UW Medicine **UW SCHOOL**

OF MEDICINE

Characterizing Right Ventricle Function in Physiologically Aged Male Mice

Caleb Hoopes¹, Benjamin McNair², Joshua Thornburg², Danielle Bruns^{1,2} ¹University of Washington School of Medicine; ²Division of Kinesiology and Health, University of Wyoming

BACKGROUND

Study Goal: Characterize the differences in right ventricle function between adult and aged mice using pressure volume and echocardiographic analysis.

RESULTS

*P<0.05 is statistically significant Pressure Volume Loops:

Histology:

Ejection Fraction

Genetics: LV Adult-Aged RV Adult-Aged

DISCUSSION

- Thickened Ventricle Wall
- The RV and LV differ on a molecular level. As they age, genes are regulated differently and only a small minority are expressed equally over time.

Larger Volumes

- Moving forward: Sex differences in cardiac function have been demonstrated in the literature. Female studies are ongoing.
- Limitations: PV loops in the RV likely underestimate CO and SV due to the small size and crescent shape of the RV.

CONCLUSIONS

- Currently, no drugs have been shown to improve RV ٠ function
- Novel pharmacological therapies can be developed for the RV specifically by focusing on molecular targets unique to the RV.

ACKNOWLEDGEMENTS

Wyoming WWAMI Medical Education **HEART** Lab members NIA K01 AG058810; Wyoming INBRE 2P20GM103432 Bud Chew, PhD

REFERENCES

*Carluccio, et. al. (2018). Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction. Circulation: Cardiovascular Imaging

