The NCAR-Wyoming Supercomputing Center (NWSC): Computing Infrastructure for the Earth System Sciences

Krista Laursen

NWSC Project Director

Presentation to the UW Board of Trustees
16 September 2010

NWSC Partners:

Architects, Contractors and Consultants:

H+L Architecture | Saunders Construction, Inc. | California Data Center Design Group | Rumsey Engineers | RMH Group Martin & Martin Consulting Engineers | Rider Levett Bucknall | Reliable Resources | E Cube, Inc.

Earth System Science Drivers

- Severe Weather
 - Hurricane Track and Intensity
 - Eyewall Precipitation and Winds
 - Probabilistic Forecasts
- Climate Change
 - Decadal Climate Prediction
 - Regional Climate Change Effects
 - Probability of Extreme Events
- Clouds major source of error
 - Global Cloud Resolving Models
 - Super-parameterization scheme
- UNIVERS Better Cloud Parameterizations
 OF WYOMING

Balancing Science Goals with Computing Power 1/120 **Data Assimilation** Resolution Complexity Computing Resources Duration and/or Ensemble size

NCAR's founding mission is "... to provide, or arrange for provision of facilities for the scientific community as a whole whose initial cost and upkeep lie beyond the capability of individual universities or research groups."

Preliminary Plans for a National Institute for Atmospheric Research, 1959, NCAR Blue Book

The NCAR Computational and Information Computational & Information Systems Laboratory Systems Laboratory (CISL) Mission

To support, enhance, and extend the capabilities for transformative science to the university community and the broader scientific community, nationally and internationally

- Provide capacity and capability supercomputing
- Develop and support robust, accessible, innovative and advanced services and tools
- Create an Earth System **Knowledge Environment**

History of Supercomputing at NCAR

Capability Computations

On-Demand Computing

- Spring U.S. Weather Forecasts
- Field Programs Support
- Hurricane Forecasting
- Climate Campaigns (IPCC)

Breakthrough Science Computations

- Climate Model Development
- Retrospective High Resolution
 Hurricane Modeling
- Ocean Physics
- Turbulent Flows at Ultra-High Resolution

Figure 1: Observed reflectivity from the Mobile AL radar at 1400 UTC 29 August 2005, and a 62 h forecast from the WRF model, valid at that time, using $\Delta x = 4$ km on a moving nested grid tracking hurricane Katrina.

Computing Capacity (peak TFLOPs) at NCAR

NCAR MSS - Total Data in Archive

CISL Computer Facility Power Consumption (Measured kW)

The NWSC – A Facility to Meet HPC Needs of the Earth System Sciences

- Focus on the construction of a world-leading, energy efficient facility that is modular and flexible to meet community computing and data storage requirements.
 - Maximally energy efficient to reduce carbon footprint and operational expenses (OPEX)
 - "Right sized" to constrain capital expenses (CAPEX) supporting 4-5
 MegaWatts (MW) of computing load
 - Expandable to accommodate future growth in community computing needs.

Design Highlights

- Total facility size of 165,000 gross square feet (GSF)
- LEED Gold certification achievable
- Focus on sustainability, including:
 - Compressor-free cooling for majority of the year, waste heat recycling, harvesting of natural light, use of locally sourced building materials whenever practicable, minimum of 10% of power from locally generated renewable energy
- Total available power load for first raised floor module of 4.5 MegaWatts (MW)
 - Will achieve higher power load than original target value (4 MW) due to efficiency of design

Image courtesy of H+L Architecture

Image courtesy of H+L Architecture

Photos courtesy of Gary New (NCAR/CISL)

September 2010

University of Wyoming

Project Timeline

Thank you

For more information please visit www.nwsc.ucar.edu

