
Reclamation 101 Surface Water & Erosion

> Ginger Paige University of Wyoming

Laramie, Wyoming





- Hydrology: Surface Water Processes
- Oil and Gas Development
  - Impacts on surface water processes
  - Erosion
- Short and long term reclamation objectives
- On the ground approaches
- Models and tools
  - Monitoring

### Surface Water Processes

Surface Water Processes

- Infiltration
- Runoff
- Erosion Sediment transport (and other contaminants)

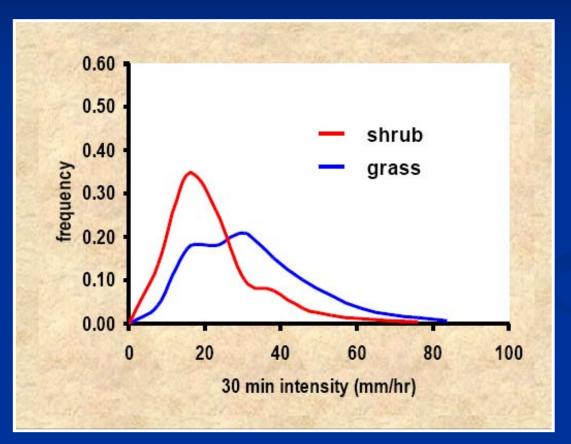
Affected by: Land management practices/changes Climatic input

# Infiltration

- <u>Infiltration</u>: process by which water enters the soil surface
- <u>Infiltration capacity</u>: maximum rate at which water can enter the soil
- <u>Soil Hydraulic Conductivity</u>: movement of water through soil (saturated and unsaturated flow)
- Soil Water: water held in soil pores
  - Plant available water

### Factors which affect infiltration:

- Soil type, texture, structure
- Biological factors-
- Vegetation
  - Type (forb, grass, shrub, trees, etc.)
  - Distribution
  - Shrublands
  - Grasslands
     type of grass


### **Runoff Production**

Rainfall (Infiltration) Excess

#### Pathways

- Overland flow (hortonian or saturation excess)
- Subsurface flow
- Stream channel flow
- Variable source area (e.g., wetlands)

#### Runoff on Rangelands Vegetation effects on runoff





It takes higher intensities to generate runoff on grasslands

# Erosion

- Erosion is a process: work required to dislodge and move particles. Work requires energy
   Momentum = mass \* velocity
  - Energy = mass \* velocity<sup>2</sup>

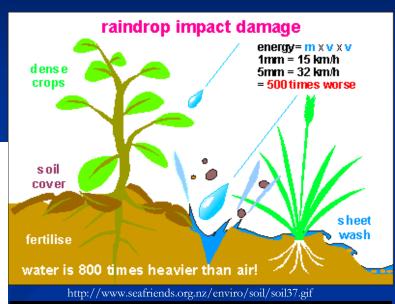
# Erosion

- 3 primary forms of erosion on uplands
  - Surface erosion
  - Gully erosion
  - Soil mass movement
- <u>Surface Erosion</u>: detachment and removal of soil particles and aggregates from the land surface by water or wind
  - Raindrops
  - Thin sheet flow
  - Wind

# Water Erosion

#### Falling raindrops are a major contributor to surface erosion

**TABLE 7.1.** Kinetic energy  $(K_e)$  associated with different intensities of rainfall

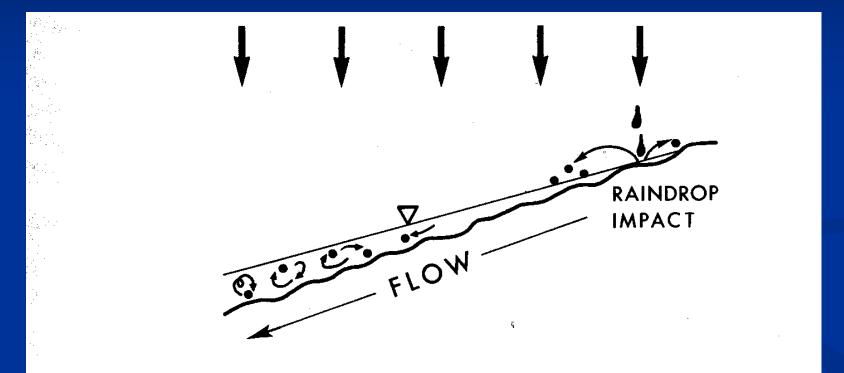

| <u></u>    | Rainfall Intensity (mm/hr) | Kinetic Energyª (MJ/ha∙mm)⊧ |  |  |  |  |  |
|------------|----------------------------|-----------------------------|--|--|--|--|--|
| Drizzle    | 1                          | 0.12                        |  |  |  |  |  |
| Rain       | 15                         | 0.22                        |  |  |  |  |  |
| Cloudburst | 75                         | 0.28                        |  |  |  |  |  |

Source: Calculated from Dissmeyer and Foster 1980.

<sup>a</sup> K<sub>e</sub> = 1/2 (mass)(velocity)<sup>2</sup>.

• Units are megajoules per hectare millimeter.

They are also key to soil aggregate breakdown and <u>surface sealing</u>






### **Does Overland Flow Matter?**

Yes... turbulent eddies in surface runoff are key drivers

- More important: concentrated flow paths into rills and gullies
- Break erosion down into categories
   Rill erosion (#1 loss of soil worldwide)
   Inter-rill erosion



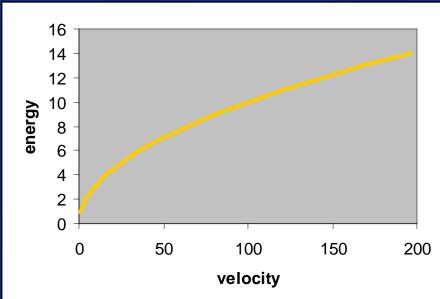
**FIGURE 7.2.** Surface soil erosion as a result of raindrop impact and turbulent surface runoff.



# What Increases Energy?

#### Flow velocity

- Due to concentration in rills & decreased friction
- Increased slope
- Mass of the suspension (water + sediment)
  Turbulent flow
  - If low flow, raindrops can magnify this
- Slope length (unobstructed pathway)
- High velocity, steep long slopes, low or little vegetative cover


# Wind Erosion

#### Common in dry, sparsely vegetated areas

- <400 mm/year</p>
- But accelerate erosion can occur even when PPT is very high. Need good management!

#### Wind as a fluid; acts very similar to water

- Increases exponentially with velocity
- Energy =  $mv^2 \rightarrow$



#### **Erosion versus Sedimentation**

- Erosion is the process by which the land surface is worn away by the action of water or wind.
- Sedimentation is the movement and settling out of suspension of soil particles.
- It is usually easier and less expensive to prevent erosion than it is to control sediment from leaving a site.

# Oil & Gas Development

- Impacts water processes / water quality across the Intermountain West:
- storm water runoff from construction activities
- pollution from pits and hydraulic fracturing
  use and disposal of CBM produced water

Scale of disturbance: space and time varies with the type of development









Container Trucks with Fracking Liquids at a Drilling Site, Dimock, PA. Photo © 2010 J. Henry Fair.



Waste Pit of Hydro-Fracking Drilling Mud, © 2010 J. Henry Fair

#### **Reclamation Goals...**

Ecosystem "restoration" includes restoration of the natural vegetation community, hydrology, and wildlife habitats.

## Reclamation "Water" Objectives:

 On going & short term
 Minimizing accelerated erosion....
 Water quality: protecting water bodies/ sources

Long term
 Returning hydrologic function

Stages of **Development/Reclamation** Project Planning Define characteristics (hydrologic) of the site: soils, slope, vegetation (ecological site) During development: Minimizing accelerated erosion Protecting water sources Reclamation Returning hydrologic function

Stabilize the site as soon as possible Get site to final grade and either permanently or temporarily stabilize all bare soil areas as soon as possible.

Consider germination times for the grasses or other vegetation selected

Provide additional stabilization (mulches, matrices, blankets, soil binders) on erosion prone areas such as slopes and drainage ways.

Consider seasonal limitations to plant establishment and growth, such as drought or cold temperatures, ensure that areas that are not showing adequate vegetation establishment are reseeded or mulched immediately.

#### Protect slopes and channels

Convey concentrated runoff around the top of slopes and stabilize slopes as soon as possible.

Use pipe slope drains or earthen berms that convey runoff around the exposed slope.

Avoid disturbing natural channels and the vegetation along natural channels if possible.

Reduce impervious surfaces and promote infiltration

#### Control the perimeter of your site.

Divert "run-on" coming on to your site: convey it safely around, through, or under your site.

Avoid allowing run-on to contact disturbed areas of the construction site.

To minimize runoff & erosion from the disturbed areas, install BMPs such as silt fences.

### **Runoff and Erosion Control**

Overall goal - maintain (vegetative) cover and not reduce infiltration capacities

Soil Stabilization Treatments
Reseeding/mulching
Contour Logs
Straw Wattles
Silt Fences
Straw Bales

### Mulch/Landscape Cloth

Straw - Weed free ground application 2-3 inch thick layer Target steep slopes - high erosion potential Landscape Cloth Cost - benefit question Short term

# Straw Wattles

Hillslopes or small drainages where runoff and sediment can concentrate

Flexible enough to follow the contour

Should be embedded in soil and secured with stakes.



# Silt Fences





Comparing the effectiveness of a straw wattle after the 2000 Bitterroot Valley fires.

Silt Fence installed to decrease runoff and sediment movement into drainage

### Straw Bales

 Often used in small drainages where runoff and sediment can concentrate

 Bales act as small dams - collecting sediment and slowing down runoff

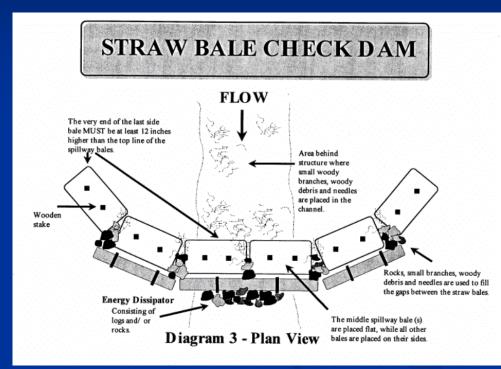
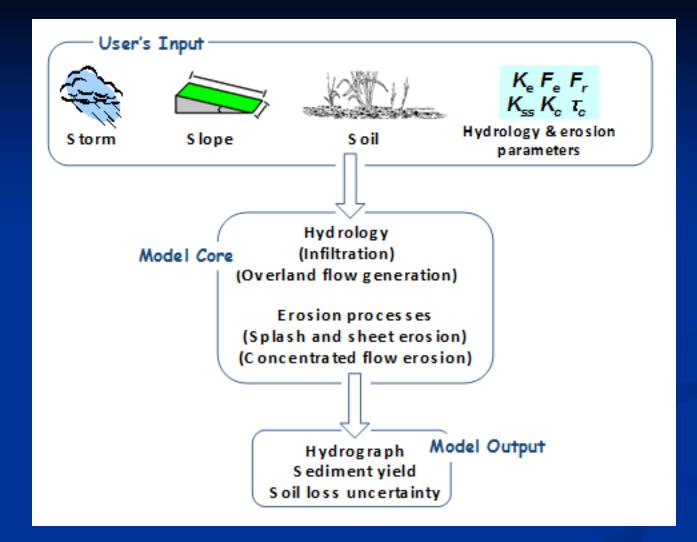



Diagram from Fish and Wildlife Service fire.r9.fws.gov/ifcc/esr/Treatments/

Effectiveness: poor to good Best in first year - Can fill up with sediment

# Runoff & Erosion Prediction Tools

- Universal Soil Loss Equation
  - Original, modified, revised


RHEM- Rangeland Hydrologic Erosion Model

- WEPP Water Erosion Prediction Project
  - Forest
  - Disturbed

> AGWA - Automated Geospatial Watershed Assessment Tool

# USLE / MSLE

- A = R K (LS) CP
- A = R K (LS) VM
  - A = annual soil loss (tons/acre/year)
  - R = rainfall erosivity factor
  - K = soil erodibility factor
  - LS = topographic factor
  - C = cropping factor
  - P = protection factor
  - VM = vegetation management factor



A flow chart of RHEM erosion prediction procedure

|                            |                          |                     |                      | rhem 1.jpg    |             |                 |              |            |                      |             |               |      |
|----------------------------|--------------------------|---------------------|----------------------|---------------|-------------|-----------------|--------------|------------|----------------------|-------------|---------------|------|
|                            |                          |                     |                      | RHEM Web Tool |             |                 |              |            |                      |             |               |      |
| ag.gov/rhem/tool#          |                          |                     |                      |               |             |                 |              | ¢          | Q• Google            |             |               |      |
| HEM Web Tool: Welcome Mai  | in Pageommur             | ities Yahoo!        | Google Map           | s WYDOT Trav  | .(Cheyenne) | 7-Day Forec     | av. 7196 ft) | YouTube    | University of Wyomin | g Wikipedia | News (1372) • | Рори |
|                            |                          |                     |                      |               |             |                 |              | Hello, Gin | iger Log Out         |             |               |      |
| KILM H                     | angeland<br>ydrology and |                     |                      |               |             | umitis - unders |              |            |                      |             |               |      |
| Web Tool                   | rosion Model<br>/eb Tool |                     |                      |               |             | Home            | About        | Links      | Contact Us           |             |               |      |
|                            |                          |                     |                      |               |             |                 |              | Now        | : Mon, Nov 01 2010   |             |               |      |
|                            |                          |                     |                      |               |             |                 |              | 101        | . mon, nov or zoro   |             |               |      |
| INPUT PARAME               | TERS                     |                     |                      |               | c           | UTPUT           |              |            |                      |             |               |      |
| 1. Define Scenario         | ?                        | SCE                 | NARIO INPUT          | 5             |             |                 |              |            |                      |             |               |      |
| Clear Scenario             | (                        | ?                   | North Contractor and |               |             | RECLAMA         | TION 101     |            |                      |             |               |      |
| Name: reclamation          | 101                      | ?] State II         | D                    |               |             | WY              |              |            |                      |             |               |      |
| Description:               |                          |                     | e Station            |               |             | RAWLINS         | CAA AP       |            |                      |             |               |      |
| Demonstration              |                          | ? Soil Te           | xture                |               |             | Sandy Lo        | am           |            |                      |             |               |      |
|                            |                          | Moistur             | re Content           |               |             | 0.25            |              |            |                      |             |               |      |
| L                          |                          | Slope L             | ength (meter         | s)            |             | 20              |              |            |                      | ,           |               |      |
| Select units: Metric: ) En | nglish: 🔘                | ? Slope S           | hape                 |               |             | S-Shaped        | 1            |            | h                    | ttp://      | dss.tu        | uC   |
| Show User Scenarios        | 1                        | ? Slope S           | Slope Steepness      |               |             |                 | 9            |            |                      | I           |               |      |
|                            |                          |                     | tion Commun          | ity           |             | Shrubs          |              |            |                      |             |               |      |
| 2. Climate Station         | ? (                      | + Canopy            | Cover %              |               |             | 56              |              |            |                      |             |               |      |
| 3. Soil Texture Clas       | ss ? (                   | E Basal C           | lover %              |               |             | 37              |              |            |                      |             |               |      |
| 4. Slope                   | E                        | + Rock C            | over %               |               |             | 13              |              |            |                      |             |               |      |
| 5. Cover Characteri        | istics 🛛 🔅               | Litter C            | Cover %              |               |             | 12              |              |            |                      |             |               |      |
| Dominant Plant Growth Form | m:                       | Total G             | Fround Cover         | %             |             | 62              |              |            |                      |             |               |      |
| Shrubs                     | :                        |                     | UAL AVERAG           | iES           |             |                 |              |            |                      |             |               |      |
| Canopy Cover %:            | 56                       | 2)                  |                      |               |             | RECLAMA         | TION 101     |            |                      |             |               |      |
| Basal Plant Cover %:       |                          |                     | recipitation (       | mm/year)      |             | 228.280         | 000          |            |                      |             |               |      |
| Rock Cover %:              |                          |                     | unoff (mm/ye         | ear)          |             | 4.97891         | )            |            |                      |             |               |      |
| Litter Cover %:            | 12                       | ? Avg. So           | oil Loss (ton/I      | na/year)      |             | 0.083374        | 4            |            |                      |             |               |      |
| ,                          |                          | Avg. Se             | ediment Yield        | (ton/ha/year) |             | 0.06821         | 3            |            |                      |             |               |      |
| 6. (Run Scenario)          |                          | ?                   | URN PERIOD           | RESULTS       |             |                 |              |            |                      |             |               |      |
| 7. Compare Scenarios       |                          | ? VARIABL           | .E 2                 | YR 10         | 0 YR        | 25 YR           | 50           | YR         | 100 YR               |             |               |      |
|                            |                          | Rain (n             | nm) 1                | 8.40 2        | 9.90        | 35.80           | 42.          | .70        | 47.00                |             |               |      |
|                            |                          | Runoff              | (mm) 1               | .37 1         | 0.82        | 16.18           | 19.          | .30        | 26.52                |             |               |      |
|                            |                          | Sedime<br>(ton/ha   | nt Yield<br>a)       | .01 0         | 0.16        | 0.24            | 0.3          | 16         | 0.45                 |             |               |      |
|                            |                          | Soil Los<br>(ton/ha |                      | .02. 0        | ).18        | 0.26            | 0.3          | 19         | 0.48                 |             |               |      |
|                            |                          | learn ne            | ·                    |               |             |                 |              |            |                      |             |               |      |

# Monitoring

#### Field Evidence:

- Concentrated flow
- Rills
- Pedestals
- Sediment movement
- Reference to a known benchmark



http://www.fao.org/docrep/T0848S/t0848s00.jpg

# Thanks! Questions?