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Abstract

In an effort to provide an alternative method to represent a quantum spin, a precise 3D nonlinear
dynamics method is used. A two-sided torque function is created to mimic the unique behavior of the
quantum spin. A full 3D representation of the magnetic field of a Stern—Gerlach device was used as in
the original experiment. Furthermore, the temporarily driven nonlinear damped model exhibits
chaos, but struggles to be consistent through azimuthal angles in reproducing the well known
quantum spin statistics.

(OMOM

1. Introduction

Scientists have questioned how a quantum spin evolves into one of two states [ 1-3]. In a recent publication it was
discussed that it may be possible to understand the quantum mechanical spin state evolution, or quantum
mechanical wave collapse, in a similar method used in deterministic chaos, which does not violate the Bell
inequalities [4, 5]. In follow up on that suggestion, a 2D nonlinear semi-classical perturbation model was
developed and the results relatively produced the correct statistical quantum expectations [6]. This model was
limited to a magnetic field from a current loop, but here the model is expanded into 3D. Furthermore, the exact
3D magnetic field from a Stern—Gerlach device is calculated and used in this research publication. In essence,
this research is an attempt to replicate quantum spin statistics using an alternative semi-classical approach based
on nonlinear dynamics and routes to chaos.

The geometry used to describe the relationship between the unit quantum spin, [, and the unit magnetic
field, B, (which is rapidly evolving with respect to the quantum spin) can be seen in figure 1, where the angle of
separation is 3, and the unit vector of magnetic torque rotation is represented as 7.

The probability that the quantum spin will collapse in the direction of the magnetic field, spin up, and the
probability that it will collapse in the opposite direction, spin down, is given as

Py = cos? 3/2,

P, =sin?3/2, (1)
with the assumption that thermal energy is much larger than the energy separation between the spin up and spin
down states, kg T > 2uB.

In the presence of a nonuniform magnetic field, once the spin has collapsed into the spin up or down state
there will be a classical force that acts on the spin magnetic moment. The force is written as

-

F= V(- B), @
where often the assumption inside the Stern—Gerlach device is

F o~ p,—=2, 3

and the force value can be either positive or negative depending on the direction of 1, [7].

©2019 The Author(s). Published by IOP Publishing Ltd
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Figure 1. 3D Geometry for the Semi-Classical Spin Model in the presence of a magnetic field, B, along with the normalized torque 7.

2. Semi-classical torque: moment dynamics

As the spin magnetic moment, fi, is not a classical magnetic moment, it is necessary to consider the very peculiar
aspect as there appears to exist two stable equilibrium locations. However, the classical magnetic moment torque
has two equilibria locations which depend on the angle, 3, one being stable at 3 = 0 and the other being unstable
at 0 = 7. This can easily be observed in the torque of a classical dipole moment in a magnetic field:

7= f, x B = pBsin(B) 4, 4
where
ix B
A=t 2 ®)
| @ x B

The sinusoidal function that arises in equation (4) can be modified into a semi-classical torque
representation so there are two stable equilibria locations at 3 = 0 and 3 = 7 (representing the final evolution
state of the quantum spin). A function that fills this unique semi-classical torque behavior is

7 = —pBsin(p) tanh(c (3 — 7/2)) 7, (6)

where cis a parameter to change the sharpness of the hyperbolic tangent function (the negative arises due to the
hyperbolic tangent function). The comparison of this new semi-classical torque to the classical torque can be
seen in figure 2, as normalized figures.

Itis important to conclude that many torque models fit the qualifications of two stable equilibria. For
example figure 3 shows a normalized 3D plot surface, which is symmetric about the magnetic field, B,and
follows it as it dynamically evolves.

By treating the magnetic moment, ji,asarod, 7, an evolution in time under spherical coordinates where ¢ is
the angle off of the zaxis and 6 is the azimuthal angle around the z axis, starting at the x axis as in figure 4, the
angular velocity for the spin moment in cartesian coordinates is

7 XV

2 7

a):

r

Differentiating angular velocity gives angular acceleration:

a:d_w_v%+?xa_2f?xv (8)
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Figure 2. The normalized semi-classical spin torque is shown from equation (6) with ¢ = 2. The classical torque function, asa

reminder, is in the inset.

~—

05 o

Figure 3. A normalized 3D semi-classical dual torque of a quantum spin subjected to a magnetic field pointing along the x axis. As
further explained in supplementary II, the torque magnitude model can easily be changed and adapted.

which in terms of our coordinate system can be written’ as
b sin — H sin 0 sin ¢ cos P+
206 cos 0 cos® ¢ + 0 cos @ sin ¢ cos ¢

ad=| —¢cosh + 0 cosbsin P cos p+ )
20¢ sin @ cos? ¢ + 6 sin 6 sin ¢ cos ¢
—20¢ cos psinp — O sin® ¢
With the angular acceleration being in cartesian coordinates, it can be related to the torque as
Ia =7, (10)

? For the full derivation see section I of the supplementary information available online at stacks.iop.org/JPCO/3 /045009 /mmedia
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Figure 4. The overall view of the Stern—Gerlach device and the definition of the coordinate system being used by the magnetic field and
the quantum spin moment.

where the torque term is the sum of all torques. Included in the torque terms is a linear angular dissipation force,
i.e. Ty = b W, where

—uBsin(f) tanh(c (8 — w/2)) /i - X
—b(psin + O sin ¢ cos ¢ cos 0)
—uBsin(B) tanh(c (B — 7/2)) 7 -
—b(—¢ cos + 0 sin ¢ cos ¢ sin )
—uBsin(B) tanh(c (8 — ©/2)) A - 2
—b(—0sin? ¢)

!
Il

(1D

and bis a dissipation factor.

Although a threshold criterion has been presented in terms of a moment of inertia, I, that roughly separates
quantum behavior from classical [8], this research publication proposes and is not the first to use a moment of
inertia tensor for a quantum spin moment [9]. To first order approximation, the moment of inertia tensor for a
quantum spin should be a thin rod, which the reader is reminded:

. 100
I=1101 of, (12)
000

where the scaler I along with b will be used as adjustable parameters in the simulation.
To obtain the two acceleration equations of motion® for the quantum spin, namely  and ¢, linear algebra is
used to solve equation (10).

3. 3D magnetic field of the SGD

The force on a quantum spin is due to a magnetic field; therefore, the magnetic field of the Stern—Gerlach device
will be discussed first. Since a full representation of the magnetic field was needed, and there exist a magnetic
field prior to the spin entering the Stern—Gerlach device, the full magnetic field is calculated. Although some
have calulated a 2D magnetic field using a finite element method [10], the complete 3D magnetic field was
obtained by the Biot-Savart law:

See section IT of the supplementary information for equations of motion for # and ¢.
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Figure 5. This stream slice view of the Stern—Gerlach device is headon in the y—z plane at x = 0. The magnetic field was obtained from
the Biot-Savart law.

e I X G =1
B(r) = 12 f— dr, (13)

7 — P

where r is the vector from the origin to the source point and 7 is the vector from the origin to the field point.

J (") is the current density written also in terms of the magnetization, M, as abound volume current,

Jo = V X M, plus the bound surface current, K, = M x f where fiis the normal to the surface unit vector.
An analytical solution for the magnetic field of the Stern—Gerlach device, modeled after figure 4, was

obtained using mathematica’. A stream slice of the magnetic field can be seen in figure 5. Since an analytical

solution was obtained, it was easy to also obtain analytical solutions for the individual curl and divergence-like

terms of the magnetic field to be used in the force kinematics.

4. Force: carrier kinematics

Many studies acknowledge that there also exists a gradient in the xand y directions since ¥ - B = 0[11-16].
Although
OB, 0B,

~ 2 14
0z oy (14

inside the Stern—Gerlach, since 1, averages to zero this force term will also average to zero [17] (the magnitudes
of the divergence can be seen in figure 6). However, few analyze and fail to mention the full force which includes
individual curling-like terms on the same order of magnitude as the divergence terms [18]:

F= V(- B),
=(fi- VMB+(B- Vi
+ A x(Vx B+ Bx(Vx p),
=(fi- V)B
0 0 0 1=
=|py— + p,— + p,—|B. 15
(uxax uyay uzaz) (15)

Due to the uncertainty principle, all knowledge of /i in either the £ or y direction is unknown and random.
Over time the averaged value of the force due to the quantum spin in the y, and p,, directions will be zero:

The dimension definitions used in the Stern—Gerlach device can be seen in the supplementary information section III.
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Figure 6. The divergence of the magnetic field of the Stern—Gerlach device along the y axis atx = 0 and z = 0. The values from 0 B, /
d xare not included as it was relatively zero since V - B = 0. The inset is the blown up shot of the divergence around y = 0.

. E) 0 AR
F=|p,— — + pu,—|B, (16)
(,u X My@y uz@z]

to give a complete translational moment force of

- 9 -
F=u —B,
”Zaz
8Bxf\ aB}’A 832;\
=u, R4+p,—29 + p,—=32, 17
iz % M azy 7 % (17)

where the divergence-like term corresponds to a traditional lateral force, 42, whereas one of the curling-like
terms leads to a drifting force, £ (since the trajectory measurment is confined to the y-z plane, forces in the X
direction can be neglected).

Itis important to discuss the divergence of the magnetic field in figure 6. In looking closer at the inset, the
divergence force goes from positive to negative. In the negative region, a spin that is pointing up will now feel a
force that is negative. This is a mathematical treatment irrelevant of the semi-classical torque model that is being
presented. As this is an attribute of the magnetic field of the Stern—Gerlach device, even the traditional wave
quantum mechanics would arrive at the same conclusion. Since there is a magnetic threshold magnitude, under
which a spin magnetic moment will not collapse into a state due to time restraints, this is modeled by reducing
the force in the negative region:

9B: _, 9Bz ooy, (18)
0z Oz

where 0, is approximately the width of the positive divergence.

5. Quantum spin opposing magnetic flux

This research project was interested in describing as many variables as possible to describe the proposed
quantum spin model. As a result, it is often stated as a universal law [19-21] that nature anhors a change in flux
and therefore attempts to counter the change in flux. Since every particle containing a quantum spin has a finite
size, that particle will experience a change in flux while exposed to a changing magnetic field.

A search through literature failed to unveil any type of research or prediction into the dynamics that must
exist when a quantum spin is opposing the magnetic flux through it’s finite size.

Knowing the change in magnetic flux due to the Stern—Gerlach device where .., is the time to get from
initially outside, i, to the final max field, f,

ddss  ABsg — Bsg) | A(Bsg) (19)

dt tenter tenter

and the change in magnetic flux from the quantum spin,

dPqs _ A(Bos, — Bas)  ABas)

(20)
dt tenter tenter

adecision can be made whether to include dynamics from the quantum spin opposing/correcting the magnetic
flux from the Stern—Gerlach device:
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) 21
dt = dt 1)

or

?

Bsc, % Bas,- (22)

The magnetic field from the quantum spin can be approximated by using the residual magnetic field, B,, from a
dipole moment:
- l =
[i=—BV (23)
Ho

where V is the quantum spin moment volume. Therefore,

BSGf K % (24)

by approximately 14 orders of magnitude®.
Seeing that the mangetic field from the quantum spin can overpower the mangetic field due to the Stern—
Gerlach device, the dynamics for such an effect was logically ignored in this research.

6. Driven-damped pendulum

Although the similarities between the driven-damped pendulum and the 2D semi-classical spin model have
been recently discussed [6], it is important that it be discussed here as well.

The equation of motion for a classical driven-damped pendulum, where ' is the angle between the mass
vector and gravity, is

0' = —a’'®’ — V'sin(0") + 'E(1), (25)

where the constants a’, b’, and ¢’ are well known constants and F(¢) is a driving force [22].
One representation for the equation of motion for the 3D semi-classical spin model, in it’s simplest form is

B = _bf(ea é’ 9’ (b) - gf,(e) é’ 9’ (b)Bz(x’ Vs Z)
+8f"0, 6, 0, )Bx(x, y, 2), (26)

where gis a constant and the primes indicate a different function. Also, the force due to B, was neglected in this
comparision due to it being relatively small at y = 0.

Chaos for a pendulum, equation (25), can only occur when the driving force is stronger than the gravity
force,i.e. CF(t)/b > 1[23-26]. Similarly the semi-classical spin model can only be chaotic when B,/B, > 1.
Therefore, B, serves the same purpose as F(t) in that it is a driving force.

The simulation for a quantum spin begins outside the Stern—Gerlach device and travels in the X direction,
figure 4. As seen in figure 7, the magnetic field is dominatly in the —Z direction. Then as the spin approaches the
Stern—Gerlach device the magneitc field is dominatly in the — % direction. It is during this small area of space
where B, /B, > 1 that the spin will be exposed to only a driving force. This area is what causes chaos to occur
and the quantum statistics to be acheived, i.e. the peculiar idea that a spin which is pointing mostly up has a
probability of flipping down as seen from equation (1). Furthermore, since V - B = 0, therewill always exist a
Stern—Gerlach-like device where an entering spin will be exposed to a dominately perpendicular magnetic field.

7.Code

The numerical method used to step through the resulting equations of motion from equation (10), as fully
shown in equation (S15), that describes the moment dynamics is the forth order Runge-Kutta method. Since the
moment dynamics, which is equatted to a quantum effect, happen at small time scales, only a second order
Runge-Kutta method is used to describe the carrier kinematics, equation (17).

Furthermore, since the moment dynamics is a quantum effect, the forces on the quantum spin were zero
until the spin entered the Stern—Gerlach device. The simulation terminates at the end of the device. To show the
classical trajectory split in the y—z plane some distance d away, an elementary physics approach is taken once
outside the Stern—Gerlach device:

6 Letting the magnetic field equal ~1T and the radius r ~ 10™°m; 1 < 107220; . (It should be noted that the upper limit was taken for the

radius. Had the lower limit been taken the approximation would have been even higher.)
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z(m)

Figure 7. This view of the Stern—Gerlach device is from the side in the x-z plane aty = 0. The shaded portion indicates the tip of the
Stern—Gerlach device.

Az = v,(d/v), (27)

where a similar equation can be written for A y.

The initial velocity in the % direction is randomly assigned from a gaussian distribution centered at 550 m/s,
which is very similar to the original Stern—Gerlach experiment.

In solving for 6, thereisa sin ¢ in the denominator. Thereforeas ¢ — 0, ; 6 — 0. The time step can
always be decreased to surpress this issue (more than two orders of magnitude for this simulation), but for this
research presentation the coordinate system for the spin moment dynamics was rotated about the x axis by 7/2.
Then once the simulation was complete the results were rotated back into the original coordinate system.

Initial spin orientation values, ¢; are divided equally from 0 to 7 in increments of 7/1000 (since the
experiment starts well outside the Stern—Gerlach device, and inside the device the magnetic field is ~B,, the ¢,
angles are comparable to 5 and will be compared as such). Each ¢, value is given a random 6, value and the
simulation begins. This action is repeated 1000 times for each ¢; with a new random 6; resulting in a total of one
million simulations.

8. Carrier kinematic results

The trajectory due to the carrier kinematics are broken into two main sections: one where the usual
oversimplification of the force is used, as in equation (3), and where a full force is calculated, equation (17).

Figure 8 shows the results of the simplified force. It is interesting to note, that had the magnetic field been
stronger, then the original Stern—Gerlach experiment would have had features similar to the top left graph where
additional ’eyes’ appear. Once again that feature is due strictly from the field of the Stern—Gerlach device as seen
in figure 6. The other trajectories take into account a minimum magnetic field needed to induce a quantum spin
via equation (18).

The top right graph is the most commonly perceived trajectory from the Stern—Gerlach Device. The spins
aligned with the magnetic field, spin up, experience a positive force as seen in figure 6. Had the experiment been
rotated by 7 around the y axis and the magnetic field still pointing in the Z direction, the gradient would be
negative, —0 B / 0 z, which would result in the spin up to go in the —Z direction. This concept is still
misrepresented by many authors [27-29] that a spin aligned with the magnetic field, spin up, will always have a
lateral force towards the physical point-like structure in the Stern—Gerlach device.

The bottom trajectories in figure 8 are implementing classical torque on a classical dipole moment. The only
difference is the plot to the right has two orders of magnitude higher moment of inertia than the plot on the left,
which is the same as the quantum spin moment.

A full force calculation of the carrier kinematics is shown in figure 9. It is important to note that the drifting is
caused due to the individual curling-like terms from analyzing the full force, equation (17). Spins aligned in the

8
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Figure 8. The classical trajectory split of the quantum spin due to equation (3). The top left graph is the only trajectory that does not
include the simplification in equation (18). The top right graph is an often represented ideal trajectory from quantum spin (only
assuming forces in the Z direction). The bottom left is using a classical dipole force shown in equation (4). The bottom right further
assumes a large moment of inertia to a classical dipole.

%107

Figure 9. The complete force classical trajectory split of the quantum spin, equation (17).
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Figure 10. The original Stern—Gerlach results [7] as seen in this postcard sent by Gerlach to Bohr [30] (Courtesy Niels Bohr
Copenhagen Archive).

E—

direction of the magnetic field, spin up, will always drift towards the center, y = 0, whereas spin down particles
will always drift away from the center regardless of flipping the magnetic field.

In comparing the full force calculation results of figure 9, it looks very similar to the original results from the
Stern—Gerlach experiment [7], as seen in figure 10. In the original work, a depletion of spin up particlesaty = 0
is noticeable due to the drifting caused by the individual curling-like terms of the magnetic field.

9. Moment dynamic results

The process of the collapse of the individual quantum spin states needs to match known quantum statistics to be
suggested as a possible model. The statistics as shown in equation (1) is the basis for comparision.

The quantum mechanical statistic comparision to the model set forth in this research is obtained from the
emergent numerical steady state solution from the equations of motion (¢ and f) in section I1. The statistical
probability, or population fraction determined by # individual simulations is calculated by

n .
PGB =Y B _ Lm0, 0, (28)
P ™

where 3;,, , is the final steady state angle of a spin, with spin up being 7, and spin down being 0, is shown in
figure 11. There were many adjustable parameters, but the best results are shown.

9



10P Publishing

J. Phys. Commun. 3 (2019) 045009 JJ Heiner et al

Population Fraction 1000 x 1000

— QM Statistics
+ Semi-Classical
0.8
(o)
&
° 0.6F
>
<
©
3
o
= 04
°
£
0.2
0.0 ‘
0 /4 /2 3r/4 d

Figure 11. Comparision of the well known quantum spin statistics to the semi-classical model. Each green marker is a fractional
population of 1,000 individual runs. For example a marker at 7/4 represents 1,000 simulation results averaged. That average
represents the probability for a spin flip to occur.

The piecewise-like behaviour around 7/2 is particularly alarming since this should be a very unstable area
and thus an equal opportunity for a spin to flip either up or down.

In further analysis of the trajectories, initial slices (i.e. restricting the initial azimuthal angle to certain values)
were used to compare with the quantum spin statistics (since the probability should be irrelevant to azimuthal
angle). The discovery was that azimuthal angles close to 0 or 7 had a really high value of flipping; whereas
azimuthal angles around /2 or 37/4 had relatively zero chance of flipping.

As stated in the original suggestion to model quantum mechanics using a nonlinear system that exhibits
chaos, this system with just one perturbation like moment when B, /B, > 1is not enough to produce the chaos
required to mimic quantum mechanical spin state probabilities.

10. Discussion

Further insights were obtained into the carrier kinematics and therefore the trajectory results. The cause of the
translational force is due to the individual curling-like terms of the magnetic field, which is asymetric about the
x-zplaneaty = 0.

Although many attempts into changing the torque function and dampening parameter were done, the best
results comparing the semi-classical quantum spin state results to known quantum statistics falls short of
expectation (as seen in figure 11).

In this research the model sought chaos due to a perturbation perpendicular to the main magnetic field
direction inside the Stern—Gerlach device. Since there does not exist enough perturbation to cause the needed
chaos, a different proposal is needed, perhaps internally in the spin model, to exhibit the highly chaotic behavior
predicted in literature [4].

In spite of a full representation of the magnetic field given, the dynamics on a quantum spin due to opposing
magnetic flux was not taken into account due to it’s magnitude. As stated earlier, research has yet to measure or
predict the dynamics that must exist when a quantum spin is opposing the magnetic flux through it’s finite size.
We encourage those with capabilities to show dynamics of a quantum spin due to opposing a magnetic flux to
verify the universal flux law at a quantum level.

Furthermore, in looking towards the future at other requirements for the quantum spin, replication of Rabi
oscillations is necessary. To remind the reader, Rabi oscillation has a constant magnetic field and a perpendicular
oscillating magnetic field:

B = By2 + Bi(coswt & — sinwt 7). (29)

A full understanding of Rabi cycles shows that an oscilating field does not have to be larger than the
dominant fieldi.e. B;/By# 1, which does not bode well for the semi-classical model looking for chaos due to a
perpendicular perturbation. This further confirms the need to look elsewhere for chaos behaviour from the
semi-classical quantum spin.

10



10P Publishing

J. Phys. Commun. 3 (2019) 045009 JJ Heiner et al

Acknowledgments

This work was supported by the National Science Foundation and the Royal Society of New Zealand under the
East Asia and Pacific Summer Institutes Award Number: 1713790, the facilities at the Centre for Theoretical
Physics and Chemistry at the Massey University Albany Campus along with the local HPC cluster, the University
of Wyoming Physics and Astronomy department, the Mount Moran HPC cluster at the Advanced Research
Computing Center [31], and the Wyoming NASA Space Grant Consortium, NASA Grant #NNX15AI08H.

ORCIDiDs

JJHeiner @ https://orcid.org/0000-0001-9371-6195

References

[1] Feynman R P, Leighton R B and Sand M 1983 Feynman Lectures on Physics 3rd edn (Reading, MA: Addison-Wesley)
[2] Le Bellac M 2006 Quantum Physics (Cambridge, UK: Cambridge University Press)
[3] Platt DE 1992 Am. J. Phys. 60 306—8
[4] Thayer D Rand Jafari F 2015 Int. J. Ad. Res. Phys. Sc. 2 18-26
[5] Thayer DR 2015 Int. J. Ad. Res. Phys. Sc.21-18
[6] Heiner]Jand Thayer D R2017 Int. J. Ad. Res. Phys. Sc. 44-11
[7] Gerlach W and Stern O 1922 Zeitschrift fiir Physik 9 34952
[8] Herzenberg C L2009 The quantum—classical boundary and the moments of inertia of physical objects arxiv:0908.1760
[9] KikuchiT and Tatara G 2015 Phys. Rev. B 92184410
[10] Gersem H D, Masschaele B, Roggen T, Janssens E and Tung N T Int. J. Numer. Model. 27 472—84
[11] Scully M O, Lamb W E Jrand Barut A O 1987 Found. Phys. 17 575
[12] HsuBC, Berrondo M and Huele J V 2011 Phys. Rev. A83 012109
[13] Cruz-Barrios Sand Gomez-Camacho J 2000 Phys. Rev. A63 012101
[14] Lieberman J 1998 The Stern—Gerlach Experiment MIT
[15] Stenson ] R 2005 Representations for Understanding the Stern—Gerlach Effect BYU
[16] AharonovY, Albert D Zand Vaidman L 1988 Phys. Rev. Lett. 60
[17] Alstrem P, Hjorth P and Mattuck R 1982 Am. J. Phys. 50 697—-698
[18] Singh Sand Sharma N K 1984 Am. J. Phys. 52 274-275
[19] Griffiths D] 2017 Introduction to Electrodynamics 4th edn (Cambridge: Cambridge University Press)
[20] Protheroe R] 2013 Essential Electrodynamics 1st edn (Copenhagen: Ventus Publishing ApS)
[21] Pallavicini R 1988 Stellar magnetic fields: measurements and diagnostics Activity in Cool Star Envelopes (Astrophys. Space Sci. Libr. vol
143) ed o Havnes et al (Dordrecht: Springer)
[22] Thornton S T and Marion J B 2004 Classical Dynamics of Particles and Systems 5th edn (Belmont, CA: Brooks/Cole)
[23] Markus L1971 Lectures in Differentiable Dynamics (3) (Providence, R.I.: American Mathematical Society)
[24] Holmes P 1977 Appl. Math. Modeling 1 362—6
[25] D’Humieres D, Beasley M R, Huberman B A and Libchaber A 1982 Phys. Rev. A 26 3483-96
[26] Kerr W Cetal 1985 Zeitschrift fur Physik B Condensed Matter 59 103—10
[27] LiboffR L 2002 Introductory Quantum Mechanics 4th edn (Reading, MA: Addison-Wesley)
[28] Shankar R 2008 Principles of Quantum Mechanics 2nd edn (New York, NY: Plenum Press)
[29] Wennerstrom H and Westlund P 2017 Entropy 19 186
[30] Gerlach’s postcard to Niels Bohr, Feb 8, 1922
[31] Advanced Research Computing Center. 2012. Mount Moran: IBM System X cluster. Laramie, Wy: University of Wyoming http://n2t.
net/ark:/85786,/m4159¢

11


https://orcid.org/0000-0001-9371-6195
https://orcid.org/0000-0001-9371-6195
https://orcid.org/0000-0001-9371-6195
https://orcid.org/0000-0001-9371-6195
https://doi.org/10.1119/1.17136
https://doi.org/10.1119/1.17136
https://doi.org/10.1119/1.17136
https://doi.org/10.1111/clr.17_12677
https://doi.org/10.1111/clr.17_12677
https://doi.org/10.1111/clr.17_12677
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
http://arxiv.org/abs/0908.1760
https://doi.org/10.1103/PhysRevB.92.184410
https://doi.org/10.1002/jnm.1936
https://doi.org/10.1002/jnm.1936
https://doi.org/10.1002/jnm.1936
https://doi.org/10.1007/BF01882788
https://doi.org/10.1103/PhysRevA.83.012109
https://doi.org/10.1103/PhysRevA.63.012101
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1119/1.12732
https://doi.org/10.1119/1.12732
https://doi.org/10.1119/1.12732
https://doi.org/10.1119/1.13710
https://doi.org/10.1119/1.13710
https://doi.org/10.1119/1.13710
https://doi.org/10.1016/0307-904X(77)90044-0
https://doi.org/10.1016/0307-904X(77)90044-0
https://doi.org/10.1016/0307-904X(77)90044-0
https://doi.org/10.1103/PhysRevA.26.3483
https://doi.org/10.1103/PhysRevA.26.3483
https://doi.org/10.1103/PhysRevA.26.3483
https://doi.org/10.1007/BF01325387
https://doi.org/10.1007/BF01325387
https://doi.org/10.1007/BF01325387
https://doi.org/10.3390/e19050186
http://n2t.net/ark:/85786/m4159c
http://n2t.net/ark:/85786/m4159c

	1. Introduction
	2. Semi-classical torque: moment dynamics
	3.3D magnetic field of the SGD
	4. Force: carrier kinematics
	5. Quantum spin opposing magnetic flux
	6. Driven-damped pendulum
	7. Code
	8. Carrier kinematic results
	9. Moment dynamic results
	10. Discussion
	Acknowledgments
	References



