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 Porosity from sonic: a linear approximation to the Raiga-Clemenceau equation. 
 
 

By Yuri Ganshin and Fred McLaughlin 
       University of Wyoming 
       yganshin@uwyo.edu 
 

Abstract 
 
 
 Porosity represents the rock’s capacity to trap fluid. It is the main quality indicator 

of subsurface reservoirs used for hydrocarbon production, and also, for CO2 storage. 

The knowledge of porosity distribution within a reservoir is a required input to establish 

the reservoir static and dynamic models. However, the quantitative evaluation of 

porosity is challenging especially during reservoir characterization. Many factors such 

as mineralogical composition, type and amount of cement, grain shape and packing 

pattern, and rock compaction would affect its value. A reliable quantitative evaluation of 

porosity requires integrating rock physics, well logs and core data. At present, a large 

number of rigorous, analytical and semi-empirical models exists that provide relations 

among velocity, porosity, and pore-fluid compressibility. Reviews of such models are 

given, for example by Mavko et al. (2009) and Saxena et al. (2018). However, many 

earth science practitioners are still in need for a simple, yet reliable empirical 

relationship capable to compete with rigorous physics-oriented models.  

Equation   

𝜙 = 	𝐶	 ×	(1 − 𝑡!/𝑡)  

is one the most popular among petrophysicists, which is used to estimate porosity 𝜙 

from sonic logs or from seismic velocity measurements. In the equation, 𝑡 is the 

observed interval transit time (inverse velocity), 𝑡! is the matrix interval transit time, and 

parameter 𝐶 is an arbitrary constant. A number of authors name this equation as the 

Raymer-Hunt-Gardner (RHG) equation with the value of parameter 𝐶 = 5/8 (e.g., 

Asquith and Krygowski, 2004). The online AAPG Wiki open access resource 

(https://wiki.aapg.org/Standard_interpretation) indicates that the value of 𝐶 can vary 

between 0.625 and 0.70 with the most widely accepted value of 0.67. Aminzadeh and 

Dasgupta (2013) provide the range of parameter 𝐶 values from 0.4 to 0.8. The aim of 
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this publication is to examine a connection of equation 𝜙 = 	𝐶	 ×	(1 − 𝑡!/𝑡) with the one 

originally published by Raymer et al. (1980), and to bring an understanding of the 

parameter 𝐶 and the range of its possible values. 

 
 
 
 The sonic log is type of a porosity log that measures interval transit time (∆𝑡, DT, 

or simply 𝑡) of the compressional waves traveling through the formation along the axis 

of the borehole. The interval transit time (designated 𝑡 in this study) is dependent upon 

lithology and rock porosity (𝜙). A formation’s matrix interval transit time (𝑡!) must be 

known to derive sonic porosity either by chart or by a variety of proposed equations 

(Saxena et al., 2018).  

Equation of the form 

 𝜙 = 	𝐶	 ×	/1 − "!
"
0       (1) 

is among most frequently used models of predicting porosity from sonic measurements. 

Noting that compressional velocity of wave propagation 𝑉	 = 	1000000 𝑡⁄ , this equation 

can be likewise written as 

    𝜙 = 	𝐶	 ×	/1 − #
#!
0      (2) 

where 𝑉! is velocity of the compressional waves in the solid-phase material (matrix). 

 
The Raymer-Hunt-Gardner (RHG) algorithm (Raymer et al., 1980) was designed 

to predict P-wave velocity (𝑉) given the velocity of the compressional waves in the solid 

(𝑉!) and in the fluid (𝑉$) and the porosity of the rock. The equation has different 

formulations for different porosity ranges; for simplicity we only focus on the porosity 

interval [0, 0.37], where the equation for 	𝑉 can be written as 

    𝑉 = 𝑓(𝜙) = (1 − 𝜙)%𝑉! + 	𝜙𝑉$    (3) 

The following should be considered when using the RHG relation (Mavko et al., 2009): 

• the method is empirical; 

• the rock is isotropic with homogeneous mineralogy; 

• all solids making up the rock matrix have the same velocity, 𝑉!; 

• the rock is fluid-saturated; 
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• the relation should work best at high enough effective pressure, usually of the 

order of 30 MPa 

• the relation works well for consolidated low-to-medium and high-porosity (<37%) 

cemented sandstones 

• the relation works best with primary porosity. Secondary or vuggy porosity tends 

to underpredict the velocity and the porosity. 

 
From mathematical point of view, the equation 3 presents a nonlinear transformation of 

porosity values into the rock velocity. Let us approximate velocity function 3 with a 

simpler, linear function; that is, we would like to find a function 𝑔(𝜙), for which 

• relevant calculations can be performed as on function  𝑓(𝜙); 

• the function 𝑔 is close to 𝑓, in the sense that the outcome of the calculation 

performed on 𝑔 gives useful information about velocity described by 𝑓. 

 

It is Taylor’s theorem that allows one to approximate a given function via 

polynomials of the form 

   𝑃&(𝑥) = 	∑
$(#)(()
*!

&
*,- (𝑥 − 𝑎)*     (4) 

where 𝑃& is the Taylor polynomial of degree 𝑁 associated to 𝑓 at the point 𝑎. (Ole 

Christensen and Khadija Christensen, 2005). Observe that for 𝑁 = 1, equation 4 turns 

to 

    𝑃.(𝑥) = 𝑓(𝑎) + 𝑓/(𝑎)(𝑥 − 𝑎)    (5) 

which is the equation for the tangent line of 𝑓 at the point 𝑎. 

Correspondingly, the Raymer-Hunt-Gardner quadratic equation 3 can be approximated 

with a first-order polynomial as: 

   𝑉 = 𝑓(𝜙) ≈ 𝑃.(𝜙) = 𝑓(𝑎) + 𝑓/(𝑎)(𝜙 − 𝑎)	   (6) 

That is, at any arbitrary porosity value 𝑎, we use our knowledge of what 𝑓(𝑎) and 𝑓/(𝑎) 

looks like in order to approximate 𝑓(𝜙). The important point is that this Taylor 

polynomial approximates 𝑓(𝜙) well only for a small range of porosity values 𝜙 near 𝑎. 

Let us now estimate 𝑓(𝑎) and 𝑓/(𝑎) using the function form of the RHG equation (3). 

𝑓(𝑎) = (1 − 𝑎)%𝑉! + 𝑎𝑉$ = 𝑉! − 2𝑎𝑉! + 𝑎%𝑉! + 𝑎𝑉$   (7) 
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𝑓/(𝑎) = 𝑉$ − 2𝑉!(1 − 𝑎) = 𝑉$ + 2𝑎𝑉! − 2𝑉!    (8) 

After inserting the last two equations into the polynomial equation 6, and simplifying the 

resultant expression, we have: 

  𝑉 = 𝑓(𝜙) ≈ 𝑃.(𝜙) = (1 − 𝑎%)𝑉! − (2𝑉!(1 − 𝑎) − 𝑉$)𝜙   (9) 

Expression 9 represents the slope-intercept form of a linear equation 𝑓(𝜙) = 𝑏 +𝑚𝜙, 

where slope  

𝑚 = 2𝑉!(1 − 𝑎) − 𝑉$      (10) 

and intercept 

   𝑏 = (1 − 𝑎%)𝑉!        (11) 

 

To compute the parameter 𝐶, let us solve equation 2 for variable 𝑉 and present the 

result in the slope-intercept form, just like we did it in expression 9.  

 

   𝑉 = 𝑉! −	#!
0
𝜙       (12) 

Equation 12 will become identical to equation 9 in case when intercept and slope values 

in both equations become equal to each other, that is intercept 𝑏 from equation 11 

should be equal to 𝑉!, and the slope value should be equal to both expressions as 

follows: 

   𝑚 = 2𝑉!(1 − 𝑎) − 𝑉$ =
#!
0

      (13) 

From the above equation, the parameter 𝐶 can be expressed as 

   𝐶 = 	 #!
%#!(.1()1#%

       (14) 

Note dependence of 𝐶 on three variables, P-wave velocity in the solid phase 𝑉!, velocity 

in the fluid phase 𝑉$, and porosity value 𝑎 where the slope 𝑚 was estimated. The matrix 

velocity variations in a pretty broad range from 𝑉! = 18,000 ft/s to 𝑉! = 19,500 ft/s 

(characteristic to sandstone matrix) do not cause any significant effect on parameter 𝐶, 

while about the same change in the fluid phase velocities cause much bigger magnitude 

of parameter 𝐶 fluctuations (Figure 1). The sensitivity analysis of equation 14 indicate 

increase of parameter 𝐶 value with decreasing value of 𝑉! and increasing value of 𝑉$, 

so that the matrix- and fluid-phase velocities produce the opposite effect on the 
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parameter 𝐶. However, the choice of porosity value 𝑎 has the biggest effect on 

parameter 𝐶 among all other variables (Figure 1).  

 

    

  
Figure 1. Sensitivity of parameter 𝐶 to the matrix velocity variations (left panel, fluid velocity is fixed 
at 5,300 ft/s) and to the fluid velocity variations (right panel with fixed matrix velocity at 18,750 ft/s). 

 
 

The results of sensitivity analysis of parameter 𝐶 indicate that a special care 

should be taken when selecting a point for a tangent line approximation of the velocity-

porosity transform 3. The point with porosity value 𝑎 should be within the range of the 

measured porosity values. That is, when the measured porosities are distributed over a 

considerable extent (e.g., good quality reservoirs) the parameter 𝐶 values should be 

larger those selected for low-porosity measurements (e.g., tight sands). The proper 

choice of parameter 𝐶 is the price one should pay for using linear approximation 2 

instead of more accurate Raymer-Hunt-Gardner transform 3. Recall to the Taylor’s 

theorem, a first-order polynomial approximation will produce good fitting results only for 

a small range of porosity values 𝜙 near 𝑎. We illustrated this fact in Table 1 by 

computing the goodness-of-fit for different range of the “measured” or, better to say, 
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fitted porosities.  The goodness-of-fit columns of table 1 summarize the discrepancy 

between porosity values calculated with the RHG equation 3 and corresponding values 

derived from its linear approximations (equation 2) with parameter 𝐶 calculated from 

equation 14.  

 
Porosity 

𝑎, v/v 
Intercept  
Error, % 

    C Goodness- 

of-Fit,  𝒓𝟐 
𝜙 = 0 − 0.15 

Goodness- 

of-Fit,  𝒓𝟐 

𝜙 = 0 − 0.25 

Goodness- 

of-Fit,  𝒓𝟐 

𝜙 = 0 − 0.35 

0.000 0.00  0.5823 0.9862 0.9479 0.8740 
0.025 0.06  0.5998 0.9958 0.9716 0.9162 
0.050 0.25  0.6183 0.9992 0.9875 0.9490 
0.075 0.56  0.6380 0.9964 0.9956 0.9726 
0.100 1.00  0.6591 0.9873 0.9960 0.9871 
0.125 1.56  0.6815 0.9722 0.9887 0.9922 
0.150 2.25  0.7056 0.9507 0.9736 0.9880 
0.175 3.06  0.7314 0.9231 0.9507 0.9747 
0.200 4.00  0.7591 0.8894 0.9202 0.9521 

 

Table 1. The Goodness-of-Fit to the quadratic Raymer-Hunt-Gardner equation as a function of parameter 𝐶 and the 
range of porosity values used for linear approximation. The following velocity values of the solid (matrix) and fluid 
phases were used for calculations: 𝑉! = 18,750	𝑓𝑡/𝑠 and 𝑉" = 5,300	𝑓𝑡/𝑠. The Goodness-of-Fit was summarized 
separately within three different porosity segments: 0.0 – 0.15, 0.0 – 0.25, and 0.0-0.35 volumetric fractions.  

 

In other words, it describes how well the linear models (with different 𝐶-values) fit the 

nonlinear RHG equation. The calculations in table 1 were performed for the sandstone 

lithology (𝑉! = 18,750 ft/s and 𝑉$ = 5,300 ft/s) and for different porosity segments (1) 

𝜙 = 0 − 0.15, (2) 𝜙 = 0 − 0.25, and (3) 𝜙 = 0 − 0.35. For the first porosity segment, the 

best-fitting straight line approximation results from the slope-intercept measurements at 

point with 0.05 porosity value. In this case, the parameter 𝐶=0.6183. For a broader 

range of approximated porosities from 0 to 0.25 volumetric fractions, we obtain the 

parameter 𝐶=0.6591 corresponding to porosity 𝑎 = 0.10. Finally, for the broadest 

possible range of fitted porosities, we obtained the largest value of 𝐶=0.6815 at point 

with porosity 𝑎=0.125. A graphical comparison between the quadratic RHG velocity-

porosity transform and its linear approximations at different porosity points is shown in 
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figure 2. We used the same velocity parameters for graphing as those used for 

calculations in Table 1. It is apparent from the figure that the larger value of parameter 𝐶 

provides a better approximation for a higher porosity range, while the smaller 𝐶-values 

better describe velocity-porosity relationship over a small range of porosity 

measurements around 𝜙 = 0. 

 

 
Figure 2. The Raymer-Hunt-Gardner velocity-porosity transform (black line) and its linear approximations 
computed for different values of C (C1=0.5823 for the blue line and C2=0.6815 for the red line). Sandstone 
matrix with Vm=18,750 ft/s and Vf=5,300 ft/s. 
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Note that the presented 𝐶-values were obtained for the fixed values of 𝑉! = 18,750	𝑓𝑡/𝑠 

and 𝑉$ = 5,300	𝑓𝑡/𝑠. Though these velocity values are typical for a variety of sandstone 

formations, the site-specific matrix and fluid velocity values should be considered when 

making porosity predictions based on the actual measurements.  

There is one more factor to consider when choosing parameter 𝐶. It is the shift of 

velocity intercept value 𝑏 from 𝑉! that becomes progressively higher with increasing 

value of porosity 𝑎 and parameter 𝐶, correspondingly. In table 2 this shift is designated 

as the intercept error that can be estimated from equation 11 as follows: 

   𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡	𝐸𝑟𝑟𝑜𝑟 = 1 − 2
#!
= 1 − 1 + 𝑎% = 𝑎% 

Therefore, the larger values of parameter 𝐶 are associated with some decrease in the 

quality of fit that is seen in table2 when the goodness-of-fit starts to decline rapidly for 

porosity values above 0.15 volumetric fractions. That is why, we do not recommend 

choosing the parameter 𝐶 values above 0.70. 

 

 

Raiga-Clemenceau et al. (1988), in a search for some more fundamental 

velocity-porosity relationship and utilizing experimental data published by Raymer et al. 

(1980), proposed the equation of the form 

    𝜙 = 1 −	/"!
"
0
. 34

      (15) 

Where 𝑥 is an exponent specific to the matrix lithology. Table 2 lists the following 

parameters related to the matrix natures. 

  

    Matrix  𝑡", µsec/ft     𝒙 

   Silica   55.5   1.60 

  Calcite   47.6   1.76 

  Dolomite   43.5   2.00 

 Table 2.  Matrix-specific parameters to be used with Equation 2. Modified from Raiga-Clemenceau 
et al., (1988).  

 
As pointed out by Raiga-Clemenceau and his co-authors, equation 15 is functionally 

similar to the relation between electrical resistivity and porosity and leads to a similar 
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concept of formation factor. Therefore, the authors named the transit time-porosity 

transform (15) as the Acoustic Formation Factor (AFF) equation. The equation lacks 

mathematical complexity of theoretical equations based on rock mechanics, but still is 

physically meaningful and shows good agreement with experimental data in a great 

variety of cases. 

Noting that  𝑡	 = 	1000000 𝑉⁄ , the AFF equation can be written in terms of velocity as 
    

    𝜙 = 1 −	/ #
#!
0
. 34

      (16) 
 
And solving this equation for velocity, we’ll get an alternative form of the AFF equation 

    𝑉 = 𝑓(𝜙) = 𝑉!(1 − 𝜙)3      (17) 

 
Let us approximate the power function of equation 17 with a first-order polynomial 

utilizing the approach that we used before with the Raymer-Hunt-Gardner quadratic 

equation. To do this, we must first estimate expressions for 𝑓(𝑎) and 𝑓/(𝑎) of equation 

17. 

𝑓(𝑎) = 𝑉!(1 − 𝑎)3       (18) 

𝑓/(𝑎) = −𝑥𝑉!(1 − 𝑎)31.      (19) 

 
After inserting equations 18 and 19 into the polynomial form 6 and combining like terms 
 
  𝑉 = 𝑓(𝜙) ≈ 𝑃.(𝜙) = 𝑉!(1 − 𝑎)3 O1 −

(51()3
.1(

P    (20) 

And removing out the denominator from the square bracket, we have 

 
  𝑉 ≈ 𝑉!(1 − 𝑎)31.[1 − 𝑎 − 𝜙𝑥 + 𝑎𝑥]    (21) 

 
After dividing both sides of equation 21 by parameter 𝑉! and solving it for porosity 𝜙, we 

can simplify the approximated porosity function to 

  𝜙 = .
3
/1 − 𝑎 + 𝑎𝑥 − (1 − 𝑎).13 #

#!
0    (22) 

 

Note that if 𝑎 = 0 and 𝑥 = 8/5 (sandstone matrix), the equation 22 turns into 

  𝜙 ≈ 6
7
/1 − #

#!
0      (23) 
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which is the form of velocity-porosity relation misnamed as the Raymer-Hunt-Gardner 

(RHG) by Asquith and Krygowski (2004). 

 

To bring equation 22 to a function form of equation 2, let’s define the two new variables, 

𝑘 and, 𝑛 such as 

    𝑘 = 1 − 𝑎 + 𝑎𝑥      (24) 

    𝑛 = 	 (1 − 𝑎).13      (25) 

After substituting the corresponding expressions in equation 22 with the new variables, 

we have: 

     𝜙 = .
3
/𝑘 − 𝑛 #

#!
0      (26) 

The expression 26 turns into a form of equation 2 only if 𝑘 = 𝑛 and 𝐶 = 8
3
. Theoretically, 

the equality of 𝑘 to 𝑛 is only possible if 𝑎 = 0. Considering a general case of  𝑎 ≠ 0, we 

have to admit the loss of accuracy when using equation 2 instead of equation 22. The 

percentage error formula takes the form of: 

    𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝐸𝑟𝑟𝑜𝑟 = 100 × *18
8

     (27) 

We can now estimate parameter 𝐶 of equation 2 based on linear approximation to the 

AFF equation derived by Raiga-Clemenceau and his co-authors. We do it for different 

values of porosity 𝑎 used to calculate derivatives. We also compute the goodness-of-fit 

for different ranges of the fitted porosities in the same way, we did it in table 1. The 

results of computation for the sandstone lithology (exponent 𝑥 = 1.6 = 8/5) are shown in 

table 3. 

 
Porosity 

𝑎, v/v 
Percent  
Error, % 

    C Goodness- 

of-Fit,  𝒓𝟐 
𝜙 = 0 − 0.15 

Goodness- 

of-Fit,  𝒓𝟐 

𝜙 = 0 − 0.25 

Goodness- 

of-Fit,  𝒓𝟐 

𝜙 = 0 − 0.35 

0.000 0.00  0.6250 0.9965 0.9872 0.9703 
0.025 1.59  0.6344 0.9989 0.9928 0.9798 
0.050 3.38  0.6438 0.9998 0.9966 0.9871 
0.075 5.38  0.6531 0.9993 0.9986 0.9923 
0.100 7.60  0.6625 0.9976 0.9992 0.9959 
0.125 10.06  0.6719 0.9947 0.9983 0.9977 
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0.150 12.78  0.6812 0.9908 0.9961 0.9980 
0.175 15.78  0.6906 0.9859 0.9927 0.9969 
0.200 19.09  0.7000 0.9802 0.9882 0.9945 

 
Table 3. The Goodness-of-Fit to the AFF equation as a function of parameter 𝐶 and the range of porosity 
values used for linear approximation. The calculations were done for the sandstone lithology, 𝑥 = 1.6 with 
the matrix velocity 𝑉! = 18,750	𝑓𝑡/𝑠. The Goodness-of-Fit was summarized separately within three different 
porosity segments: 0.0 – 0.15, 0.0 – 0.25, and 0.0-0.35 volumetric fractions. 

 
 
Similar to results in table1, the 𝐶-values calculated at points with porosity value 0.05, 

0.10, and 0.125 produce the best-fitting approximations to the AFF equation for the 

range of fitted porosities 0-0.15, 0.-0.25, and 0-0.35 accordingly. Importantly, the overall 

goodness-of-fit estimates presented in table 3 for the AFF equation are superior to 

those presented in table 1 for the RHG equation. This happens despite the fact that the 

percent of error specified in equation 27 is relatively larger than the intercept error 

inherent to linear approximations to the RHG equation. An increased quality of straight-

line fitting to the AFF line is due to its smaller curvature compared to the RHG curve. In 

other words, the amount by which the AFF curve deviates from a straight line is smaller. 

To illustrate this statement, we graphed the AFF equation and its linear approximations 

in figure 3. We used the same porosity segments for linear approximation as we did in 

figure 2. The blue line corresponds to the tangent line at zero porosity value, and the 

red line is the best-fit estimate for a broad-range of fitted porosities from 0.0 to 0.35 

volumetric fractions (with the slope estimated at point with porosity 𝑎 = 0.125). 

Obviously, the larger value of parameter 𝐶 provides a better approximation for a higher 

porosity range, while the smaller value of 𝐶 could be a better choice for a narrow range 

of porosities with the measured values close to zero (figure 3). Another important 

conclusion from comparing the results presented in table 1 and table 3, can be derived 

about the range of values of parameter 𝐶. For the range of analyzed porosity values 

from 0 to 0.2 volume fractions (tables 1 and 3), the corresponding range of parameter 𝐶 

used to approximate the RHG equation is from 0.5823 to 0.7591 (23.2% variation), and 

to approximate the AFF equation, the 𝐶 parameter varies from 0.625 to 0.70 (10.7% 

variation). In other words, when fitting the AFF equation to a straight line, it is safe to 

use a single value for parameter 𝐶 (about 0.66) in either equation 1 or equation 2 to get 
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a good quality fit. However, in case of the RHG equation, as it was discussed above, 

the proper choice of parameter 𝐶 is not so obvious. From this point of view, we would 

consider it appropriate to name the velocity-porosity transform 2 as an approximation to 

the AFF equation but not just the RHG equation.  

 

 
Figure 3. The AFF velocity-porosity transform by Raiga-Clemenceau et al (black line) and its linear 
approximations computed for different values of C (C1=0.625 for the blue line and C2=0.6719 for the red 
line). Sandstone matrix with Vm=18,750 ft/s and x=1.6. 

 

We also would recommend not to choose values of parameter 𝐶 outside the range 

(0.625-0.70) since it will result in velocity-porosity relationship that disagrees with the 

original AFF equation and lacks its physical meaning of being an acoustic formation 

factor. 
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Conclusion 
 

 

 

As it is shown in this study, equation of the form 𝜙 = 	𝐶(𝑡 − 𝑡!)/𝑡  is a linear 

approximation to either of the nonlinear velocity-porosity transforms proposed by 

Raymer et al. (1980) and by Raiga-Clemenceau et al. (1988). However, the equation 

introduced by Raiga-Clemenceau et al. as the AFF equation, provides a better fit to its 

linear approximation. Accordingly, we would consider it appropriate to name the 

velocity-porosity transform 𝜙 = 	𝐶(𝑡 − 𝑡!)/𝑡  as an approximation to the AFF equation 

but not just the RHG equation. 

The accuracy of this approximation diminishes with increasing porosity values 

used to calculate derivatives. This is inherently associated with the assumptions done 

when deriving the approximated formulas. 

The choice of parameter 𝐶 depends, to a lesser extent on the matrix lithology, 

and to a larger extent, on the range of modeled porosities. When making a linear 

approximation to the Raymer’s et al. equation, the fluid velocity is another factor that 

considerably affects the value of parameter 𝐶. For a typical range of the sandstone 

matrix velocity from 18,000 to 19500 ft/s, pore-fluid velocity from 4,000 to 5,500 ft/s, and 

the range of modeled porosity values from 0 to 0.35 volume fractions, the parameter 𝐶 

value may vary from about 0.55 to 0.75. For the same sandstone matrix and the range 

of modeled porosity, the parameter 𝐶 estimated from the AFF equation has significantly 

smaller range of values, from 0.625 to 0.70. The smaller degree of ambiguity in 

parameter 𝐶, is another reason to name the velocity-porosity transform 𝜙 = 	𝐶(𝑡 − 𝑡!)/𝑡  

as an approximation to the AFF equation. For the low-porosity sandstones we 

recommend using 𝐶 = 0.64, and for a porosity range from 0.0 to about 0.35, we 

recommend using parameter 𝐶 = 0.66. Still, it remains unclear, who was the first to 

derive velocity-porosity transform similar to equations 7 through 9 but definitely, Raymer 

et al. (1980) have nothing to do with it.  
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