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Introduction

In this paper, [ discuss my experiences with collaborative research and how interdisciplinary re-
search has always been a major part of the collaborations in which I have engaged. Collaborative
research has much to recommend interdisciplinary research, but the concept has been distorted
in recent documents. For example, to enhance research culture, the College of Education at the
University of Georgia has published a strategic plan in which a basic action item is the initiation
of strategic research collaborations and partnerships with faculty and organizations inside the
College and outside the College, where the Associate Dean for Research is the person primar-
ily responsible'. Why I consider this action item a distortion of the concept of collaborative
research will become clear as [ develop the concept. Initially, suffice it to say that in my experi-
ence, it is individuals, not institutions, who initiate and do collaborative research. Although it
cannot be institutionalized, collaborative research can and must be supported by institutions
when it might occur.

According to Dictionary.com, to collaborate means to work, one with another; to cooper-
ate, and collaboration refers to the act or process of collaborating. In my work with Ernst von
Glasersfeld, a world-renowned epistemologist, and John Richards, a philosopher of mathemat-
ics, we did indeed work one with another on the project, Interdisciplinary Research on Number
[TRON]. But in our efforts to collaborate, there were clashes among the members of the inter-
disciplinary research team that von Glasersfeld (2005) perhaps summed up best in describing
our activity when watching video-taped teaching episodes that I had conducted with 1 and 2™
Grade children.

He [Les Steffe], a graduate student of his [Pat Thompson], the philosopher John
Richards, and myself would spend countless hours viewing these tapes and trying
to agree on what we gathered from them. We had heated arguments and for all of us
it was a powerful lesson, hammering in the fundamental fact that what one observer
sees is not what another may see and that a common view can be achieved only by a
strenuous effort of mutual adaptation. (p. 10)

I recollect these clashes all too well and offer them as an antidote to those who interpret
a research collaboration as a group of faculty members harmoniously working together in nir-
vana. But, then, what glue holds a research team together in the face of heated arguments and
the strenuous effort that is involved in mutual adaptation?

Preconditions for Collaborative Research

Because of the complexities involved in understanding how the human mind constructs some-
thing so complex as mathematics, I consider an interdisciplinary disposition a necessity for

1 http://www.coe.uga.edu/dean/reports/index.html
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researchers to move the field of mathematics education forward. I had already established an
interdisciplinary disposition when graduating from the University of Wisconsin in that I worked
as a research associate in the newly established Research and Development Center for Cognitive
Learning where I worked with Henry Van Engen. Although Van Engen had earned a Ph.D. in
analysis from Michigan, he spent his career working in mathematics education primarily because
he couldn’t find a position in mathematics during the great depression of the last century. Working
with Van Engen was in part an affirmation of my understanding of the role of mathematics in
mathematics education—one doesn’t do mathematics education without a deep understanding of
mathematics. But I also learned from him that “knowing mathematics” is not sufficient.

Along with his colleague Mike Rosskopf, who also had a major influence on my thinking,
Van Engen read widely in psychology, which was quite common among mathematics educators
of that time (Fehr, 1953; Rosskopf, 1953; Rosskopf, Steffe, & Taback, 1971; Van Engen, 1949,
1953). In fact, the cognitive development theory of Piaget and his collaborators had a major
impact on the modern mathematics movement of the 1960’s in that their genetic structures
served as a justification for the emphasis on mathematical structure in the modern mathematics
curricula (Bruner, 1960). The decade of the 1960’s was definitely a heady time in the history of
the field, a time during which interdisciplinarity in the field was transformed from the connec-
tionism and/or behaviorism that dominated the field during the first half of the last century to a
much broader and deeper conception of mind.

In what follows, I argue that, in view of the historical relation between mathematics educa-
tion and psychology, the members of a collaborative research team should either have already
established an interdisciplinary disposition prior to engaging in collaborative research or engage
in collaborative research to develop such a disposition. The members of the team also should
have established problems that they want to solve or goals they want to reach. Further, there may
be dissatisfaction with their methods of doing research as well as with the analytical constructs
being used in building explanatory models®. Finally, members of the team might turn to collab-
orative research out of dissatisfaction not only with their own progress, but also with the state of
their disciplines as a whole. To exemplify these four preconditions, I revisit my efforts to explain
children’s construction of number prior to working in IRON with von Glasersfeld and Richards.

Dissatisfaction with Mathematics Education circa 1970

When I received my Ph.D. from the University of Wisconsin, my understanding of mathematics
education as an academic field had its sources in my study of mathematics and in what I later
came to conceive of as a strange attempt on my part to use Fisherian experimental techniques
in the study of children’s thinking and learning. Other than feeling as if I was doing pseudo-
science, there were two events that were pivotal in initiating changes in my concept of math-
ematics education as an academic field after joining the faculty of mathematics education at the
University of Georgia in 1967.

The Research and Development Center for Educational Stimulation

The first was being asked to join the efforts of the Research and Development Center for
Educational Stimulation that was housed in the College of Education. The main research hy-
pothesis of this Center was that preschool educational programs for three, four, and five year
old children would accelerate their cognitive development from Piaget’s preoperational to his
concrete operational stage. The director of this R&D Center, Dr. Warren Findley, was a psy-

2 I use the term “model” to refer to, “a conceptual construct that is treated as though it gave an ac-
curate picture of the real world” (von Glasersfeld & Steffe, 1991, p. 95).
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chometrician whose work was based primarily on the empiricist assumptions of classical test
theory. These assumptions were manifest in the directives to support the teachers in a preschool
that was the site of the experiment by supplying materials they could use to teach number and
measurement to their children.

“Teaching” number and measurement to preschool children constituted a conflation of ge-
netic and mathematical structures that was prevalent in the attitude of many of the curriculum
developers of the modern mathematics programs. Piaget was considered to be an observer rather
than a teacher (Educational Services Incorporated, 1963) and it was thought that had Piaget
observed the mathematical thought of children who participated in the modern mathematics
programs, he would have realized the elasticity of the limits of their cognitive processes. The
mathematical knowledge of the children that Piaget and his collaborators had documented in
the basic books such as “The child’s conception of number” (Piaget & Szeminska, 1952), “The
child’s conception of geometry” (Piaget, Inhelder, & Szeminska, 1960), and “The child’s con-
ception of space” (Piaget & Inhelder, 1963) was essentially discounted and curriculum develop-
ers did not regard children’s mathematical knowledge as part of the curricula they developed.
Rather, the mathematical knowledge of children that Piaget and his collaborators produced was
regarded as belonging to the field of developmental psychology and it had to do with school
mathematics only to the extent that it served as a rationale that concrete operational children
were ready to and could engage in structural thinking (e.g., Dienes, 1964)3.

Although I hadn’t myself taught 3, 4, and 5 year-old children, I just did not accept Bruner’s
(1960) famous hypothesis that, “Any subject can be taught effectively in some intellectually
honest form to any child at any stage of development” (p. 33), even if “any subject” was inter-
preted as the mathematics of operational children and the stage of development was the preop-
erational stage of development of most 3, 4, and 5 year-olds.

I was extremely perplexed by the research project because, although it was well before the
English translation of Piaget’s book on reflective abstraction by Robert L. Campbell (2001), I
understood that reflective abstraction was the construct that Piaget used to explain the transition
from the preoperational to the operational stage.

It is then necessary to suppose that abstraction starting from actions and operations—
which we shall call “reflective abstraction”—differs from abstraction from perceived
objects—which we shall call “empirical abstraction” (assuming the hypothesis that
non-perceptible objects are the product of operations)—in the sense that reflective
abstraction is necessarily constructive. (Piaget, 1966a, pp. 188-89)

The source of my skepticism resided not only in the assumption that the limits of children’s
cognitive processes are elastic, it also resided in the assumption that spontaneous development
could be accelerated by children’s specialized “mathematical” interactions with teachers. That
is, I was highly skeptical that the processes that are involved in reflective abstraction that pro-
duce the fundamental quantitative operations in human beings could be set in motion by such
specialized interactions. There was no acknowledgment of the products of spontaneous devel-
opment in what we were being asked to do and I construed my involvement as a violation of
scientific as well as professional ethics®.

3 The curriculum developers apparently did not understand that Piaget’s genetic structures were his
formalizations of what he observed children do. He made no claim that children were aware of the struc-
tures that he saw in their mathematical behavior.

4 I also consider the lack of use of the products of spontaneous development in school mathematics
today as a violation of scientific and professional ethics.
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Establishing Problems I Could Not Solve

Using Piaget’s conception of the numerical operations of concrete operational children, I de-
cided to involve myself in teaching preoperational kindergarten children in their construction of
number in order to conduct my own personal test of the hypothesis of the R&D Center®. Piaget’s
(1966b) analysis had led him to the following position:

The development of number does not occur earlier than that of classes (classificatory
structures) or of asymmetrical transitive relations (serial structures), but there is, on
the contrary, a simultaneous construction of classes, relations and numbers. (p. 259)

His minimal criterion for children’s construction of number was operative one-to-one cor-
respondence that, in his model, was made possible by the emergence of the arithmetic unit. The
stages in the construction of one-to-one correspondence exactly paralleled those of the construc-
tion of operative classification and seriation (Piaget, 1966 a & b), so I focused on bringing forth
classifying, ordering, and one-to-one correspondence actions in such a way that might engender
their interiorization by the involved children. For example, after asking children to make a train
of toy railroad cars, I would ask them to find all of the cars that were before a given car, all that
were after a given car, which one was just after or just before a given car, or which ones were
between two cars. | also supplemented these questions by substituting “how many” for “which
ones” when appropriate as well as asking the children to find the next three cars after a given
car or the fourth one after a given car, etc. | also asked them reversible questions that involved
counting in opposite directions. In the case of one-to-one correspondence, I presented the chil-
dren with problematic situations like getting as many spoons as there were forks, one for each
one. | also experimented with inducing reciprocal and transitive reasoning in a way similar to
how I experimented with “before” and “after” as inverse actions in the ordering tasks.

I never reported the results of these experiments primarily because of the major constraints
that the children presented to me as [ worked with them. It wasn’t that I had justified my skep-
ticism about directly teaching number and measurement to preoperational children. Rather, I
realized that I had experienced a reality for which I had no model and 1 had no language to speak
or write about this reality other than my observations of what the children couldn’t do. By teach-
ing children, I had constructed a problem for which I had no solution. These children could
have been classified as preoperational children in Piaget’s framework but that did not solve my
problem because it did not supply me with an operational model that I could use to explain their
mathematical thinking. In short, I knew what they couldn’t do mathematically with respect to
Piaget’s framework, but I didn’t know what they could do as I had no operational model of their
mathematical minds.

The constraints that I experienced when working with these pre-operational children con-
stituted the second major event that was pivotal in changing my concept of working scientifi-
cally in mathematics education. My experiment failed not because the children did not inte-
riorize their goal-directed actions. It failed because in most cases I could not even engender
the children's goal-directed actions. 1 will never forget how inappropriate it seemed to ask the
children to use one-to-one correspondence as a means of simply comparing the pluralities of
two perceptual collections. So, it goes without saying that making indirect comparisons between
two such collections by means of transitive reasoning seemed far removed from the children.

At that point, I realized that Piaget’s hypothesis that mental operations are the result of the

5 This signaled the beginnings of the constructivist teaching experiment, a methodology distinctly
different from Piaget’s clinical interview.
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interiorization of actions that are introduced by the subject did not necessarily involve those
specialized actions that an adult might consider as precursors to the operations. That is, I had
no reason to believe that classifying, seriating, or corresponding actions are involved in the
construction of number. The upshot of this realization was that I simply did not know what ac-
tions or interactions of children are interiorized to produce Piaget’s seriated classes or number.

It appears to be extremely difficult to define “mathematical contexts,” especially with
reference to young children. Given the very general basis for construction of logical-
mathematical operations ... almost any situation that can be commented on, asked
about, indicated as desirable, etc., can lead to actions, utterances, gestures, or other
communicative acts that have something to do with logic or mathematics. (Sinclair,
1990, p. 25)

Sinclair’s comment brings Piaget’s claim that the mind organizes the world by organizing
itself into focus. It seems that an observer would indeed be hard pressed to identify communica-
tive acts or situations that give rise to the operations that Piaget identified. This insight lead to
the realization that Piaget had not solved the problem I faced of not having a model of the reali-
ties that “kicked back’ at me when I taught these preoperational children. Although I agreed with
how Piaget (1980) regarded spontaneous development, there were few suggestions that would
be useful in mathematics education concerning the constructive activities that are involved in
the few years that a child;

Spontaneously reconstructs operations and basic structures of a logico-mathematical
nature, without which he would understand nothing in school. ... He reinvents for
himself, around his seventh year, the concepts of reversibility, transitivity, recursion,
reciprocity of relations, class inclusion, conservation of numerical sets, measure-
ments, organization of spatial referents. (p. 26)

Dissatisfaction with Research Methods and Analytical Constructs

My short tenure with the R&D Center for Educational Stimulation did engender a shift in how
I tried to use Piagetian theory in the mathematics education of students from using Fisherian
experimental techniques to actually teaching children. Given my doubts concerning children’s
construction of number, a return to the “uninterpreted data” was in order. Professor Larry
Hatfield and I had joined the Project for the Mathematical Development of Children, a joint
NSF project between Florida State University and The University of Georgia, and we both
mounted what to my knowledge were the first teaching experiments in mathematics education
in the United States. Along with two doctoral students, I taught two classes of first graders for
one school year (Steffe, Hirstein, & Spikes, 1976). There were three major findings of this study.

e  The first was that children counted independently of our suggestions to solve
their arithmetic situations.

e  The second was that there were substantial differences in the tasks that children
could solve and in the units that children created and counted in their solutions.

e  The third was that we observed children who could indeed count-on but who
could not solve Piaget’s class inclusion problem.

All three findings were anomalies with respect to Piaget’s grouping structures. The first two
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were anomalies because the grouping structures did not explain children’s counting or the units
that are involved. The third was an anomaly because | considered that counting-on indicated that
children had constructed number, so the children should have also constructed the class inclu-
sion operation. In retrospect, these three observations were the basis of a progressive problem
shift in the sense that Lakatos (1970, p. 118) explained. The challenge was to construct a model
of children’s numerical operations in which these three observations as well as a host of others
were explained. It is important to note that this comment is made in retrospect. At the time, I
abandoned my attempts to apply Piaget’s grouping structures in the mathematics education of
children and instead mounted a second teaching experiment to explore the role of counting in
their mathematical education. Little did I realize it then, but this marked the beginning of 15
years of productive interdisciplinary research in IRON.

Not only did I abandon my attempts to apply Piaget’s Grouping Structures in mathematics
education, but I also abandoned my attempts to use Fisherian experimental techniques in math-
ematics education research. Merging the practice of teaching with the practice of research was
a huge breakthrough for me because my identity as a mathematics teacher and a mathematics
education researcher were becoming integrated as essential components in a larger conceptual
complex that I constructed over the next fifteen years, a conceptual complex that I am still in the
process of reconstructing and extending®.

My conception of doing science involved developing and using explanatory constructs,
a conception that I developed through my studies of physics in my undergraduate years. This
was the reason why I was so attracted to Piaget’s work. He offered explanations of children’s
thinking as well as a methodology for observation that became known as the clinical interview.

The focus of the clinician is to understand the originality of [the child’s] reasoning, to
describe its coherence, and to probe its robustness or fragility in a variety of contexts.
(Ackermann, 1995, p. 346)

But, I had just abandoned my attempts to apply Piaget’s grouping structures and I was in-
volved in teaching children for rather extended periods of time to explore the role of counting
in children’s mathematical education. So, I had abandoned the science that I was trying to apply
and the clinical interview could not be my sole methodology. The only explanatory constructs of
children’s mathematics that were available to me was my own conception of mathematics such
as Hausdorff’s (1962) theory of cardinal and ordinal number and their interpretations, and Van
Engen’s (1971) “empty hat” approach to cardinal number’. I had no other model of children’s
counting, so it would have been extremely easy to regress to the curriculum trials that were used
during the era of the Modern Mathematics Movement of the 1960’s where the curriculum devel-
opment efforts were based solely on how adults understood mathematics®. However, what I was
observing did not fit within my own conceptions and ways of operating with cardinal and ordinal
number. I was able to construct living, experiential models of children’s ways of operating, but
I lacked the conceptual tools to construct scientific explanations. This lack of conceptual tools
is the primary reason that I turned to interdisciplinary work with von Glasersfeld and Richards.

6 I thank Professor Larry Hatfield for his substantial contributions to this essential change in my
conceptions of what it means to do research in mathematics education.
7 The theory of cardinal number served as a basis for mathematical curricula in the elementary school

and Piaget’s grouping structures served as its psychological justification.
8 Max Beberman, “UICSM: Fifteen Years of Experimentation” in Beberman, M. & Folder, RS
10/12/1, Box 21, University of Illinois Archives.
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Elements of a Successful Collaborative Research Program

I will always be indebted to Professor Charles Smock of the Psychology Department at the
University of Georgia for inviting me to a colloquium given by Ernst von Glasersfeld. In the
colloquium to which I was invited, von Glasersfeld recounted a story published by Lettvin,
Maturana, McCulloch, and Pitts (1959) that at once established a bond between the two of us
that has lasted from then on up through the present time. When talking about a frog as a fly-
catcher, he commented that:

The system [the frog’s visual system] as a whole makes the frog an efficient fly-
catcher, because it is tuned for small dark “objects” that move about in an abrupt
fly-like way. In the frog’s natural habitat, as we, who observe the frog see it, every
item that possesses the characteristics necessary to trigger the frog’s detectors in the
proper sequence is a fly or bug or other morsel of food for the frog. But if the frog is
presented with a black bead, an air-gun pellet, or any other small dark moving item,
it will snap it up as though it were a fly. In fact, to the normal frog’s visual apparatus,
anything that triggers the detectors in the right way, is a “fly”. (von Glasersfeld, 1974,
reprinted in von Glasersfeld, 1987, pp. 106-07)

I was very excited by this story because it clarified why I found it necessary to work as a
teacher in mathematics education research and why, as Max Born (1968) said, “Thus it dawned
upon me that everything is subjective, everything without exception. That was a shock” (p.
162). The point of the story, of course, is that whatever is perceived is basically a composition
of signals generated in our various sensory channels.

We are free, of course, to consider these original signals the effect of some outside
causes. But since there is no way of approaching or “observing” these hypothetical
causes, except through their effects, we are in the same relation to that “outside” in
which the first cyberneticists found themselves with regard to living organisms—
that is to say, we are facing a “black box”. (von Glasersfeld, 1974, reprinted in von
Glasersfeld, 1987, p. 107)

The frog story, which is a result of biological research, immediately resonated with me
because it clarified my attempts at building models of the mathematical minds of the students
that I taught. For me, or any observer, the mathematical minds of these students were my “black
boxes” and I had just abandoned the models of them that I had been trying to use in their math-
ematical education as well as the methodology that I had been using in the applications. Further,
the analogy between the frog and myself was simply staggering—whatever the frog established
as a fly was due to the way the frog’s perceptual apparatuses were designed, so whatever I estab-
lished as a model of students’ mathematical minds would be due to the way my own conceptual
constructs were designed.

The Reality of Children’s Mathematics
When teaching students, it doesn’t take long to realize that one runs into constraints in interact-
ing with them.

The constructivist is fully aware of the fact that an organism’s conceptual construc-
tions are not fancy-free. On the contrary, the process of constructing is constantly
curbed and held in check by the constraints it runs into. (von Glasersfeld, 1990, p. 33)
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Another way of saying this is that adults are constrained by students’ mathematics in the
sense that it “kicks back™ at us in a way similar to how von Glasersfeld considers reality “kick-
ing back.” How to eliminate these constraints constitutes major problems for the researcher,
and their solutions depend on learning how to engender students’ solutions of their problems. In
spite of assertions by others, von Glasersfeld has never denied reality nor do I deny the realities
of students’ mathematics even though I consider them as “black boxes”.

The constructivist conclusion is unpopular. The most frequent objection takes the
form of the accusation that constructivism denies reality. But this it does not. It only
denies that we can rationally know a reality beyond our experience. (von Glasersfeld,
2007, p. 146)

How to build explanatory models of the “black boxes” that constitute students’ mathemat-
ics [or the mathematics of the other] is a major problem confronting researchers in mathemat-
ics education. One does not engage in collaborative research teams to learn how to apply the
concepts and methods of another discipline to mathematics education. Rather, one engages in
research teams in order to /earn how those one chooses to work with think, the tools they use in
their research, and the significant authors they read so that one may use the concepts and tools of
other individuals or disciplines in constructing explanations. Ifit is a science at all, mathematics
education is not and should not be regarded as an applied science.

Teaching as a Method of Scientific Investigation

By means of constructing models of students” mathematics, mathematics education can at least
in part be established as an academic field. But those who have attempted to read my accounts of
children’s number sequences might find it difficult to see how one might use these models when
working with children. I can certainly empathize with such attempts because it is much like at-
tempting to understand, say, geometrical transformations by simply reading definitions. By and
large, it just doesn’t work. And neither does an attempt to understand children’s mathematics by
means of reading explanatory models without having already constructed experiential models.
In my opinion, a major issue in mathematics education concerns the extent to which mathemat-
ics educators have constructed living, experiential models of children’s mathematics. As I see it,
there are at least two major aspects concerning this issue.

Experimental teaching of students. The first aspect is the extensive and concentrated
efforts that are involved in constructing living, experiential models of students’ mathematics.
Although it is critical to use teaching as a method of experimenting in order to understand
students, it is even more critical to use teaching as a method of experimenting in order to un-
derstand changes in their ways and means of operating. It isn’t sufficient to observe someone
teaching children because the actions and interactions of the teacher/researcher are essential in
students’ construction of mathematics. More importantly, the actions and interactions of teacher/
researchers, when coupled with students’ actions and interactions, are essential in teacher/re-
searcher’s construction of students’ mathematics and how it might be productively affected. So,
unlike Piaget’s minimal intervention methods, to construct how students construct mathematics
teacher/researchers have to be centrally involved in the process.

In the words of the cyberneticist Fred Steier speaking of second-order cybernetics;

Approaches to inquiry % have centered on the idea of worlds being constructed % by
inquirers who are simultaneously participants in those same worlds. (Steier, 1995, p. 70)
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It is well accepted in cybernetics that a science of observed systems cannot be divorced
from a science of observing systems because it is we who observe. The cybernetic approach and
the radical constructivist approach converge on this very important point in that both emphasize
our own subjectivity as observers. This places a very heavy responsibility on teacher/research-
ers because it places the experience of the teacher/researcher at the front and center in research
that aims to construct models of students’ mathematics (Steffe & Thompson, 2000a & b).

Elimination of the duality between children and mathematics. The second major aspect
concerns the view that children and mathematics are two separate entities. Separating math-
ematics and students in this way has always placed school mathematics outside of the minds
of the students who are to learn it regardless of how learning was conceived. Von Glasersfeld
(1974) provides an extensive discussion of research that undermines the belief that the knower
and the things of which, or about which, he or she comes to know are, from the outset, separate
and independent entities. The basic research that he draws from is Piaget’s account of the child’s
construction of the concept of an object that has some kind of permanence in his or her stream
of experience. Rather than attempt to recapitulate Piaget’s research and von Glasersfeld’s inter-
pretation of it, I encourage the reader to embark on his or her own journey through their intricate
and elegant accounts of how the infant comes to be but one element or entity among others in
a universe that he or she has gradually constructed for him-or her-self out of the elementary
particles of experience. This powerful insight into the child’s construction of his or her ordinary
items of experience serves as a “demonstration” that Cartesian duality is untenable: That is, the
belief that from the outset the knower and the things of or about which he or she comes to know
are separate and independent entities is not viable.

If indeed it is accepted that the student and mathematics are not two separate and indepen-
dent entities, what does this mean for school mathematics and for the activities that are involved
in specifying such (a) mathematics? Ernest (1996) [as well as Janvier (1996)] has argued that
radical constructivism has little to offer for selecting the mathematics that constitutes school
mathematics.

What selection from the stock of cultural knowledge is valuable to teach? (Here
again, | pause to consider whether radical constructivism is even able to pose this
question.). (Ernest, 1996, p. 346)

The implicit assumption in Ernest’s comment is that “cultural knowledge” is that knowl-
edge produced through the mathematical activity of adult mathematicians. This raises a serious
issue concerning the commensurability of the mathematical knowledge of adult mathemati-
cians and children’s mathematical knowledge’. Given that the Cartesian duality is untenable,
a major shift is called for in the problem of constructing a mathematics that constitutes school
mathematics.

Rather than focus on the selection from the stock of cultural knowledge that is valuable
to teach, we adults should concentrate on learning how to use our mathematical knowledge in
mathematical communication with children. Our goal should not be to transfer cultural knowl-
edge to children in the particular way that we understand it. Rather, our goal should be to learn
how to engender children’s productive mathematical thinking and how to build explanatory
models of that thinking. This may seem to be a rather ambitious goal, but we have to remember
that children spontaneously construct their object concepts and a universe in which they are but

9 The issue is analogous to the separation between mathematical structures and genetic structures that
plagued the modernist movement during the last century.
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one element out of the elementary particles of experience. Children enter school having already
engaged in constructive activity of enormous magnitude, so their ability to construct a universe
of mathematical concepts of comparable magnitude should not be an issue. What is at issue,
however, is our disposition toward children as productive mathematical thinkers, our ability to
engender children’s productive mathematical thinking, and our ability to construct explanatory
models of children’s mathematical thinking that portrays it as a coherent and internally consis-
tent mathematics.

Conceptual Analysis

Not everyone on a research team needs to have constructed living, experiential models of chil-
dren’s mathematics when engaging in collaboration with other members of the team. But there
needs to be at least one member of a team who has engaged or who will engage in this activity
in attempts by the team to construct models of children’s mathematical minds and how these
minds evolve and change over time in the context of specialized interactions. In IRON, von
Glasersfeld initially led the way when we engaged in conceptual analysis of the living, experi-
ential models that I had constructed by means of teaching children. Conceptual analysis is the
primary method of building explanatory models of students’ mathematics and the constructive
activity that produces it. Von Glasersfeld learned conceptual analysis through his work on the
analysis of word meaning with Silvio Ceccato in the Italian operational school in Milan, Italy
(Accame, 2007). In a conceptual analysis, the question is, “What mental operations must be
carried out to see the presented situation in the particular way in which one is seeing it?” (von
Glasersfeld, 1995, p. 78). Von Glasersfeld told me that the opportunity to continue to engage
in conceptual analysis was what attracted him to the interdisciplinary work of IRON. In his
words, “It was my interest in conceptual analysis that made it attractive to watch children get
into arithmetic. My paper on Units and Number could not have been written without the clinical
interviews with the children” (Personal Communication, May 26, 2010).

In his work in IRON, von Glasersfeld first conducted a first-order conceptual analysis of
his own operations that produce units and number (von Glasersfeld, 1981). The goal of a first-
order conceptual analysis concerns specifying the mental operations that produce particular
conceptions of the analyst. It is an analysis of first-order models, which are models the analyst
has constructed to organize, comprehend, and control his or her experience; that is, the ana-
lyst’s own knowledge. The distinction I am making between the mental operations that produce
particular conceptions of the analyst and those conceptions is crucial in understanding how the
knowledge of researchers can be used in research programs concerned with exploring the opera-
tions by means of which human beings construct their conceptions (Steffe, 2007). It is crucial
because these operations are involved in producing second-order models, which are models an
observer constructs of the observed person’s knowledge in order to explain their observations
(Steffe, von Glasersfeld, Richards, & Cobb 1983, p. xvi). Because the goal of the analyst in
constructing second order models concerns constructing conceptual operations that explain the
observed language and actions or interactions of the observed person, I refer to it as a second or-
der analysis!? (cf. Steffe, von Glasersfeld, Richards, & Cobb, 1983). The reciprocal relationship
between first- and second-order analyses is basic in constructivist research programs because it
illustrates that researchers and their ways and means of operating and observing constitute the
research programs.

10 A goal of Piaget’s genetic epistemology was to provide an ontogenetic explanation of mathematics,
and this is one of my goals as well.
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Epistemic Students

The primary goal of conceptual analysis is to produce second-order models that constitute epis-
temic students. Without differentiating the epistemic student and the psychological student, em-
bedding studies of mathematical learning in the context of using teaching as a method of scien-
tific investigation might be interpreted as a more or less empirical enterprise and as generating
a whole industry of empirical research on mathematical learning, to paraphrase Michael Cole’s
(2004) comments concerning the training studies of the 1960’s that were conducted to prove
Piaget wrong. But the emphasis on conceptual analysis and the models of students’ mathematics
that it produces countermands this interpretation.

It is useful to make a distinction between Piaget’s epistemic subject and what I refer to as
an epistemic student. An epistemic subject is, “that which is common to all subjects at the same
level of development, whose cognitive structures derive from the most general mechanisms of
the co-ordination of actions” (Piaget, 1966b, p. 308). The development of which Piaget spoke of
was spontaneous development to which four main factors contribute; maturation of the central
nervous system, physical experience, self-regulation, and social transmission (Piaget, 1964).
Of these four main factors, although the first three are sometime considered in mathematics
education, social transmission is often considered within the classroom to be the most important
factor. Piaget, however, did not mean social transmission as transmission from an objective
social reality to the individual as is common in mathematics education. That meaning would
be inconsistent with his reaction to the claim that knowledge and language are performed in
society: “The preformation of social characteristics is, as in other contexts, nothing but a com-
mon sense illusion consolidated by Aristotelian philosophy of potentiality and action” (Piaget,
1965/1995, p. 340). Instead, Piaget thought of social transmission interactively; “Individuals
establish equilibrium among personal schemes of action and anticipation as they interact in mu-
tual adaptation—as constrained by the local limitations of their abilities to accommodate those
very schemes” (Piaget 1965/1995; Steffe & Thompson, 2000a, pp. 192-93).

This concept of “social transmission” is basic in the construction of living, experiential
models of students’ mathematics. The concept is also basic in the processes of the construction
of epistemic students. An epistemic student consists of inferred mathematical schemes of action
and operation of students and the accommodations in them that are brought forth and sustained
by the students’ teachers (cf. von Glasersfeld, 1980, for an account of schemes). To offset an
interpretation of the epistemic student as a static model, I interpret schemes as instruments of
interaction. When I think of children’s number sequences, for example, I conceptualize my
interactions with the specific children who were involved in my construction of the number
sequences. So, to elaborate, for me, epistemic students are dynamic organizations of schemes
of action and operation in my mental life. But without living, experiential models of children’s
ways and means of acting and interacting, the models the epistemic students comprise would
have no meaning nor would changes in them. In fact, I find it not possible to construct epistemic
students without constructing living, experiential models of students’ mathematics. Perhaps
contrary to conventional wisdom in doing science in mathematics education, I have always
found that building living, experiential models of students’ mathematics through intensive and
extensive interaction with them precedes the activity of constructing explanations'.

But what of the other three factors involved in spontaneous development? They are all

11 Professor John Richards’ goal when joining IRON was to establish a justification for mathematics
based on its construction in individuals. In retrospect, he was concerned primarily with the construction
of epistemic students.
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implicated in the concept of epistemic students. Self-regulation is already implicated by equili-
bration among personal schemes of action and anticipation as individuals interact in mutual
adaptation in the concept of “social transmission”. Further, when considering that mathemat-
ics education is concerned with educating children from three to seventeen years of age and
beyond—from early childhood through young adulthood--it always surprises me that embryo-
genesis is rarely a topic of conversation at mathematics education professional meetings even in
the case of the Psychology of Mathematics Education meetings. Are we to believe that there are
no physiological changes in human beings throughout this age range that open new possibilities
for mathematical thinking and learning? In all of the teaching experiments that I have done
with children, I have never been able to separate the contributions of spontaneous development
and specialized interactions in children’s construction of their number sequences (Steffe, et al.
1983). For example, when children are yet to construct arithmetic units, which I have come to
believe is a product of spontaneous development, attempts to engender that construction can be
just as futile as were the attempts of the R&D Center for Educational Stimulation to acceler-
ate the construction of Piaget’s concrete operations (Steffe & Cobb, 1988). Finally, Piaget’s
physical knowledge refers to products of children’s interactions in their physical environments.
The mathematical knowledge that these interactions precipitated has been documented (Piaget,
Inhelder, & Szeminska, 1960; Piaget & Inhelder, 1963; Piaget, 1969). So, although I consider
human beings as interactive organisms, interaction is constrained by spontaneous development.

The living, experiential models of students that a researcher constructs by means of in-
teracting with them are what family therapists call the internalized other. They are not simply
images of how the students look. Rather, they consist of images of students’ actions and interac-
tions that one abstracts. Epistemic students are interiorized others—the dynamic organization of
schemes of action and operation in one’s mental life. Further, when interacting mathematically
with particular students, I consider my experience of their mathematics as mathematical experi-
ences. | consider students as rational beings and the explanations of their mathematics do belong
to mathematics. These explanations, which constitute epistemic students, must be considered as
serious and important mathematics.

Progressive Research Programs

Research teams are not easy to sustain and they do disintegrate for any number of reasons. Von
Glasersfeld retired from the University of Georgia circa 1986 and moved to the University of
Massachusetts to work with Jack Lockhead, and John Richards left the University of Georgia
and launched an educational consulting business.'? Upon the departure of Richards and von
Glasersfeld from the University of Georgia, I had constructed models of children’s number se-
quences and, in retrospect, perhaps more importantly, I had constructed models of the numerical
concepts and operations children construct using their number sequences (Steffe, 1992, 1994).
So, I felt ready to attack the intractable problem of children’s construction of fractions in which
I had been long interested. However, I was yet to construct epistemic students in this contentual
area.

Apparently, the lack of models of children’s fractional concepts and operations was not
restricted to myself as attested by a comment by Davis et al. (1993) that, “the learning of frac-
tions is not only very hard, it is, in the broader scheme of things, a dismal failure” (p. 63). I
was in a similar position with respect to children’s construction of fractions that I was in with
respect to children’s construction of number when working in the Research and Development

12 Consulting Services for Education, Inc., 22 Floral Street, Newton, MA 02461. 617 916 2750
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Center for Education Stimulation upon matriculation at the University of Georgia’s Department
of Mathematics Education. But I had a starting point because I thought that children’s number
sequences should serve in their construction of fraction schemes. In fact, this became known as
the reorganization hypothesis—“children’s fractional schemes can emerge as accommodations
in their numerical counting schemes” (Steffe, 2009, p. 1). But I had little idea of what those
schemes might consist of or how they might be constructed.

Fortunately, Professor John Olive joined the faculty of mathematics education at the
University of Georgia and the two of us formed the project that has become known as “The
Fraction Project”. I regarded it as an extension of IRON, but John had not worked in IRON so
it was appropriate to refer to the project with a new title. It was an extension of IRON for me
because the reorganization hypothesis was our original hypothesis. It is crucial to stress that we
had no models of children’s fraction schemes or of their construction beyond the hypothetical
schemes that had their sources in our first-order analyses of our own conceptions of fractions.
So, along with several doctoral students that included Ron Tzur, Barry Biddlecomb, and Azita
Manoucheri, we set out to work with eight children throughout their 3%, 4, and 5" grades in a
teaching experiment (Steffe & Olive, 2010). I can’t emphasize enough the necessity of engag-
ing in deep and sustained interactions with children over extended periods of time in order to
construct living, experimental models of their ways and means of operating and changes that
one might engender in those ways and means. The primary goal is to learn to think like the
children with whom one is interacting and to find problems that can only emerge in that con-
text.® In doing this, one is able to learn the “lay of the land” and experience regularities and/
or constraints both within and across the children with whom one is working without necessar-
ily being able to explain the conceptual mechanisms that might produce the regularities and/or
constraints.

At the start of the teaching experiment, the reorganization hypothesis constituted a problem
shift. That the hypothesis was confirmed (Steffe & Olive, 2010) is, according to Lakatos, es-
sential to claim that the IRON research program was a progressive program; “Finally, let’s call a
problem shift progressive if it is both theoretically and empirically progressive, and degenerat-
ing if it is not” (Lakatos, 1970, p. 118). For Lakatos, a problem shift is theoretically progressive
if a superseding theory is posited that has excess empirical content over its predecessor and it is
empirically progressive if some of the excess empirical content is corroborated.

Final Comments

I have argued that collaborative research in mathematics education should be based in inter-
disciplinary research. However, two or more researchers working together who are simply in
different disciplines does not constitute the interdisciplinarity that is needed to constitute a team
as a collaborative research team. For example, it is not the case that a practicing mathematics
educator and a practicing mathematician can automatically engage in interdisciplinary research.
Mathematics education is often thought of as the practice of mathematics teaching, which quali-
fies most mathematicians as practicing mathematics educators. It is rare, however, to find prac-
ticing mathematicians engaging in mathematics education research just as it is rare to find prac-
ticing mathematics education researchers engaging in mathematics research. The two fields are
indeed quite different fields of research and even fields of teaching practice. Still, my experience
is that it can be very important for mathematicians sympathetic with precollege mathematics

13 When writing a prospectus for doing research, the main goal is often to state the problems on which
one is going to work. I find this goal misdirected when there is an assumption that one can know the
results of experience prior to experience.
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education to engage in interdisciplinary research with mathematics educators.

Historically, when mathematicians have become engaged in collaborative research with
mathematics educators, the goal usually has been to develop such things as curricular standards
or even full-fledged mathematics curricula such as was developed during the modern mathemat-
ics movement of the last century. In these cases, the mathematicians and the mathematics educa-
tors have not been on an equal footing and mathematics as known by the mathematicians has
been the norm in constituting school mathematics. What has been missing in these asymmetrical
collaborations is a mathematics education that has been constituted as an academic discipline.
If mathematics education is to distinguish itself as an academic discipline from, say, science
education or English education, there must be a content distinction. In the past, this distinction
has been served mainly by mathematics. My argument throughout the paper has been that to
distinguish mathematics education as an academic field, we must reach beyond Ernest’s (1996)
“cultural knowledge” of mathematics produced through the mathematical activity of adult
mathematicians to a “cultural knowledge” of children’s mathematics that is produced through
the model building activity of collaborative research teams. This is basic in any consideration
of mathematics education as an academic field, and it can profitably include collaboration with
mathematicians.

Learning from Others

The most important thing that occurs in collaborative research is the transformations in the
knowledge of the members of the team. More simply, learning from others is the primary reason
to engage in collaborative research. When considering that the human mind is necessarily more
complex than mathematics it produces, this provides a measure of the complexity of mathemat-
ics education. So, the interdisciplinary focus in collaborative research is not something that
should be considered as nice but nonessential. Rather, an interdisciplinary focus in collaborative
research is essential to move the field forward toward a more adequate mathematical education
of precollege students.

I like to think of collaborative research as working together but alone, if that makes any
sense. Perhaps restating Piaget’s concept of social transmission is helpful in understanding what
I mean: “Individuals establish equilibrium among personal schemes of action and anticipation
as they interact in mutual adaptation—as constrained by the local limitations of their abilities
to accommodate those very schemes” (Piaget, 1965/1995). It is essential that each researcher
maintains autonomy in the research team and maintains an equal footing with the other mem-
bers of the team. Maintaining autonomy does not mean isolating oneself from others. Rather,
it means maintaining the viability of one’s schemes of action and operation by means of the
accommodations in them that follow on from interactions with other members of the team.
Perhaps what I mean is best expressed by von Glasersfeld’s (2005) comment that I quoted
earlier that, “[we] would spend countless hours viewing these tapes and trying to agree on what
we gathered from them. We had heated arguments and for all of us it was a powerful lesson,
hammering in the fundamental fact that what one observer sees is not what another may see and
that a common view can be achieved only by a strenuous effort of mutual adaptation” (p. 10).
The heated arguments attest to the local limitations in our abilities to accommodate the schemes
we were using in assimilation of not only the video-recorded material, but also the language of
each other as we made our own interpretations of the children’s language and actions. It is these
accommodations that I believe are the most valuable outcome of collaborative research.
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Viability Rather than Validity

I pointed to dissatisfaction with the state of the field of mathematics education as well as dis-
satisfaction with my own progress as a precondition for the collaborative research in which I
engaged. For me, both of these sources of dissatisfaction had origins in the concept of truth as
contained in the Sifting and Winnowing plaque at the entrance to Bascom Hall at the University
of Wisconsin from which I graduated.

Whatever may be the limitations which trammel inquiry elsewhere, we believe that the
great State University of Wisconsin should ever encourage that continual and fearless
sifting and winnowing by which alone the truth can be found. (Taken from a report of
the Board of Regents in 1894)

The text of this plaque has both inspired and debilitated me throughout the years since I
graduated. The primary source of inspiration resides in the image about how one might conduct
one’s professional life. But it was also debilitating because it seemed to me that the truth was
always on the other side of the divide between what a human being could know and what was
“there” on the other side to be found. I could not understand by what means I could possibly
cross that divide and it seemed that truth was unattainable. Upon becoming immersed in Piaget’s
constructivism, | became aware that the Cartesian duality between mind and reality on which
the plaque was based dissipated for me in that we human beings construct our own experiential
realities. This was very liberating and heady because I realized that the models of children’s
mathematics that I constructed didn’t need to be true in that they didn’t need to be considered as
matching what goes on in the heads of children. They did not need to be valid, just viable.

Just as the student and mathematics are not two separate and independent entities, a re-
searcher’s models of a student’s mathematics and the student’s mathematics are not two sepa-
rate and independent entities. As long as those models fit within my experience of children’s
mathematical language and actions they are “good enough” not only to explain what might be
going on in the heads of children, but also “good enough” to make predictions about where I
might try to take children I am charged with teaching and if they would be able to traverse the
journey with me. Such predictions are crucial in corroborating the models one constructs in the
sense that Lakatos (1970) spoke of corroborating new empirical content. Even more satisfy-
ing, however, are those occasions when I meet a child I have never met before and, after a few
exchanges, feel that I understand the child’s mathematical mind because my experience of the
child’s mathematical language and actions that I am able to bring forth fit within my models of
epistemic students.

A New Revolution in Mathematics Education?

There are many reasons that have been advanced for why the mathematics education of students
is not as successful as it might be, but only rarely does one find even an allusion to what teachers
make of children’s mathematics. What teachers make of their students’ mathematical language
and actions is a very basic aspect of mathematics teaching, and it is definitely one place where
mathematics education is failing worldwide. The teacher must construct the mathematics of the
children she or he is charged with teaching by means of interacting with them because it is not
given nor can it be given by the usual mathematics texts, curricular guides, or lists of standards.
By means of constructing the mathematics of the children he or she is charged with teaching,
the teacher confers mathematical existence on the children. Without such a conferral, the teacher
necessarily proceeds as a solipsist and the only mathematical reality in the classroom is that of
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the teacher. In this case, the teacher interprets the children’s mathematical behavior relative to
the mathematics text, curricular guides, or lists of standards and the children have no math-
ematical existence as autonomous and self-organizing entities apart from the teacher’s projects.

The current standards movement is another source of dissatisfaction with mathematics
teaching if for no other reason than it is homogenizing mathematics teaching in the schools. The
following comments from a Georgia mathematics teacher for whom I have great respect perhaps
serves as a “smoking gun” concerning this movement.

You cannot imagine the insanity of Math 1. Thank God I haven’t had to teach it, but
it’s too much content, and the concepts are too advanced for most of the students.
I attend a couple of collaboratives each month and hear the same horror stories from
teachers everywhere - so it’s not just us. Most of our Math 1 students stay after school
for a couple of hours on each of two days a week for extra help - pretty much every-
body is having to provide a lot of before/after school tutoring - but it is still just too
much for them. Note that what we are trying to do is teach what used to be accelerated
“college track” mathematics to everybody. Everyone just is not capable of (or inter-
ested in) doing this, and when teachers care about their students and their students’
futures, it is heartbreaking - and most of the tears come from a feeling that we are
doing something that is, well, basically immoral. We feel like we are destroying these
kids’ futures. That’s the viewpoint of the standard class and with-support teachers.
The accelerated teachers are even more upset - the same sense of doom about the fu-
ture plus we are seeing kids who used to like mathematics decide they’d really rather
not pursue any kind of math-centered career. It will be interesting to see what effect, if
any, the national standards will have and whether the new state school superintendent
will address these issues. It’s a mess.

The goal of IRON was to start a revolution in mathematics education to fill the void left
by the modern mathematics movement of the 1960°s that was being filled by the back to basics
movement of the 1970’s, a movement that was based on classical empiricism and the continu-
ing persistence of neo-behaviorism applied to curriculum and teaching (Steffe, Richards, &
von Glasersfeld, 1981). Perhaps this conference, aimed at initiating three new, broadly-based
Research Teams to be supported within the Wyoming Institute for the Study and Development
of Mathematical Education, can be regarded as an impetus for starting another revolution in
mathematics education?
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