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Study Site and Targeted Stratigraphy

The characterization of fluids in targeted reservoirs is essential to understanding the existing 
fluid and rock system. Formation fluids were collected on two occasions from a potential 
CO2 storage site in southwest Wyoming and analyzed for dissolved gas, geochemical, and 
isotopic compositions. The objective is to determine baseline conditions, fluid evolution, 
hydraulic isolation, temporal variations, and geochemical responses to well completion 
and the introduction of non-native fluids. 
Fluids sampled at the Rock Springs Uplift (RSU) CO2 storage site from the Mississippian 
Madison Limestone and Pennsylvanian Weber Sandstone are sodium-chloride type 
with total dissolved solid concentrations that range between 85,000 and 120,000 mg/L. 
Preexisting data suggest that high saline brines are found across the structure, though some 
inconsistencies arise.   
Conservative analyte compositions are enriched with respect to seawater evaporation 
curves, this highlights that these brines have evolved significantly through increased water 
and rock reactions. The compositions of dissolved gases and water quality were found to 
be unique to each formation, suggesting that these reservoirs are isolated from each other. 
Notable differences are recorded in some constituent concentrations between sampling 
events, specifically increasing bromine, hydrogen sulfide and aromatic organics. These 
alterations were introduced during well completion and injection testing. Consequently, 
obtaining unbiased samples of target formation fluids from deep characterization wells 
may be challenging during CCUS characterization projects.

Abstract

•   Analysis of the target formation brines has generated a geochemical and water quality baseline at the study site. As a result of those analyses 
   the WYDEQ has classified the brines of the Madison and Weber as class VI (unsuitable for use). In addition, the water quality analyses  
   recorded elevated concentrations of some metals.

•  The sodium and chloride of the brines are enriched beyond what is possible from evaporation of seawater. This suggests increased water-
   rock interaction and dissolution of minerals adding to the salinity. 

Conclusions
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Schematic of UW Stratigraphic Test Well Fluid Evolution

Dissolved Gas Composition

Schematic of the University of Wyoming stratigraphic test well  
(RSU # 1 049-037-07154). Perforation intervals are shown with an asterisk 

The composition of dissolved gases in 
Weber and Madison formation fluids is 
unique to each formation Nitrogen is 
the dominant gas species (approximately 
79%) in fluids from the Weber Sandstone, 
followed by carbon dioxide (approximately 
15%) and alkanes, mostly methane and 
hexane (approximately 6%). Carbon 
dioxide is the dominant gas species 
(approximately 83%) in fluids from the 
Madison Limestone, followed by nitrogen 
(approximately 17%) and a minor alkane 
component (<1%).

Adapted from Rittenhouse 1967; Engle and Rowan, 2013 (a-g) Plot of log TDS, Na, Cl, Li, K, Ca, Mg versus log bromine relative 
to the seawater evaporation pathway. (h) Na/Br versus Cl/Br molar ratio plot.

Formation fluid evolution
Comparative analysis of solutes in formation fluids suggests that the interaction of 
reservoir rocks and formation fluids, via dissolution of evaporite and other minerals, 
has had a large influence on the evolution of the formation fluids. The evidence of 
dissolution and high TDS suggests that the formation fluids and the reservoir rock 
have been in contact for a relatively long period of time. The differences in solute 
concentrations between formation fluids suggest that fluids from the Weber and 
the Madison are in equilibrium with the reservoir rock, and are not likely mixed or 
mixing. This indicates that both reservoirs are reasonably stable, and both exhibit the 
ability to hold and retain fluids; these conditions are ideal for CCS, as they indicate 
a low likelihood of unforeseen migrations or leakage.

Changes in Water Chemistry From Well  Completion

Salinities of deep brines are consistent across the RSU. Indicating that the reservoirs 
across the RSU have a fluid evolution history similar to the fluid retrieved from 
RSU #1

Geochemical differences from well 
completion
The first set of samples collected had very low 
concentrations of H2S (Madison, 29 mg/L; Weber, 
0.04 mg/L). The second set of samples measured 
much higher concentrations of H2S (Madison 
87 mg/L, Weber 127 mg/L).  Interestingly, the 
sulfate concentrations decreased between the first 
and second sample set (Table 1). This may suggest 
that perhaps water circulated during drilling, 
completion, and work-over of the well may have 
introduced sulfate reducing bacteria (SRB). SRB 
ingest sulfate and organic acids and generate H2S. 
Souring the reservoir. (e.g. Ligthelm et al. 1991). 

Change in VOC’s between sample sets
Formation fluids were analyzed for 63 volatile organic 
compounds (VOC’s). The first sample set (August, 
2011) detected six VOC’s in both Weber and Madison 
brines. This increased to fourteen in the second round 
of sampling (December, 2012). With the exception of 
BTEX compounds, when a VOC was detected similar 
concentrations were measured in both reservoirs. This 
indicates that some VOC’s were contaminants likely 
introduced during later work in the wellbore.  Benzene, 
toluene, and xylenes were not detected in the first 
round of sampling but were measured in the second 
round; concentrations were much higher in the Weber. 
Ethylbenzene was found in equal concentrations in 
both formations in the first sample set (20 µg/L), but 
more than doubled in the Weber in the second round 
(50 µg/L).

Figure 2:
Stratigraphic column and associated gamma ray log 
for the study site’s targeted sealing stratigraphy and 
associated reservoirs. Targeted seals (the Triassic Red 
Peak Formation, Pennsylvanian Amsden Formation, 
and the upper portion of the Mississippian Madison 
Limestone) are highlighted in red.

Baseline Water Quality Testing
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Figure 1:
Study site and RSU#1 well location 

(in box) in southwest Wyoming 
on the northeast flank of the Rock 

Springs Uplift

From J. Fred McLaughlin et al., 2013 

•  Dissimilarities in the water chemistry and dissolved gas analyses suggest that the Amsden formation and Upper Madison Limestone 
   isolate the Middle Madison injection zones from the Weber injection zones.

•  Hydrogen sulfide concentrations in the reservoir dramatically increased between the first and second sampling series. Although the cause 
   of this increase is unknown, it is recommended that careful consideration be given to reservoir management during CO2 injection 
   Additionally, H2S monitoring should be an element of water production scenarios.
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Figure 2 - Well Diagram for Well Monitoring
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