Comparing Ecological Communities Part One: Classification

Reading Assignment: Ch. 15, GSF Review Community Ecology Lecture, Sept. 17 And GSF, Chapter 9

What are three basic ways vegetation can be quantified?

• Make sure to review these concepts before Exam 2.

10/14/09

10/14/09

Univariate vs. multivariate techniques

- If each community is represented by a single variable, such as biomass per unit area, univariate techniques such as ANalysis Of Variance (ANOVA) can be used
- If each community is represented by multiple parameters, such as a species list, multivariate techniques must be used
- Math techniques reduce multiple variables into one or more dimensions, by comparing differences in values for the entire data set at the same time

3

1

- · Multivariate techniques allow us to:
 - Quantify differences in community composition and structure
 - Evaluate how species are distributed among communities
 - Determine relationships between community composition and environmental variations

4

5

10/14/09

Why classify vegetation?

 Quantitative methods of classification are needed for establishing objective and repeatable categories

Advantages:

- Vegetation is a strong, if complex, indicator of the ecological functioning of natural systems
- Vegetation is readily measured for inventory and monitoring purposes at multiple scales
- Change over time is more easily monitored in communities than individual species

10/14/09

Why classify vegetation?

Disadvantages

- Vegetation is dynamic temporally and highly variable spatially
- · Many categories may be needed
- There will always be gray zones between categories

How are groups defined?

- A non-numerical approach is to create an ordered (differentiated) table from a raw data matrix
 - First, a species list is made for each study site
 - Then, grouping of species that are found together, and sites that share the most species, is done
- More quantitative techniques for deciding how to create groups, or communities, reduce the subjectivity

7

10/14/09

(A) Typic	al pre	sence	/abse	nce d	ataø]	
			Sites				
Species	A	В	с	D	E		
1	1	1	0	0	1		
2	1	1	1	0	0		
3	0	0	1	1	1		
4	0	0	1	1	0		
5	1	0	1	1	0		
6	0	1	0	0	1		
7	0	0	1	1	1		
8	1	1	0	0	0		
9	1	1	1	0	0		
10	0	1	1	0	0		

Similarity indices

- A.k.a. "community coefficients"
- Quantitative basis for deciding how to create groups (communities)
 - reduce the subjectivity
- One step in reducing the number of variables we have to deal with
- Often the basis for more complex multivariate methods (e.g., cluster analysis and ordination).
- Also known as distance measures, because they quantify how "far apart" two sites are in ecological space.

10/14/09

Jaccard Index

Sj = a/(a + b + c)

The proportion of species contained in two sites that are shared by those sites, where:

a = number of species present in both sites

b = number found in second site only

c = number found in first site only

"Site" could be a quadrat or a whole community This index consistently works well in a wide variety of situations 10/14/09

12

Sørenson's Index

 $S_s = 2a/(2a + b + c)$

- As can easily be seen from the equation, Sorenson's index gives more weighting to species that are common in both sites, rather than to those occurring in either site
- Both Jaccard and Sørenson's indices can be combined with cover data by multiplying by the proportional cover or density

13

14

Other similarity indices are available (Table 15.2)

10/14/09

10/14/09)9	10/14/09

Similarity index (community coefficient) values are placed into a new matrix for use in cluster analysis										
	TABLE 15.1 The use of presence/absence data to analyze relationships among sites (Part 3)									
(C) Matrix of Jaccard similarity values for the data in (A) or (B)										
	Sites									
	Site	Α	В	с	D	Е				
	А	1.00	0.57	0.33	0.13	0.13				
	В	0.57	1.00	0.30	0.00	0.25				
	С	0.33	0.30	1.00	0.57	0.22				
	D	0.13	0.00	0.57	1.00	0.33				
	E	0.13	0.25	0.22	0.33	1.00				
10/14/09					8000	ODY OF PLANTS, BWY	end Edition, Table 18.1 (Part 2): © 2008 Sinauer Associates, Inc.			

Classification methods

Divisive classification takes the full data set (all sites) and divides it sequentially into pairs of groups

- Agglomerative classification works in the opposite direction, starting with the two sites that are most similar
- Monothetic approach is based on only one species

Polythetic approach is based on multiple species

10/14/09

17

_

<section-header><section-header><section-header>