

SCHOOL OF ENERGY RESOURCES

At the Forefront of Energy Innovation, Discovery, and Collaboration

Sealing Capacity Investigations of the Multiple Confining Layers at the RSU Geological CO₂ Storage Site

Z. Jiao, F. McLaughlin, S. Quillinan, Y. Ganshin, R. Bentley

Carbon Management Institute School of Energy Resources, University of Wyoming

Outline

- **1.** The Rock Springs Uplift (RSU) geological CO₂ storage site characterization
- 2. The CO₂ storage capacity and CO₂ column high assessment of the RSU storage site
- **3. Petrophysical and petrographic characteristics of confining layers at the RSU site**
- 4. Determination of the sealing capacities of the confining layers in a CO₂-brine-rock system
- 5. Remarks

Priority Carbon Storage Sites in SW Wyoming

WSGS, UW, WY, and DOE-funded research identified two high-potential CCUS sites in southwest Wyoming: *Rock Springs Uplift* and *Moxa Arch*

The Rock Springs Uplift: an Outstanding Geological CO₂ Storage Site in SW Wyoming

- Multiple thick saline aquifer sequences overlain by thick sealing lithologies (8000 feet of vertical separation between CO₂ storage reservoirs and fresh water aquifers)
- Doubly-plunging anticline characterized by more than 10,000 feet of closed structural relief
- Huge area (50 x 35 miles)
- Required reservoir conditions, including, but not limited to fluid chemistry, porosity (pore space), fluidflow characteristics, tomporature and

Targeted Geological CO₂ Storage Saline Formations

Work Flow for Geological CO₂ Storage Site Characterization

Comparison of CO₂ Storage Capacity Utilizing 3 Different Techniques – 5 mi x 5 mi storage domain

0			Static Volumetric Approach ¹	Dynamic Numerical Simulation ² Homogenous Reservoir Model			Dynamic Numerical Simulation ² Heterogeneous Reservoir Model		
Formation	Area, km ²	Thickness, m	Storage Capacity, Mt	Injection Rate, Mt/y	Storage Capacity, Mt	Injection Wells	Injection Rate, Mt/y	Storage Capacity, Mt	Injection Wells
Weber	64	210	503	1.0	350	7	0.3	33	7
Madison	64	120	290	1.0	305	6	1.0	270	6

1 - USGS Open File Report 2009-1035

2 - FEHM, Los Alomos National Laboratory

FEHM Simulation Results for the Madison Limestone, RSU Homogeneous Porosity/Permeability Rock/Fluid Volume Porosity 10%, Permeability 10 md, 50 Mt/50 years

Rock Springs Uplift Hydrostratigraphic System

Stratigraphic Column and Select Petrophysical Logs for RSU #1

Chugwater Group (Primary Seal for the Weber Sandstone

Microphotographs of Chugwater Group siltstones at depths of A: 10,627.8', B: 10,662.8', C: 10,682.1' and D: 10,601.9' clockwise from top left. C and D represent typical, laminated siltstones of the Chugwater Group. Petrographic porosity is negligible due to cementation. A: shows mud intraclasts, anhydrite nodules, and a contact at a reduction zone (bottom part of slide, light-colored). Calcite increases in the reduction zones as it replaces anhydrite. B: shows increased illite compositions along a minor mineralization band.

Modified stratigraphic column of the Rock Springs Uplifi identifying contining loyers and CO₂ target reservoirs. Modified from Love, Christiansen, and VerPloeg, 1993.

Porosity (Hg) = 3% Permeability = 0.003 md

Chugwater Group Siltstones

Porosity (Hg) = 2% Permeability = 0.003 md

Amsden Formation (Primary Seal for the Madison limestone)

Microphotographs of the Amsden Formation at depths of A: 12,203', B: 12,218.7', C: 12,199', and D: 12,209' clockwise from top left. Note the heterogeneity in lithologies from the fossiliferous limestone in A to the fine-grained siltstone in C to the bimodal sandstone in D, All slides have some evidence of secondary mineralization and deep burial alteration, figures succinctly displays a contact between neomorphic calcite (right portion of slide, reddish) and the primary micritic limestone with chert cements. A thin, dark dissolution band of insoluble minerals separates the facies.

The Most Up-Portion of the Madison Limestone (Primary Seal)

Typical fossiliferous micrites in the Madison limestone facies and depths of A: 12,249.8' and B: 12,233'. This facies is typified by mainly primary features, lack of developed pore space, and micritic cements.

Moulited straligraphic column of the Rock Springs Uplif dentifying contining layers and CO₂ target reservoirs. Modified from Love, Christianson, and VerPlocg, 1893.

Porosity (Hg) = 1.9% Permeability = 0.001 md

Modified strangesphic column of the Rock Springs Upin Identifying contining layers and CO₂ target reservoirs. Modified from Love, Christiansen, and Ver<mark>Pioeq, 199</mark>3.

Entry Pressures and Column High

The subsurface hydrocarbon-water or CO_2 -water entry pressure values can be derived from the mercury entry pressure values by using following equation (Purcell, 1949, Schowalter, 1979):

 $Pc_res = Pc_ma * \frac{\gamma res * \cos \theta res}{\gamma ma * \cos \theta ma}$

The height of a hydrocarbon or supercritical CO2 column that a confining layer can hold, can be determined by using following equation (Smith, 1966, Schowalter, 1979):

$$H = \frac{Pds - Pdr}{(\rho w - \rho co2) * 0.433}$$

Parameters Used for the Displacement Pressure Calculations

Parameters used for Displacement Pressure Calculation	n					
Laboratry IFT						
Air/mercury IFT =	485		Height above free v	water		
Gas/water IFT =	72					
Gas/Oil IFT =	24				g/cm3	psi/ft
Oil/Water IFT =	48		density brine =		1.080	0.468
			density of oil =		0.840	0.364
Reservoir IFT			density of gas =		0.200	0.087
Gas/water IFT =	50					
Oil/Water IFT =	30					
CO2/Water IFT =	30		gas/water coef =		2.62	
			oil/water coef. =		9.62	
		Cosine				
Laboratory Contact Angle		Contact Angle				
Air/Water	0	1.000				
Oll-water	30	0.866				
Air-Mercury against rock	140	0.766				
Air-Oil	0	1.000				
Reconvoir Contact Angle						
Water/Gas contact angle	0	1 000				
Water/Oil contact angle	30	1.000				
CO2/Water contact angle	50	0.800				
CO2/ Water contact angle	00	0.500				
Laboratory IFT*Cosine Contact Angle						
Air/Water		72	Intertek,	2014, Ch	un and Wilkins	on
Oil-Water		42	(1995), Y	Zang et al.	. (2005). Dickso	on et al.
Air-Oil		24	(2006) (Chalbaud	et al (2006-200	19)
Air/Mercury		372	(2000); C	at al (200)	(2000, 200)	
			Cinquet e	ci al. (200	\mathcal{O}	
Reservoir IFT*Cosine Contact Angle			Santamar		J, WOHENWEDE	recal.
Air/Water		50	(2010), L	Janiel et a	al., (2009), Buu	rsink et
Oil-Water		26	al. (2011)), silva et	al. (2012), and	Edlmann
CO2-water		15	et al. (20	13).		

Entry Pressures Derived from High-Pressure Mercury Injection Test Results (Lab Condition)

_	Interral		Sample	Grain	Porosity	Entry	Pressure (lab)	
Sample	Depth	Formation	Туре	Density	Helium	A-Hg	G-W	O-W
ID	ft	ID		g/cc	%	psi	psia	psia
				-				
176	11725.9	WebeR 1	CoLe Plug	2.70	0.40	576.5	111.727	64.506
187	12178.1	Amsden 1	Core Plug	2.91	5.89	146.6	28.402	16.398
200	12227.3	Amsden 2	Core Plug	2.85	2.60	80.5	15.605	9.010
206	12301.0	Madison	Core Plug	2.74	1.90	3000.0	581.377	335.658
214	12333.9	Madison 1	Core Plug	2.83		3630.1	703.488	406.159
B1	6300-6330	Baxter 1	Cuttings	2.59		390.4	75.661	43.683
B2	7680-7710	Baxter 2	Cuttings	2.57		217.3	42.102	24.307
B3	7590-7620	Baxter 3	Cuttings	2.49		430.6	83.452	48.181
M1	8130-8160	Mowry 1	Cuttings	2.51		701.0	135.854	78.435
M1	8220-8250	Mowry 2	Cuttings	2.50		1032.4	200.075	115.513
GS1	9190-9200	Gypsum Springs 1	Cuttings	2.59		850.3	164.790	95.142
P1	11040-11050	Phosphoria 1	Cuttings	2.71		354.5	68.696	39.661
P2	11140-11150	Phosphoria 2	Cuttings	2.65		389.7	75.530	43.607
1	10601.9	Red Peak	Core Plug		1.60	939.7	182.107	105.139
4	10605.9	Red Peak	Core Plug		1.60	1140.0	220.923	127.550
16	10656.4	Red Peak	Core Plug		1.00	2719.0	526.922	304.218
18	10682.1	Red Peak	Core Plug		1.20	1521.0	294.758	170.179
26	11209.9	Weber	Core Plug		8.10	7.8	1.512	0.873
27	11227.1	Weber	Core Plug		7.60	35.0	6.783	3.916
45	11766.8	Weber	Core Plug		1.30	1034.0	200.381	115.690
53	12197.4	Amsden	Core Plug		5.80	1381.0	267.627	154.515
59	12250.0	Madison	Core Plug		1.30	1254.0	243.016	140.305
72	12348.9	Madison	Core Plug		18.10	22.0	4.263	2.461
79	12354.7	Madison	Core Plug		23.50	35.0	6.783	3.916
99	12399.0	Madison	Core Plug		11.60	37.0	7.170	4.140
106	12415.1	Madison	Core Plug		18.50	9.1	1.764	1.018
110	12480.5	Madison	Core Plug		11.80	5.1	0.984	0.568

Entry Pressures Derived from High-Pressure Mercury Injection Test Results (Reservoir Condition)

_	Interral		Sample	Grain	Porosity	Entry Pressure (res)		
Sample	Depth	Formation	Туре	Density	Helium	G-W O-W O_W(calc) scCO2-W		
ID	ft	ID		g/cc	%			
176	11725.9	Weber 1	CoLe Plug	2.70	0.40	77.588 40.316 40.32 19.3	97	
187	12178.1	Amsden 1	Core Plug	2.91	5.89	19.724 10.249 10.25 4.93	31	
200	12227.3	Amsden 2	Core Plug	2.85	2.60	10.837 5.631 5.63 2.70	09	
206	12301.0	Madison	Core Plug	2.74	1.90	403.734 209.786 209.79 100.93	34	
214	12333.9	Madison 1	Core Plug	2.83		488.533 253.849 253.85 122.13	33	
B1	6300-6330	Baxter 1	Cuttings	2.59		52.543 27.302 27.30 13.13	36	
B2	7680-7710	Baxter 2	Cuttings	2.57		29.237 15.192 15.19 7.30	09	
B3	7590-7620	Baxter 3	Cuttings	2.49		57.953 30.113 30.11 14.44	88	
M1	8130-8160	Mowry 1	Cuttings	2.51		94.343 49.022 49.02 23.5	86	
M1	8220-8250	Mowry 2	Cuttings	2.50		138.941 72.196 72.20 34.73	35	
GS1	9190-9200	Gypsum Springs 1	Cuttings	2.59		114.438 59.464 59.46 28.60	09	
P1	11040-11050	Phosphoria 1	Cuttings	2.71		47.705 24.788 24.79 11.92	26	
P2	11140-11150	Phosphoria 2	Cuttings	2.65		52.451 27.254 27.25 13.12	13	
1	10601.9	Red Peak	Core Plug		1.60	126.463 65.712 65.71 31.6	16	
4	10605.9	Red Peak	Core Plug		1.60	153.419 79.719 79.72 38.3	55	
16	10656.4	Red Peak	Core Plug		1.00	365.918 190.136 190.14 91.4	79	
18	10682.1	Red Peak	Core Plug		1.20	204.693 106.362 106.36 51.1	73	
26	11209.9	Weber	Core Plug		8.10	1.050 0.545 0.55 0.20	62	
27	11227.1	Weber	Core Plug		7.60	4.710 2.448 2.45 1.1	78	
45	11766.8	Weber	Core Plug		1.30	139.154 72.306 72.31 34.74	88	
53	12197.4	Amsden	Core Plug		5.80	185.852 96.572 96.57 46.4	63	
59	12250.0	Madison	Core Plug		1.30	168.761 87.691 87.69 42.19	90	
72	12348.9	Madison	Core Plug		18.10	2.961 1.538 1.54 0.74	40	
79	12354.7	Madison	Core Plug		23.50	4.710 2.448 2.45 1.1	78	
99	12399.0	Madison	Core Plug		11.60	4.979 2.587 2.59 1.24	45	
106	12415.1	Madison	Core Plug		18.50	1.225 0.636 0.64 0.30	06	
110	12480.5	Madison	Core Plug		11.80	0.684 0.355 0.36 0.1	71	

Entry Pressures Derived from High-Pressure Mercury Injection Test Results (Reservoir Condition)

Column Height Derived from High-Pressure Mercury Injection Test Results (Reservoir Condition)

	Interral		Sample	Corumn Height (res)		
Sample	Depth	Formatio	Туре	G-W O-W		CO2-W
ID	ft	ID		ft	ft	ft
Containment Layer						
214.00	12333.90	Madison 1	Core Plug	1335.15	2072.96	994.26
206.00	12301.00	Madison	Core Plug	1209.58	1712.17	820.71
16.00	10656.40	Red Peak	Core Plug	1001.93	1551.25	743.28
18.00	10682.10	Red Peak	Core Plug	558.66	865.16	413.19
53.00	12197.40	Amsden	Core Plug	502.97	784.92	374.55
59.00	12250.00	Madison	Core Plug	455.98	712.19	339.56
4.00	10605.90	Red Peak	Core Plug	417.69	646.97	308.21
45.00	11766.80	Weber	Core Plug	378.47	500.98	279.01
M1	8220-8250	Mowry 2	Cuttings	377.89	585.36	278.57
1.00	10601.90	Red Peak	Core Plug	343.58	532.26	253.02
GS1	9190-9200	Gypsum S	Cuttings	310.52	481.09	228.40
M1	8130-8160	Mowry 1	Cuttings	255.27	395.58	187.26
176.00	11725.90	WebeR 1	CoLe Plug	209.20	324.28	152.96
B3	7590-7620	Baxter 3	Cuttings	155.22	240.72	112.76
B1	6300-6330	Baxter 1	Cuttings	140.34	217.70	101.68
P2	11140-111	Phosphori	Cuttings	140.09	217.31	101.49
P1	11040-110	Phosphori	Cuttings	127.04	197.11	91.78
B2	7680-7710	Baxter 2	Cuttings	76.27	118.52	53.96

Column Height Derived from High-Pressure Mercury Injection Test Results (Reservoir Condition)

Column Height, ft

Displacement Pressures of Selected Sealing Units Relative to Lithologies

The dashed line indicates displacement pressure needed to retain a 300' column of injected gas.

From J.F. McLaughlin, et al., 2014

Remarks

- For the targeted Paleozoic storage reservoirs, the confining layers are shale/siltstones of the Chugwater Group (Red Peak Fm.) and the Amsden Formation, and the most upper portion of the Madison Limestone.
- The CO₂ column heights that the various confining layers at the RSU can hold range from 50 ft to 990 ft.
- CO₂ column heights (held by same confining layer) are only about half of the height of an oil column, and three-quarters of the gas column.
- It is potentially disastrous risk to assume that a confining layer which has successfully trapped hydrocarbons over million years, could also contain similar volumes of injected CO₂.
- CO₂ injection simulations for the Madison Limestone and Weber Sandstone reservoirs indicate that CO₂ column heights could rise to 500 ft in the Madison Limestone and 400 ft in the Weber Sandstone. This study shows that confining layers at the RSU storage site have adequate sealing capacity to safely hold the CO₂ columns after injected 50 Mt of supercritical CO₂ in the Madison Limestone and the Weber Sandstone.

Acknowledgement

We would like to acknowledge the support of DOE (DE-FE0009202) in funding and guiding this project

