noticeable due to the drifting caused by the individual curling-like terms of themagnetic field.

9.Moment dynamic results

The process of the collapse of the individual quantum spin states needs tomatch known quantum statistics to be
suggested as a possiblemodel. The statistics as shown in equation (1) is the basis for comparision.

The quantummechanical statistic comparision to themodel set forth in this research is obtained from the
emergent numerical steady state solution from the equations ofmotion (f̈ and q̈) in section II. The statistical
probability, or population fraction determined by n individual simulations is calculated by

P
n n

1
, , 0, , 0, 28i

p

n
i p

1

,finalåb
b

p p
p p p= = ¼

=

( ) ( ) ( )

where i p,final
b is the final steady state angle of a spin, with spin up beingπ, and spin down being 0, is shown in

figure 11. Thereweremany adjustable parameters, but the best results are shown.

Figure 8.The classical trajectory split of the quantum spin due to equation (3). The top left graph is the only trajectory that does not
include the simplification in equation (18). The top right graph is an often represented ideal trajectory fromquantum spin (only
assuming forces in the ẑ direction). The bottom left is using a classical dipole force shown in equation (4). The bottom right further
assumes a largemoment of inertia to a classical dipole.

Figure 9.The complete force classical trajectory split of the quantum spin, equation (17).

Figure 10.The original Stern–Gerlach results [7] as seen in this postcard sent byGerlach to Bohr [30] (CourtesyNiels Bohr
CopenhagenArchive).
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The piecewise-like behaviour aroundπ/2 is particularly alarming since this should be a very unstable area
and thus an equal opportunity for a spin toflip either up or down.

In further analysis of the trajectories, initial slices (i.e. restricting the initial azimuthal angle to certain values)
were used to comparewith the quantum spin statistics (since the probability should be irrelevant to azimuthal
angle). The discoverywas that azimuthal angles close to 0 orπ had a really high value offlipping; whereas
azimuthal angles aroundπ/2 or 3π/4 had relatively zero chance offlipping.

As stated in the original suggestion tomodel quantummechanics using a nonlinear system that exhibits
chaos, this systemwith just one perturbation likemomentwhenBx/Bz>1 is not enough to produce the chaos
required tomimic quantummechanical spin state probabilities.

10.Discussion

Further insights were obtained into the carrier kinematics and therefore the trajectory results. The cause of the
translational force is due to the individual curling-like terms of themagnetic field, which is asymetric about the
x-z plane at y=0.

Althoughmany attempts into changing the torque function and dampening parameter were done, the best
results comparing the semi-classical quantum spin state results to knownquantum statistics falls short of
expectation (as seen infigure 11).

In this research themodel sought chaos due to a perturbation perpendicular to themainmagnetic field
direction inside the Stern–Gerlach device. Since there does not exist enough perturbation to cause the needed
chaos, a different proposal is needed, perhaps internally in the spinmodel, to exhibit the highly chaotic behavior
predicted in literature [4].

In spite of a full representation of themagnetic field given, the dynamics on a quantum spin due to opposing
magnetic fluxwas not taken into account due to it’smagnitude. As stated earlier, research has yet tomeasure or
predict the dynamics thatmust exist when a quantum spin is opposing themagnetic flux through it’sfinite size.
We encourage thosewith capabilities to showdynamics of a quantum spin due to opposing amagnetic flux to
verify the universalflux law at a quantum level.

Furthermore, in looking towards the future at other requirements for the quantum spin, replication of Rabi
oscillations is necessary. To remind the reader, Rabi oscillation has a constantmagnetic field and a perpendicular
oscillatingmagnetic field:

B B z B t x t ycos sin . 290 1 w w= + -


ˆ ( ˆ ˆ) ( )

A full understanding of Rabi cycles shows that an oscilating field does not have to be larger than the
dominant field i.e.B1/B01, which does not bodewell for the semi-classicalmodel looking for chaos due to a
perpendicular perturbation. This further confirms the need to look elsewhere for chaos behaviour from the
semi-classical quantum spin.

Figure 11.Comparision of thewell knownquantum spin statistics to the semi-classicalmodel. Each greenmarker is a fractional
population of 1,000 individual runs. For example amarker atπ/4 represents 1,000 simulation results averaged. That average
represents the probability for a spin flip to occur.

10
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