# ECONOMICS OF NATIVE SEED PRODUCTION FOR RECLAMATION OF DISTURBED LANDS IN WYOMING



Betsy Mock Kristiana Hansen Roger Coupal

## INTRODUCTION

- Motivation/Background
- Interviews
- © Enterprise budgets
- Laboratory Experiment
- © Conclusion and
  - Recommendations



## WHY IS THE NATIVE SEED INDUSTRY IMPORTANT?

- Native seed supply is a vital component in the reclamation process in the West.
- Types of Reclamation in Wyoming
  - Over 70,000 working oil and gas wells
  - 21 coal mines



- 231 highway improvement projects
- 73,865 acres burned (7-year) average
- Federal Lands make up 48% of Wyoming's total acreage

## THE PROBLEM

- Reclamation Practitioners want more grass, forb, and shrub seed, but seed producers/collectors are not delivering either the right species or quantities, at the required time.
- Some species are in excess supply and some species are in excess demand



## BACKGROUND

- The biological theory is that native plants may be the best at restoring particular ecosystem functions with the least amount of unintended side effects.
- Native plants are not like commodity crops
  - Survival and dormancy mechanisms
  - Potential symbiotic requirements

Wyoming is unique among the 11 Western States

- BLM policy in Wyoming obligates the use of native plant material with few exceptions
- Wyoming does not have major fire cycles like many other Western states
  - At least partially attributed to lower amounts of cheatgrass and other early-maturing invasive grasses

https://attra.ncat.org/attra-pub/grassland.html



# BACKGROUND: LIFECYCLE OF NATIVE SEED



#### **OBJECTIVES**

- What needs to be done now?
  - Forming a general picture of the native seed market landscape
  - Understanding Production and Demand Requirements
    - Biology/Ecology
    - Cultural Practices
  - What can be done to facilitate this market?
    - How do different market structures affect the profits of native seed producers?
    - What market structure is the best for the native seed market?

# INTERVIEWS: MARKET PLAYERS

- Supply
  - Producers
  - Intermediaries
  - Federal research centers
- Demand
  - Buyers aka Responsible Party
  - Subcontractors
- Regulators
  - Regulators are also buyers (BLM, etc.)





## INTERVIEWS: MARKET OVERVIEW

- The native seed market is relatively young and much more volatile than other common Wyoming commodities.
  - There are extreme fluctuations in the native seed industry's prices and quantities demanded.
  - Peaks and troughs vary in both breadth and depth.

## A comparison of Common Commodity Prices to Thickspike Wheatgrass 'critana'



# INTERVIEWS: MARKET UNCERTAINTY

| Type of Uncertainty       | Supply uncertainty is caused by:                                                        | Demand uncertainty is caused by:                                                                                                            |
|---------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Market                    | Species and quantity demanded can be impulsive and unpredictable, 2-yr commitment       | Species and quantity availability can be sporadic                                                                                           |
| Financial                 | Producer liquidity and operating capital; Loan flexibility                              | Emergency Funds vs. Yearly budget funds                                                                                                     |
| Meteorological            | Precipitation and climatic variability                                                  | Precipitation and climatic variability,<br>Fire, Multiple reclamation attempts at<br>same site.                                             |
| Biological/Ecological     | Plant survival methods, Genotypes, and Ecosystem interactions are not fully understood. | Plant survival methods, Genotypes, and Ecosystem interactions are not fully understood.                                                     |
| Philosophical/Situational | Local vs. broad genotype usage                                                          | Local vs. broad genotype usage                                                                                                              |
| Regulatory                | Regulations governing native seed change rapidly and without adequate warning time .    | Regulations governing native seed change rapidly and without adequate warning time. The degree to which substitution of species is allowed. |

# INTERVIEWS: EXAMPLE OF PRICE VOLATILITY

## Prices of four native wheatgrasses from 1990 to 2002



# INTERVIEWS: EXAMPLE OF QUANTITY VOLATILITY

#### **BLM Consolidated Seed Buy Quantities**



## INTERVIEWS: SUMMARY

- Production knowledge is crucial for producers, regulators, and reclamation agents.
- More research into the biology and ecology of species is needed.
- Both Supply and demand players acknowledge dysfunction.
- The BLM is the big buyer, making up 70%-80% of all demand if we include individual district office buys and seed bought through the BLM by private industry.
- The way in which federal funds are allotted to the BLM accounts for much of the variability in demand.
- Market uncertainty comes from multiple sources, which makes meeting demand a gamble for producers. So diversity in production and producer liquidity are essential for producer survival.

#### PARTIAL ENTERPRISE BUDGETS

- Enterprise budgets
  - An overview of production economics
    - Forbs and Shrub Issues
    - Thickspike Wheatgrass 'critana'
    - Indian Ricegrass
    - Capital costs are not included as capital structures can vary widely among different farms.



http://www.wy.blm.gov/jio-papo/papo/reclamation.htm



# PARTIAL ENTERPRISE BUDGETS: THICK SPIKE WHEATGRASS SUMMARIZED

|                       |                        |      | ć /s            |           | Ć /D | F: 11 (20 · · · · · )   |    |                  |         | Average Yield<br>Lbs/Acres |
|-----------------------|------------------------|------|-----------------|-----------|------|-------------------------|----|------------------|---------|----------------------------|
|                       | Field Prep             | and  |                 | er Acre   |      | Field (30 acres)        |    |                  |         |                            |
|                       | planting               | - m  | \$              | 514.00    | \$   | 15,420.00               |    |                  | Year 0  | -                          |
|                       | Yearly Cro<br>Maintena | •    | \$              | 918.00    | \$   | 27,540.00               |    |                  | Year 1  | 1,200.00                   |
|                       | Harvest*               |      | \$              | 438.00    | \$   | 13,140.00               |    |                  | Year 2  | 900.00                     |
|                       | Field & Seed Fees      |      | \$              | 486.50    | \$   | 486.50                  |    |                  | Year 3  | 600.00                     |
|                       | Total Cos              | t    | \$              | 2,356.50  | \$   | 56,586.50               |    |                  | Year 4+ | 200-300                    |
|                       |                        |      |                 |           |      |                         |    |                  |         |                            |
|                       |                        |      |                 |           |      |                         |    |                  |         |                            |
|                       | Market Price           |      | Income Per Acre |           |      | Total Income (30 acres) |    | ncome (30 acres) |         |                            |
| Break Even Price      | \$                     | 1.57 | \$              | 1,887.90  | \$   | 56,637.00               | \$ | 50.50            |         |                            |
| Current Price         | \$                     | 2.50 | \$              | 4,393.50  | \$   | 131,805.00              | \$ | 75,218.50        |         |                            |
|                       |                        |      |                 |           |      |                         |    |                  |         |                            |
| 1990                  |                        | 2.51 | \$              | 4,420.50  | \$   | 132,615.00              | \$ | 76,028.50        |         |                            |
| 1992                  |                        | 1.42 | \$              | 1,477.50  | \$   | 44,325.00               | \$ | (12,261.50)      |         |                            |
| 1994                  |                        | 3.73 | \$              | 7,714.50  | \$   | 231,435.00              | \$ | 174,848.50       |         |                            |
| 1996                  |                        | 3.27 | \$              | 6,472.50  | \$   | 194,175.00              | \$ | 137,588.50       |         |                            |
| 1998                  |                        | 5.95 | \$              | 13,708.50 | \$   | 411,255.00              | \$ | 354,668.50       |         |                            |
| 2000                  |                        | 6.29 | \$              | 14,626.50 | \$   | 438,795.00              | \$ | 382,208.50       |         |                            |
| 2002                  | \$                     | 1.75 | \$              | 2,368.50  | \$   | 71,055.00               | \$ | 14,468.50        |         |                            |
|                       |                        |      |                 |           |      |                         |    |                  |         |                            |
| *Does not include sto | orage cost             | S    |                 |           |      |                         |    |                  |         |                            |

# PARTIAL ENTERPRISE BUDGETS: INDIAN RICE GRASS SUMMARIZED

|                     |                                 |                |                 |           |                         |                    |     |                     |        | Average Yield |
|---------------------|---------------------------------|----------------|-----------------|-----------|-------------------------|--------------------|-----|---------------------|--------|---------------|
|                     |                                 |                | \$/P            | er Acre   | \$/Pe                   | r Field (30 acres) |     |                     |        | Lbs/Acres     |
|                     | Field P<br>plantir              | rep and        | \$              | 521.00    | \$                      | 15,630.00          |     |                     | Year 0 | -             |
|                     | Yearly<br>Mainte                | Crop<br>enance | \$              | 933.00    | \$                      | 27,990.00          |     |                     | Year 1 | 800.00        |
|                     | Harves                          | Harvest*       |                 | 368.00    | \$                      | 11,040.00          |     |                     | Year 2 | 600.00        |
|                     | Field & Seed Fees  Total        |                | \$              | 555.50    | \$                      | 555.50             |     |                     | Year 3 | 600.00        |
|                     |                                 |                | \$              | 2,377.50  | \$                      | 55,215.50          |     |                     | Year 4 | 500.00        |
|                     |                                 |                |                 |           |                         |                    |     |                     | Year 5 | 500.00        |
|                     | Market Price                    |                | Income Per Acre |           | Total Income (30 acres) |                    | Net | : Income (30 acres) |        |               |
| Break Even<br>Price | \$                              | 1.81           | \$              | 1,846.50  | \$                      | 55,395.00          | \$  | 179.50              |        |               |
|                     | \$                              | 2.00           | \$              | 2,416.50  | \$                      | 72,495.00          | \$  | 17,279.50           |        |               |
|                     | \$                              | 3.00           | \$              | 5,416.50  | \$                      | 162,495.00         | \$  | 107,279.50          |        |               |
| Current Price       | \$                              | 3.50           | \$              | 6,916.50  | \$                      | 207,495.00         | \$  | 152,279.50          |        |               |
|                     | \$                              | 4.00           | \$              | 8,416.50  | \$                      | 252,495.00         | \$  | 197,279.50          |        |               |
|                     | \$                              | 5.00           | \$              | 11,416.50 | \$                      | 342,495.00         | \$  | 287,279.50          |        |               |
|                     |                                 |                |                 |           |                         |                    |     |                     |        |               |
| *Does not inclu     | *Does not include storage costs |                |                 |           |                         |                    |     |                     |        |               |

## ENTERPRISE BUDGETS: SUMMARY

- Input costs and time commitment are significant.
  - Opportunity costs are even more significant, especially since most native grasses grown in Wyoming take a minimum of 2 growing seasons
  - Prices can fluctuate greatly between successive seasons, so the highs need to be able to make up for the lows.
- Significant biological differences between species equals significant production and returns differences

#### LAB EXPERIMENT

- We conducted market experiments to simulate the native seed market using economic principles.
  - Lack of real world data
  - Controls for outside influences on market behavior
    - Test the direct relationship between market behavior and differences in market structures.
  - Lab experiments are reasonably predictive
  - Better understand the relationship between supply and demand under a big buyer scenario
  - Rounds out the rest of the research on the native seed industry

# LAB EXPERIMENT: BIG BUYER TREATMENTS

Spot Market (higher risk)

Variable Demand

**Constant Demand** 

Variable Demand

**Constant Demand** 

Big Buyer (3 buyers, 4 sellers)

Forward Contracting (lower risk)









- © Current general market structure is spot-market with variable demand and a big buyer.
  - The current market structure earns the least amount of total profit.
  - Leveling demand increases total market earnings
  - Forward contracting increases total market earnings more than leveling demand
  - Forward contracting and leveling demand together show the greatest increase in total market earnings
  - Total market earnings do not show the relationship between sellers and buyers

#### **Relative Earnings**





#### **Average Unit Price**







http://www.desertseedstore.com/category/Desert-Native-Shrubs-50/rec/20

Relative earnings shows the gap between buyer and seller earnings

- The current market structure shows a large gap between buyer and seller earnings, with seller earnings being much less than buyer earnings.
- Leveling demand and contracting together would help decrease the buyer/seller gap.

High price is maintained when both forward contracting and leveling demand are implemented

- All moves towards a more competitive market will increase the number of units sold
- Implementing either leveled demand or forward contracting will benefit buyers more than sellers

- Any movement towards a more competitive structure would increase both buyer and producer earnings.
  - If only one structural change could be implemented, forward contracting would increase earnings the most for both producers and buyers.
  - Enlarges the pie

Implementing forward contracting **and** leveling out demand would increase the proportion of total market profits going to producers.

- By maintaining high price and increasing units traded
  - Enlarges the producers' slice of that larger pie



http://www.endangeredspecieslawandpolicy.com/2010/03/

## CONCLUSION AND RECOMMENDATIONS

- Leveled demand and forward contracting may allow for easier market entry
  - This would create a larger market
    - A larger market might reduce the Western US' reliance on non-native seed.
- Buyers would see increased profits by leveling demand for different species and quantities. However, these benefits would be most likely short-term without forward contracting.
  - Maintaining the producers' desire to stay in the market may help secure steady supplies.
    - Potential gains must be worth the market risk

# CONCLUSION AND RECOMMENDATIONS CONT'D

- Mismatch between Supply and Demand may be smoothed out by:
  - 1. Federal Emergency funds should be replaced with a more flexible and consistent federal funding system.
  - 2. Federal regulations governing replanting timeframes should be more flexible.
    - This may also include time for planting interim species.



http://www.fws.gov/rockymountainarsenal/habitat/native/wildflowers/scarglobe.htm

## CONCLUSION AND RECOMMENDATIONS CONT'D

- Mismatch between Supply and Demand may be smoothed out by:
  - 3. There should be more efficient information sharing among producers, buyers, and regulators.
    - This may include a higher reliance on intermediate agencies such as extension services to translate research, regulations, and realities to stakeholders.
    - This may include forward contracting with an elastic supply clause (the risk is transferred to/shared with the buyer).
    - There should be adequate forewarning to producers of upcoming demand changes (species, variety, quantity)
  - 4. There should be better access to or understanding of biological aspects in the regulatory administrations.

## QUESTIONS AND COMMENTS?



http://www.santafebotanicalgarden.org/HERB%20PAGES/H%20IndianRiceGrass.html; http://www.flickr.com/photos/plant\_diversity/4049544945/