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Executive Summary 

 

 This report documents classification and mapping results for priority area 1 of the Cody 

Region and Yellowstone National Park land cover remote sensing project. Extensive field 

collected reference data representing the range of plant communities and habitat types 

comprising the Bighorn Basin have been analyzed to produce a classification of land cover 

types based on the Wyoming Game and Fish Department (WGFD) Wildlife Observation 

System (WOS). Corresponding land cover classes were subsequently spatially modeled 

using a non-parametric Classification and Regression Tree (CART) algorithm that integrated 

spectral data from Landsat Thematic Mapper satellite and National Aerial Photography 

Program imagery, spectral indices designed to enhance the signal and response of 

vegetation, and a variety of ancillary environmental data derived predominantly from digital 

elevation models hypothesized to be significant ecological drivers of plant distributions. 

 A total of 56 land cover classes were identified and modeled for the Absaroka Front Area 

of the Bighorn Basin. An additional eight anthropogenic types, including areas disturbed by 

oil extraction, mining, and agriculture, were delineated using external data, interpretations of 

high resolution imagery, and other modeling methods. CART based land cover classes and 

anthropogenic classes were spatially merged and the combined map was processed using a 

customized aggregation routine that generated a final map of land cover classes with a 

target spatial resolution or minimum mapping unit (MMU) size of 2 acres.  

 Comprehensive accuracy assessment using independent test data was not performed 

due to funding and logistical constraints associated with additional field surveys required for 

the collection of independent test data. A variety of methods were used to provisionally 

evaluate map accuracy including re-substitution, cross-validation using randomized subsets 

of reference data, and partitioning techniques to generate independent test data. Resulting 

overall model accuracy ranged from a lower limit of 67% to an upper limit of 87%. Prediction 

errors associated with individual cover classes were variable. Causes of prediction error are 

attributed to the quantity of training and test data available in particular classes, the quality 

or accuracy of the reference data, and variation in the biology and ecological amplitude of 

species comprising individual cover classes.  

 Future efforts to improve modeling performance may include additional field data 

collection to increase training data sample sizes for selected cover classes, further research 

into the effectiveness of supplementary explanatory variables or alternative combinations of 

variables, and an investigation of the influence of spatial scale on prediction accuracy. 

 Product deliverables include this final report and geospatial data representing the final 

CART based land cover model for Area 1 of the Bighorn Basin in 30 meter raster format.  
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Introduction 

 The Wyoming Geographic Information Science Center (WyGISC) of the University of 

Wyoming has been contracted by the Wyoming Game and Fish Department (WGFD) to develop 

a map of dominant land cover types for the WGFD Cody Region in northwest Wyoming and 

Yellowstone National Park. The principle objectives of this study are to develop a standardized 

classification of land cover types for the Cody Region based on and compatible with existing 

land cover classification systems utilized by WGFD managers and other state and federal 

agencies, and to produce corresponding geospatial data and maps describing the current 

spatial extent and distribution of land cover classes within the study area. Project efforts will 

provide baseline, spatially-explicit habitat information that may support and inform future 

management and conservation initiatives. 

Map production in this study involves the classification of remotely sensed imagery using 

ancillary topographic data and a statistical algorithm. The classification and mapping process is 

complex and relies on a sufficient availability of field collected reference data and intensive 

image processing and model building efforts. Major components of the mapping process include 

field surveys to collect reference or training data, a comprehensive lab review of the field data to 

produce a classification scheme and standardized reference data, selection and processing of 

explanatory spectral and environmental variables, training or calibration of a chosen 

classification algorithm with the reference samples, spatial extrapolation of the trained algorithm 

across the study area to produce a thematic map, and development of some preliminary 

measures describing map accuracy. Existing field survey data located within the study area and 

acquired from previous vegetation projects, including the Governor’s Sage Grouse Conservation 

Initiative (Rodemaker et al. 2009), were used to supplement field reference data collected 

specifically for this mapping effort.  

The Cody Region study area was subdivided into 5 priority map zones in order to effectively 

allocate resources and funding. Initial project efforts are focused on the Bighorn Basin portion, 

which is comprised of two priority map areas (see Figure 1). This report summarizes field survey 

and model development results for Area 1 of the Bighorn Basin. 

 

Methods 

Study area  

 Map Area 1 of the Bighorn Basin is approximately bounded by the city of Thermopolis in the 

southeast, the foothills of the Absaroka Range on the west, and the Montana state boundary to 

the north (Figure 1). The original mapping area boundary was extended or buffered by an 

average of three kilometers to the west, east, and south in order to increase training data 

sample sizes and facilitate the aggregation of future map products from adjacent mapping 

zones. The total areal extent of Area 1, including buffer regions, is 1,024,356 ha or 2,531,239 

acres. 
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Figure 1: Bighorn Basin study area and field survey locations 

 

 

Field data collection 

Field surveys for this project in the Bighorn Basin have been ongoing since 2006. A total of 

764 sites within Area 1 were sampled between 2006 and 2008 by Wyoming Game and Fish 

Department (WGFD) interns, Bureau of Land Management (BLM) personal, and Wyoming 

Geographic Information Science Center (WyGISC) staff (Figure 1). 

Existing data were synthesized in the spring of 2009 to identify sample size adequacy for 

subsequent modeling efforts. An Access database was designed and constructed for data 

storage and retrieval, and to facilitate more efficient data management and statistical analyzes. 
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A comprehensive species list for the state of Wyoming (Fertig 2003) was obtained from the 

Wyoming Natural Diversity Database (WYNDD) of the University of Wyoming and incorporated 

into the Access database to standardize species nomenclature and identification. The species 

list was synthesized using taxonomy described by Dorn (2001). Preliminary data analyses were 

conducted to identify, both, under-sampled land cover types, as well as spatial gaps in data 

coverage for the Bighorn Basin study area. For example, data summaries revealed inadequate 

sample sizes for most woodland and grassland types, as well as low sample sizes for some 

shrubland types including mountain big sage (Artemisia tridentata subsp. vaseyana) and plains 

silver sage (Artemisia cana subsp. cana) classes. 

Field protocols for surveys conducted in 2009 were adopted from previous survey work in 

order to maintain data consistency and allow the integration of field data from all survey years 

for subsequent modeling efforts. Specifically, field samples were subjectively and 

opportunistically located based on data requirements (existing low sample size) and site 

accessibly. Surveys were therefore predominantly conducted on publicly owned land that could 

be freely accessed. In some instances, private land owners were approached in the field to gain 

access permission or local information regarding roads or vegetation patterns. The owner of a 

large private ranch in the southern portion of mapping Area 1 (Frank Robbins) was contacted by 

phone to gain access permission.  

Precise field sample locations were documented with Trimble GEO Explorer GPS receivers 

and site photographs. The WyGISC crew recorded a minimum of 4 photos at each plot location 

to help identify the spatial variability and extent of each sampled community and to delimit 

adjacent habitat types. Basic environmental and habitat data were collected including slope, 

aspect, terrain curvature, color of upper soil horizons, and estimates of the relative extent of 

abiotic ground cover components. Supplemental descriptive observations of stand condition, 

impacts of past or ongoing disturbance, and habitat heterogeneity were recorded. Floristic data 

were also collected. The dominant or characteristic plant species characterizing a given 

community were identified to species level when possible and their associated abundances 

were quantified with visual estimates of foliar cover. Corresponding preliminary land cover types 

were then identified by the surveyor including a corresponding ranking of sampling and 

classification confidence. In addition, the surveyor digitized the spatial extent of an associated 

training polygon in a GIS environment based on the GPS captured sample location, field 

observations, and interpretations of corresponding 1.0 meter USDA National Agriculture 

Imagery Program (NAIP) ortho-photography and 30 meter Landsat TM remotely sensed 

imagery. 

 

Model Development 

Algorithm Selection 

 A Classification and Regression Tree (CART; Breiman et al. 1984) algorithm was selected 

for this modeling effort. CART methods recursively partition training samples into dichotomous 

groups or tree branches. Data sorting at branch nodes is governed by the selection of a single 
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explanatory variable that maximizes homogeneity in the partitioned training data (Segurado and 

Araujo 2004; Garzon et al. 2006; Chan and Paelinckx 2008). Successive binary splitting 

produces a classification tree, whose branch architecture corresponds to the most favorable 

combination of explanatory variables that quantify the habitat conditions and spectral response 

of particular plant species or land cover types.   

CART algorithms are non-parametric classifiers that do not rely on statistical parameters, 

such as mean vector or variance, to separate or classify cover types (Lu and Weng 2007). 

CART classifiers are therefore not constrained by assumptions concerning the data distributions 

of explanatory variables and are able to incorporate non-normally distributed environmental and 

GIS-derived layers. Previous research has suggested that non-parametric classifiers may 

improve land cover classification accuracy compared with parametric or purely spectral 

classifiers (Lawrence et al. 2004; Lu and Weng 2007). 

 

Spatial Scale  

Model performance and resulting map accuracy strongly depend on the scale of the study 

(Nagendra 2001). The extent of the mapping area, the spatial pattern and variability of land 

cover classes, and the spatial resolution of the explanatory variables interact to determine the 

capacity of the classification algorithm to discriminate classes. The spectral and environmental 

variability associated with individual cover classes increases with increasing study area size. 

Previous large regional-scale mapping efforts have successfully delimited relatively coarse land 

cover classes using moderate resolution spectral data including Landsat imagery (Rodemaker 

and Driese 2006; Lu and Weng 2007; Sivanpillai 2008; Jenkins 2009). However, map accuracy 

also depends on relationships between the areal extent of individual cover types on the ground, 

termed patch size, and the spatial resolution or pixel size of the model (Woodcock and Strahler 

1987). Individual pixels that significantly exceed patch size will tend to minimize associated local 

spectral variance. Nagendra (2001) argues that optimal pixel size for mapping should be 

significantly smaller than the maximum patch size of target cover classes in order to capture the 

associated spectral variability within those classes. Bighorn Basin cover types are highly 

variable in terms of patch size. Patch sizes for low density woodland or savanna classes, such 

as associations between Juniperus osteosperma (Utah juniper) and Pinus flexilis (limber pine), 

typically exceed patch sizes for uniform grassland and riparian types. A pixel size of 30 x 30 

meters was selected for this modeling effort in order to capture the spectral variability of most 

target land cover types occurring within the Bighorn study area and to match the spatial 

resolution of Landsat TM data. 

 

Processing of Field Data 

 An important component of the model building process includes a systematic review of the 

field samples to ensure spatially accurate and spectrally uniform training polygons and an 

associated consistent and reproducible classification of training polygon attributes (land cover 
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types). Classification of field data was based on the WGFD Wildlife Observation System (WOS) 

Classification, version 1997, refined to include closure classes representing ‘low’, ‘medium’, and 

‘high’ foliar cover for selected land cover classes.  

High spectral variance associated with poorly digitized polygons or misclassified types may 

degrade model performance and final map accuracy. All field data were therefore systematically 

reviewed in the lab. Final homogenous training areas and associated cover types were 

generated from interpretations of stand floristic composition, field descriptions of habitat 

variability and condition, an interpretation of Landsat spectral signatures, and inspections of 

NAIP imagery, field photographs, and ancillary information including topographic data. 

Heterogeneous training samples or ambiguous types were excluded from further analyses and 

subsequent model development. This rigorous comprehensive final review ensures that training 

data collected by multiple observes over a time span of several years are standardized for 

integration into a single predictive land cover model. 

 

Selection and Processing of Explanatory Variables 

Specific explanatory variables used in the CART model were selected based on data 

availability, appropriate spatial resolution, and their hypothesized influence on or control over 

species distributions. Decreased classification accuracies have been associated with model 

over-fitting or the use of too many variables with redundant or correlated information (Price et al. 

2002). A relatively parsimonious model was thus constructed from spectral data, a digital 

elevation model, and several derived variables (see Table 1). 

 

Table 1: Independent or explanatory variables used to predict land cover in the Bighorn Basin 

Explanatory variable Data type Units 

   
Spectral data 

  
Reflectance spectra (Landsat TM; 6 bands) continuous 0-255 DN / band 

Image texture metric (NAIP CIR; 3 bands) continuous none 

Soil adjusted vegetation index (Landsat TM; SAVI) continuous none 

   

   
Ancillary topographic and floristic data 

  

Aspect categorical 9 classes 
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Explanatory variable Data type Units 

Digital elevation model (SRTM DEM) continuous meter 

Floodplain model categorical 10 classes 

Landform position model categorical 10 classes 

Physiognomic model categorical 6 classes 

Slope  continuous percent 

Terrain curvature continuous none 

Topographic surface roughness  continuous none 

    

 Spectral data used in the CART model include moderate resolution Landsat Thematic 

Mapper (TM) imagery. Landsat TM images encompassing the Bighorn Basin study area were 

obtained from the USGS Earth Resources Observation and Science (EROS) Center 

(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/Satellite_Products). The 

Landsat TM images were acquired on the 23 June 2009, and have a spectral resolution of 6 

wavelength bands and a spatial resolution or pixel size of 30 meters. Atmospheric and 

radiometric corrections were not applied to the Landsat TM data since imagery were obtained 

for a single date (Lu and Weng 2007).  

Image texture indices were also computed to capture spectral variability associated with 

habitat and floristic heterogeneity at a sub-pixel level. Measures of image texture have been 

previously shown to improve the classification accuracy of habitat models in semi-arid 

environments (St-Louis et al. 2006). Image texture indices were derived from a 30 x 30 meter 

moving windows analysis of high spatial resolution ortho-photography which generated 

statistical parameters (mean, standard deviation, and mean of NDVI) quantifying variation in 

image brightness. The ortho-photography was obtained from the USDA National Agriculture 

Imagery Program (NAIP; 

http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=nai) and has 3 

wavelength bands (green, red, and near-infrared) and a spatial resolution of 1.0 meter. 

Computed image texture metrics were subsequently resampled to a spatial resolution of 30 

meters to correspond with the selected scale of other explanatory variables. 

In order to enhance the spectral response of vegetation and help delimit landscape variation 

in plant densities and composition, a soil adjusted vegetation index (SAVI; Huete 1988) was 

computed from the Landsat TM spectral data. SAVI represents a Normalized Difference 

Vegetation Index (NDVI) modified with a correction factor that minimizes affects related to 

spatial variability in soil brightness.  

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/Satellite_Products
http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prog&topic=nai
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Distributions of plant species are determined by various biotic and abiotic factors. 

Environmental conditions that sustain or limit the ranges of particular species or associations of 

co-occurring species determine an organism’s ecological niche (Brown et al. 1996). Successful 

modeling of species occurrences thus requires data describing critical range-limiting 

environmental gradients. Data quantifying many potentially important ecological controls are, 

however, not available at sufficiently detailed spatial scales. For example, climate data from 

sources such as Daymet (Edwards et al. 205), are only available at relatively coarse spatial 

resolutions of 1000 meters. We therefore derived several topographical variables to serve as 

proxy variables for hypothesized direct environmental controls such as moisture availability 

(Table 1). All derived proxy variables were computed from elevation data acquired by NASA’s 

Shuttle Radar Topography Mission (SRTM) in February 2000. The SRTM data were collected 

using Interferometric Synthetic Aperture Radar (IFSAR) and have a spatial resolution of 30 

meters. We obtained the SRTM digital elevation model (DEM) from the USGS EROS Data 

Center (http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/SRTM_DTED). We 

performed additional processing in ERDAS Imagine 9.3 using a moving windows mean focal 

filter to recompute anomalous elevation values, such as sinks or pixels lacking data, with the 

mean elevation data of spatially adjacent pixels.  

Variables representing slope, aspect, and terrain curvature were subsequently derived from 

the modified SRTM DEM using standard tools in Spatial Analyst (ArcGIS 9.3, ESRI, Redlands, 

CA). A surface roughness index was also generated using a moving windows analysis that 

computed the standard deviation of elevation values within a specified window extent. Landform 

categories, simulating site moisture gradients, were derived from a spatial model incorporating 

slope, aspect, geographic location, elevation, flow direction, flow accumulation, and other 

interpolated data (Manis et al. 2001). Finally, a model of riparian habitats was constructed to 

predict the spatial extent of floodplain areas associated with both perennial and ephemeral 

stream channels. Channel locations were first modeled from topographic data using the SRTM 

DEM and standard hydrology tools available in ESRI Spatial Analyst (Figure 2). Potential 

riparian habitat extent was subsequently delineated for classified stream orders by using a path 

distance tool with an input slope raster serving as a cost function. Various terrain slope 

thresholds were iteratively defined to delimit maximum floodplain boundaries (Figure 3).  

 

 

 

 

 

 

 

 

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/SRTM_DTED
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 An additional floristically-based explanatory variable was constructed based on a 

physiognomic classification of the field collected training data. Plant physiognomy is a coarse 

level biological classification of the dominant species comprising a given plant community based 

on their morphological characteristics and their functional and evolutionary adaptations (Pillar 

and Orloci 1993). Physiognomic groups are partially determined by environmental gradients and 

growth-limiting conditions. Physiognomic classes may be heterogeneous and consist of 

phylogenetically unrelated organisms. A physiognomic classification system was developed for 

the Bighorn Basin that categorizes plant assemblages based on their environmental 

adaptations. Specific classes developed include high elevation forest, open woodland and 

savanna, xeric shrubland, mesic or riparian dependent communities, and upland herbaceous 

plant assemblages. All training polygons were reviewed and assigned a corresponding 

physiognomic class. A model of physiognomic types for the Bighorn Basin was then constructed 

by calibrating a CART algorithm with the reclassified training data and the previously described 

explanatory variables (Figure 4). The resulting physiognomic model was used as an additional 

explanatory variable in the subsequent land cover modeling process. 

 

 

 

 

 

Figure 2: Stream channel locations computed 

from a modified SRTM DEM. 

. 

 

Figure 3: Riparian or floodplain extent 

predicted from slope and elevation data. 
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Figure 4: Physiognomic classification model for Area 1 of the Bighorn Basin 

 

 

Model Construction and Map Output 

Model building consists of training a statistical classification algorithm with reference data 

that are attributed with the values of the selected explanatory variables so that a rule-set is 

produced that is capable of correctly classifying land cover types over a defined area of analysis 

(Guisan and Zimmermann 2000). In this study, processed training data were used to fit a CART 

algorithm. The CART classifier was then used to categorize land cover types on a pixel by pixel 

basis, based on the spectral and environmental conditions present in corresponding pixels. 

The CART classifier was constructed using See5/C5.0 statistical software (Quinlan 1993). 

The spatial extraction of the CART classifier to produce an output map of land cover types was 



10 
 

performed using an ERDAS Imagine 9.3 classification toolset developed and provided by the 

USGS National Land Cover Database program. 

Land cover predictions generated by the CART model were subjectively evaluated based on 

field observations of the study area and quantitatively assessed using a set of computed error 

measures. Quantitative error indices were calculated using a partitioned subset of the original 

training data that was withheld from model construction in order to provide an unbiased test 

data set. Specifically, the test data were derived from the original field data by withholding 

approximately 20% of training polygons for selected classes with more than 5 independent 

polygons available for model development. An error matrix was constructed from the test data in 

order to quantify overall and individual map class accuracies (Congalton et al. 1983; Fielding 

and Bell 1997; Lu and Weng 2007). The error matrix relates actual land cover classes derived 

from field observations with predictions generated by the CART algorithm. The matrix was 

constructed with predicted classes constituting matrix columns and reference or test data 

defining matrix rows. Diagonal elements of the matrix represent pixels correctly classified by the 

model. Off-diagonal elements represent model misclassification rates and are used to compute 

indices of commission and omission error (Congalton 1991). Commission error quantifies the 

percentage of model pixels in a given class incorrectly classified according to the test data, and 

omission error represents the percentage of pixels in a given class within the reference data that 

were not correctly predicted by CART. Overall map accuracy is computed from the ratio of 

correctly classified pixels (diagonal elements in the matrix) to the total number of test pixels 

evaluated. In addition, the proportion of training pixels in each map class correctly predicted by 

the CART algorithm was computed to quantify a supplemental, non-independent measure of 

classification accuracy. 

Limited data availability constrained the utility of the test data to provide a definitive or 

comprehensive assessment of final map accuracy. The test data were mainly used to guide 

iterative model development by identifying low map accuracies for selected land cover classes. 

Specifically, error measures were analyzed to identify weakly predicted land cover types at each 

stage of model development. Associated training samples were then reviewed and ambiguous 

types were spatially or thematically revised. Supplemental training data were also generated for 

selected cover types with low accuracies based on interpretations of remotely sensed imagery. 

Revised training data were then used to recalibrate the CART classifier and generate an 

improved model output. Error measures were recalculated to evaluate corresponding changes 

in model performance.  

 

Anthropogenic Cover Classes 

Anthropogenically modified or developed areas were delineated independently of the CART 

modeling process (Table 2). For example, agricultural classes, urban boundaries, and ranch 

facilities were digitized from an interpretation of high resolution NAIP imagery. Road locations 

were mapped using data obtained from the 2009 U.S. Census TIGER database 

(http://www.census.gov/geo/www/tiger). Areas disturbed by recent oil extraction were modeled 

based on GPS data identifying the approximate locations of past oil related operations. GPS 

http://www.census.gov/geo/www/tiger
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data were obtained from Holly Copeland at the Nature Conservancy’s Lander office who 

synthesized and edited data distributed by the Wyoming Oil and Gas Conservation Commission 

(http://wogccms.state.wy.us/). Various NDVI thresholds were applied to 150 meter buffer 

regions surrounding the GPS point locations in order to delimit disturbed areas from adjacent 

natural vegetation. Minor errors associated with predicted oil pad locations may be attributed to 

spatial errors in the original source GPS data and high spectral similarity between areas of past 

oil related disturbance and the current surrounding vegetation, often characterized by sparse 

cover of Atriplex gardneri. Anthropogenic types were subsequently combined with final model 

predictions generated by the CART classifier using mosaic tools in ERDAS Imagine.  

 

Table 2: Map classes derived from external data, image interpretation, or other modeling 

methods 

Map class  
Class  
code 

Mapped 
area 
(ha) 

Source 
    

11.20 Irrigated Agricultural 
Field 

 196 82,271 Image interpretation 
    

11.60 Dry-land Pastures  197 6,671 Image interpretation 
    

11.91 Ranch-Farm Facilities  201 2,039 Image interpretation 
    

99.10 Roads and Rail Roads  213 64,654 
TIGER Census data 

2009     

99.20 Mining Areas  214 12 Image interpretation 
    

99.80 Oil and Gas 
Developments 

 218 2,622 
NDVI threshold model 

applied to Landsat 
imagery; WOGCC data 

    

99.90 Urban/Industrial Land  220 1,656 Image interpretation 
    

 

 

Aggregation of CART Output into 2 Acre Minimum Mapping Units 

The spatial scale of the map output from the CART classifier matches the 30 m resolution of 

the explanatory variables. In order to produce a final map product with a target minimum 

mapping unit (MMU) scale of 2 acres, a generalization or aggregation analysis was performed 

using ESRI software and a VBA script (Rodemaker and Driese 2006). The aggregation routine 

http://wogccms.state.wy.us/
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clusters contiguous pixels within individual cover classes into region groups, computes the areal 

extent of these resulting regions, and spatially aggregates or appends individual regions that do 

not meet MMU targets (2 acres or 9 pixels) with their most ecologically similar neighboring 

regions. Degrees of ecological similarity are determined systemically by reclassifying regions 

according to a physiognomic classification system and subsequently ranking the similarity 

between regions based on relationships between physiognomic classes, which are defined a 

priori (Table 3). Final land cover classes for all pixels comprising newly aggregated regions are 

determined by majority rule. Aggregation analyses are iterative until all regions exceed the MMU 

target of 2 acres. 

 

Table 3: Matrix of relative ecological similarity for 13 physiognomic classes used in the 

aggregation analysis. Similarity rankings range from 1 (minimum) to 13 (maximum). 

 

 

Results and Discussion 

Field survey results from 2009 

Field surveys in 2009 were conducted by a WGFD intern (Maddie Ruble, supervised by Jerry 

Altermatt) and a staff ecologist from WyGISC. The WGFD intern surveyed a total of 275 sites 

between the end of May and the middle of August. A majority of sites (205) visited by the intern 

were located within priority Map Area 1 of the Bighorn Basin (Figure 1). The WyGISC ecologist 

surveyed an additional 580 sites between the middle of August and the end of October. Data 

collected by WyGISC were predominantly distributed across the southern portions of the 

Bighorn Basin with 233 plots located in priority Map Area 1 and the remaining 347 plots located 

in Area 2. 
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Model Construction 

A systematic review of all available field data, including samples collected prior to 2009, 

produced a total of 922 training polygons and an associated 3,150 training pixels (Table 4) for 

calibration of the CART based land cover model. Approximately 15 percent of the original field 

samples were excluded from model building due to high sample spectral variance associated 

with high habitat heterogeneity, or an ambiguous classification of cover type.  

The WGFD Wildlife Observation System was modified slightly to accommodate observed 

and sampled vegetation patterns in the Bighorn Basin. Specifically, field samples associated 

with Foothills Grassland were reclassified and combined with Basin Grassland training data in 

order to increase associated sample sizes. Sampled grassland communities also frequently 

supported low (1%) to moderate (<5%) cover of fringe sage (Artemisia frigida). Fringe sage 

cover tended to increase with increasing levels of livestock disturbance. Highly disturbed 

grasslands with low cover of native graminoid species and high cover of fringe sage were 

reclassified as Fringe Sage types. Additionally, highly degraded sites strongly dominated by 

non-native herbaceous species, such as Bassia scoparia or Salsola kali, were classified as Forb 

types. Degraded riparian areas dominated by Russian olive (Elaeagnus angustifolia) were 

classified as Other or Mixed Deciduous Forest. 

A total of 24 model iterations were performed by recursively refining the field training data 

and by adding ancillary information from image interpretation or external sources. The final 

CART model delineated 56 land cover classes (Table 4). Predicted land cover classes 

generated by the CART classifier were spatially merged with an additional 8 classes delineating 

locations of agriculture, mining, oil extraction, urban areas, and roads (Table 2). The resulting 

combined pixel level map was processed using an aggregation routine that reclassified and 

aggregated individual and clusters of pixels according to rankings of ecological similarity to 

produce a final map with a 2 acre MMU resolution (Figure 5). 
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Figure 5: Final aggregated map of 64 land cover classes in Area 1 of the Bighorn Basin with a 2 

acre MMU resolution. 

 

 

Model Performance 

Other researchers have argued that unbiased, robust measures of model performance and 

map accuracy depend on the availability of independent test data that were not used in model 

building (Fielding and Bell 1997). For this study, independent data for testing were not collected 

due to high monetary costs and time requirements associated with additional field surveys. Map 

accuracy is therefore evaluated using a variety of approaches including a resubstitution method 

that uses the same data for both training and testing (Stockwell 1992), a cross-validated error 

computation using randomized subsets of data (Osborne and Tigar 1992), statistical analyses of 



15 
 

a partitioned test dataset (Fielding and Bell 1997), and a subjective review of the CART output 

and potential sources of error based on field observations and expert opinion. 

 

Re-substitution 

 Re-substitution does not utilize independent or partitioned test data. The same data used for 

model training are used for model evaluation. The proportion of training cases in each land 

cover class correctly classified by the CART classifier serves as measure of map class 

accuracy. The re-substitution method provides a lower boundary for estimates of prediction 

error since independent data are not used (Fielding and Bell 1997). Resulting re-substitution 

based map class accuracies for the final Bighorn model generally exceed 90% (Table 4). The 

Juniper – Limber Woodland type had the lowest map class accuracy with 89% of associated 

training data correctly predicted.  

 

Cross-validation 

 A cross-validation procedure was used to compute an index of overall classification 

accuracy. In this study, cross-validation was based on a modified k-fold partitioning method 

(Stockwell 1992) that generates random subsets or blocks of training data selected from the 

original total training dataset. Each block is comprised of an equal number of random samples 

with an equal class distribution. Each block is sequentially reserved as a hold-out test dataset 

while the remaining samples are used to construct independent CART models. Each model 

iteration or trial is subsequently evaluated using the reserved test data block. In this method, 

each training sample is used once as a test case. Overall prediction accuracy for a classifier 

that uses all available training data is estimated as the average cross-validated accuracy for 

each trial model. Cross-validated model accuracy averaged over 10 random partitions or blocks 

of the Bighorn Area 1 training data is 86.7%. 

 

Partitioned Test Data Metrics 

A total of 439 pixels were partitioned from the original training data and reserved for model 

evaluation. These pixels were not used in model construction and therefore provide an 

independent test dataset. Test data sample sizes per cover class ranged from 2 to 90 pixels 

(Table 4). A total of 38 classes were not evaluated with test data due to small samples sizes 

associated with the original training data. Corresponding omission and commission errors are 

highly variable, but are generally highest for classes with few test data (less than 10 samples). 

Small test data sample sizes limit definitive conclusions regarding map class accuracies, but low 

prediction accuracy in these classes may be attributed to a paucity of associated training data. 

Prediction errors were lowest for Juniper – Limber Woodland, Greasewood – Sage Shrubland, 

Wyoming Sage Shrubland, and Basin Sage Shrubland classes, all of which were intensively 

field sampled and had large training data sample sizes. Overall map accuracy based on the 
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proportion of correctly predicted test pixels is 67%, which may be constitute an upper boundary 

of prediction error due to the small sample size of the test data. 

 

Review and Summary of Model Output 

 Montane and subalpine land cover classes are generally restricted to upper elevations along 

the western perimeter of Map Area 1 in the Bighorn Basin. Corresponding classes were under-

sampled due to their limited areal extent within the study area and difficult access. Limited 

training data sample sizes suggest that associated model predictions may be less reliable. 

Future field sampling of similar cover types in the Absaroka Range should be used to revise 

model output in high elevation regions of Area 1.  

 Previous studies have correlated model performance with the environmental distribution or 

ecological amplitude of a target species or cover type (Hernandez et al. 2006; Buechling and 

Tobalske 2007). Prediction errors produced by classification algorithms such CART are 

minimized when species are restricted to relatively narrow habitats that can be precisely 

quantified by the statistical model. Generalist species with broader distributions and wider 

environmental tolerances are more difficult to predict. A review of the Bighorn model results 

supports these conclusions. Cover types comprised of species with specific habitat preferences 

were apparently modeled with high accuracy including Juniper – Limber Woodlands, which are 

restricted to rock outcrops and narrow ridges, Greasewood and Greasewood – Sage 

Shrublands, which are generally confined to mesic soils in riparian zones, and Gardner Saltbush 

– Sage Shrublands, which are associated with extremely xeric, clay soils at the lower elevations 

of the Bighorn Basin. Black Sagebrush (Artemisia nova), in contrast, was less accurately 

predicted even though this species has a relatively narrow ecological niche characterized by 

shallow soils and rocky environments on mesas, hilltops, and plateaus. Small training data 

sample sizes may explain high error rates for this class, but again, limited test data hinder 

definitive conclusions regarding prediction accuracy. 

 Wyoming Big Sagebrush (Artemisia tridentata var. wyomingensis) is a generalist species 

with a broad ecological distribution that was, however, modeled with relatively high prediction 

success according to omission and commission indices derived from the independent test data 

(Table 4). A majority of the prediction errors associated with Wyoming Big Sage is attributed to 

a misclassification of the correct cover class (low, medium, or high), as quantified by field data. 

Approximately 25% of low cover Wyoming Sage was classified as medium cover, and 30% of 

medium cover Wyoming Sage was classified by the model as either low or high cover Wyoming 

Sage. These classification errors may be correlated with high habitat and plant community 

heterogeneity, which results in a large variation in associated spectral responses. Additional 

causes of prediction error may include interpretation errors associated with the training or test 

data (Lu and Weng 2007). Specifically, sage abundance or cover levels within training pixels 

may have been imprecisely estimated by field observers. 
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Table 4: Land cover classes predicted by the final CART model and associated indices of classification accuracy  

 

Map class  
Class

code 

Mapped 
area 
(ha) 

Training data 

 

Independent test data 

 

No of 

pixels 

% of pixels 

correctly 

predicted 

No of 

pixels 

Omission 

Error % 

Commission 

Error % 

01.10.1 Lodgepole Pine 

20-32% 
 3 12,679 16 100 0 

  

01.10.2 Lodgepole Pine 

33-67% 
 4 2,513 19 95 0 

  

01.20.1 Douglas Fir 

20-32% 
 11 239 6 100 0 

  

01.20.2 Douglas Fir 

33-67% 
 12 9,659 46 100 8 37.5 0 

01.30.1 Spruce-Subalpine Fir 

20-32%  
 19 843 4 100 0 

  

1.30.2 Spruce-Subalpine Fir 

33-67% 
 20 2,204 11 100 0 

  

01.40.2 Ponderosa Pine 

33-67% 
 24 894 4 100 0 

  

01.60.1 Limber Pine 

20-32% 
 39 36,994 49 98 10 0 0 
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Map class  
Class

code 

Mapped 
area 
(ha) 

Training data 

 

Independent test data 

 

No of 

pixels 

% of pixels 

correctly 

predicted 

No of 

pixels 

Omission 

Error % 

Commission 

Error % 

01.60.2 Limber Pine 

33-67% 
 40 1,121 9 100 0 

  

01.61.1 Limber Pine-Douglas 

Fir 20-32%  
 43 14,194 20 100 0 

  

01.61.2 Limber Pine-Douglas 

Fir 33-67%  
 44 9,180 15 100 0 

  

Mixed Conifer-Juniper 

20-32% 
 51 8,938 34 100 2 50 0 

Mixed Conifer-Juniper 

33-67%  
 52 2,605 16 100 0 

  

01.90.1 Mixed Conifer-

Dominant 20-32%  
 55 1,780 4 100 0 

  

01.90.2 Mixed Conifer-

Dominant 33-67%  
 56 25,817 62 100 5 0 37.5 

01.94.2 Conifer-Aspen 

33-67% 
 60 13,401 4 100 0 

  

02.10.1 Aspen 20-32%   69 2,195 7 100 0 
  

02.10.2 Aspen 33-67%   70 2,375 10 100 0 
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Map class  
Class

code 

Mapped 
area 
(ha) 

Training data 

 

Independent test data 

 

No of 

pixels 

% of pixels 

correctly 

predicted 

No of 

pixels 

Omission 

Error % 

Commission 

Error % 

02.30.1 Cottonwood-Riparian 

20-32%  
 77 1,315 25 92 2 100 0 

02.30.2 Cottonwood-Riparian 

33-67%  
 78 8,231 73 100 7 0 22.2 

02.80.2 Other or Mixed 

Deciduous Forest 33-67%  
 82 206 6 100 0 

  

03.20 Juniper  88 884 36 100 0 
  

03.21 Juniper-Sage  91 21,924 91 90 6 0 25 

03.22 Juniper-Mountain 

Mahogany 
 92 3,391 39 100 0 

  

03.35 Juniper-Limber Pine  94 79,869 295 89 34 14.7 0 

04.20 Greasewood  101 4,843 61 98 3 33 60 

04.21 Greasewood-Sagebrush  102 50,895 141 96 42 16.7 12.5 

04.41 Gardner Saltbush  104 31,629 99 95 17 52.9 0 
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Map class  
Class

code 

Mapped 
area 
(ha) 

Training data 

 

Independent test data 

 

No of 

pixels 

% of pixels 

correctly 

predicted 

No of 

pixels 

Omission 

Error % 

Commission 

Error % 

04.45 Saltbush-Sagebrush  105 38,464 89 97 18 22.2 17.6 

04.60 Birdfoot Sage  107 124 5 100 0 
  

04.70 Mixed Desert Shrubs  108 35,577 41 98 14 0 0 

05.11.1 Basin Big Sagebrush   

5-15%  
 115 3,980 4 100 4 100 0 

05.11.2 Basin Big Sagebrush 

16-25%  
 116 3,035 36 100 5 100 100 

05.11.3 Basin Big Sagebrush 

>25% 
 117 2,625 18 94 3 100 0 

05.12.1 Wyoming Big 

Sagebrush 5-15%  
 119 266,315 468 95 86 29.1 40.2 

05.12.2 Wyoming Big 

Sagebrush 16-25%  
 120 91,596 282 96 90 43.3 43.3 

05.12.3 Wyoming Big 

Sagebrush >25%  
 121 5,823 74 100 6 100 100 

05.13.1 Mountain Big 

Sagebrush 5-15%  
 123 14,345 34 100 0 
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Map class  
Class

code 

Mapped 
area 
(ha) 

Training data 

 

Independent test data 

 

No of 

pixels 

% of pixels 

correctly 

predicted 

No of 

pixels 

Omission 

Error % 

Commission 

Error % 

05.13.2 Mountain Big 

Sagebrush 16-25%  
 124 28,442 58 100 11 72.7 72.7 

05.13.3 Mountain Big 

Sagebrush >25%  
 125 4,666 23 100 5 100 0 

05.14 Black Sagebrush  126 5,141 52 96 8 100 0 

05.16 Wyoming Three-tip 

Sagebrush 
 128 4,948 17 100 0 

  

05.19 Plains Silver Sagebrush  131 10,422 12 100 0 
  

05.20 Rabbitbrush  132 11,976 25 96 0 
  

05.33 Fringed Sage  144 11,231 31 100 0 
  

06.10 Willow  148 3,080 20 100 0 
  

06.70 Tamarisk  150 15,576 32 100 0 
  

07.20.1 Basin Grassland  

7.5-20% 
 157 5,922 28 100 6 16.7 0 
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Map class  
Class

code 

Mapped 
area 
(ha) 

Training data 

 

Independent test data 

 

No of 

pixels 

% of pixels 

correctly 

predicted 

No of 

pixels 

Omission 

Error % 

Commission 

Error % 

07.20.2 Basin Grassland 21-

40% 
 158 33,880 124 98 36 11.1 11.1 

07.20.3 Basin Grassland >40%  159 11,000 67 100 9 44.4 44.4 

07.60 Riparian/Wet Meadow  169 6,444 36 100 0 
  

07.80.2 Annual Grassland  

21-40% 
 173 143 8 100 0 

  

07.91.1 Forb 7.5-20% cover  176 3,925 4 100 0 
  

10.10 Water-Lentic or Standing  189 7,562 230 100 0 
  

12.90 Bare Ground  207 25,346 63 95 2 0 0 

99.50 Burned Areas  216 24,431 67 97 0 
  

Total  
 

1,026,835 3,150 
 

439 
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Conclusions 

 A non-parametric classification algorithm, calibrated with approximately 3,150 training pixels 

derived from 922 distinct field-sampled reference sites, was used to produce a moderate 

resolution map of land cover types for Area 1 of the Bighorn Basin. A total of 64 land cover 

classes were modeled across the study area. Resulting overall classification accuracy, 

evaluated using a variety of methods including analyses of randomized and partitioned test 

datasets, ranges from a lower limit of 67% to an upper limit of 87%. Classification errors 

associated with individual land cover classes were variable and attributed to the quantity of 

training and test data available, the quality of the field collected training data, and the biology 

and ecological amplitude of component species comprising individual cover classes. 

 Future efforts to improve classification accuracy may include an exploration of the effects of 

spatial scale on individual map class accuracies, collection of supplemental field reference data 

to improve under-sampled cover classes, and further research into the effectiveness of 

additional explanatory variables or alternative combinations of variables. 
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