
AGGREGATES

Section 8 – Aggregate Gradation Calculations

Aggregate Analysis

T-166

- ➤ The T-166 form has several important parts.
 - Project Identification
 - ► Initial Moisture Content
 - Atterberg Limits
 - Gradation Analysis
- The sheet shows the results of the lab testing.
 - Coarse Aggregate (Gilson) Test
 - Fine Aggregate and Wash Sieve Tests

T-166 Example 1

	W E	E I G H T E AGG.	le constant de la con	rkg) FINE AGO	G.				Weight Retained	% Retained =	
Sample	32.6	6 = (E)	41	19.9	= (F)				(lbs or kg)		00
After Wash				331.1		RET	AINED No. 4 [[4.75 mm] = (A)	19.50	=	(H)
Pass No. 200 [75μm]				8.88			PASS No. 4	[4.75 mm]= (B)		40.0	= (I)
Pass No. 200 [75 μm], Pan				33.1	!		TOTAL	L, A + B = (D)	32.50		
Total Pass No. 200 [75μm]											
	· '	% RET =	WT	% RET =	% RET			COMBINI	ED AGGRE	GATE	
SIEVE SIZE	WT RET	K X 100 E	WT RET	P x 100 F	R x I 100			% PAS		SPEC	
No. Alexandre	=K	=L	=P	=R	=S		=Z	to 0.1 %	to 1%	% PASSING	
1 1/2" [37.5 mm]								100.0			
1" [25mm]	2.10	6.4						93.6			
3/4" [19 mm]	4.30						13.2	80.4			
1/2" [12.5 mm]	3.80		l				11.7				
3/8" [9.5 mm]	5.10	15.6	l				15.6				
No. 4 [4.75 mm]	4.20	12.9							40		
No. 8 [2.36 mm]			77.2		7.4		7.4	32.8	33		
No. 16 [1.18 mm]											
No. 30 [600 µm]			61.8	14.7			5.9	26.9	27		
No. 40 425 [μm]			55.6				5.3	21.6	22		
Νο. 50 [300 μm]			 								
No. 100 [150 μm]			59.4	14.1	5.6		5.6	16.0	16		
No. 200 [75 μm]			44.0	10.5	4.2		4.2	11.8	12		
Pass No. 200 [75 μm], Pan	13.00	39.9	121.9	29.0	11.6						
TOTAL PASSING			419.9	99.9							
SHAKER LOSS %		.3 %	0.	.0 %				WET WT	(lb or kg)		
FRACTURED FACES %	One or more		SHAKE	ER LOSS FO	ORMULA			DRY WT	(lb or kg)		
FLAT & ELONGATED %	1:5 Ratio		([E or F] - TC	OTAL PASSING)	/[E or F] * 100			WET - DF	RY = MOISTURE		

Aggregate Analysis T-166 WYOMING DEPARTMENT OF TRANSPORTATION T-166

- This example tests the gradation against the specification for a 3/4" Superpave Mix.
 - The sieve specification range is written in the right-hand column.
 - After the sieve analysis is completed, the results are compared against the range.
- Note: This is a complete sheet with water content, Atterburg Limits and Gradations all calculated.

***		MA	ATER			ATE AN		ORA	FORY		(Rev. 10	-18)
CEPAPTMENT								NUMBER	99			
PROJECT NO(S).:							PROJE	CT NAME	-			
ENGINEER: SAMPLE LD.:	2 / / !! C	Lun own auto	Miss					TOWN APLED BY				
PIT OR OFARKY:	3/4 -	ouperpuve	MIX					COUNTY	ii .			
QUANTITY:							83	R USE AS	-			
DATE RECEIVED:							DATI	E TESTED	:			
		W I COARS	IGH EAGG.	***********	r kg) FINE AG	G.				Weight Retained	% Retaine	
Sample	**********	35.6	= (E)	37	76.2	= (F)				(lbs or kg)		x 100
After Wash					357.3		RETAINE	D No. 4 [4.	75 mm] = (A)	18.07	50.8	= (H)
Pass No. 200 [75μ	m]				18.9		PAS	S No. 4 [4	.75 mm]= (B)	17.53	49.2	= (1)
Pass No. 200 [75 μm]	, Pan	8		3	23.2		(i) (c)	TOTAL	, A + B = (D)	35.60		
Total Pass No. 200 [7	(5µm)		% RET =	oranice con	42.1 % RET =	% RET			COMBIN	ED AGGREG	ATE	
SIEVE SIZE		WT RET	K X 100 E	RET	P x 100 F	B.x.J 100	R090909090909090		200000000000000000000000000000000000000	SSING S(Z)	SPEC	
-		=K	=L	=P	=R	=S		=Z	to 0.1%	to 1%	% PASSI	NG
1 1/2" [37.5 mm]									100.0	100		
1" [25mm]		8 3	-	3	8	8		3	100.0	100	100	
3/4" [19 mm]		3.25	9.1	3	8 6	8		9.1	90.9	91	90-100)
1/2" [12.5 mm]		5.83	10.4	7	· 5	8		16.4	74.5	75	55-90	
3/8" [9.5 mm]		4.68	13.1	6	8 8			13.1	61.4	- 61	45-85	
No. 4 [4.75 mm]		4.31	12.1	3	8 8			12.1	49.3	49	30-65	_
No. 8 [2.36 mm]	i i	2000	-	67.3	17.9	8.8		8.8	40.5	41	20-50	
No. 16 [1.18 mm]	6	8		59.3	15.8	7.8		7.8	32.7	33		_
No. 30 [600 µm]	ii N	×	-	52.6	14.0	6.9		6.9	25.8	26	5-30	_
No. 40 425 [µm]	1	z -	-	49.5	13.2	6.5		6.5	19.3	19	5 50	
No. 50 [300 μm]		×		49.5	13.2	0.5		6.5	19.3	19		
	8			52.2	140	7.0		7.0	10.0	10		
No. 100 [150 μm]	2			53.3	14.2	7.0		7.0	12.3	12	2.7	
No. 200 [75 µm]				52.1	13.8	6.8		6.8	5.5	5.5	2-7	. Constant
Pass No. 200 [75 μm]	0.000	17.53	49.2	42.1	11.2	5.5						
TOTAL PASSIN		35.60	99.9	376.2 0.0	100.0						37.3	
ACMITY OF DESCRIPTIONS		One or more	-		R LOSS F	OD) GT 1			VET VT		35.6	
FRACTURED FACE FLAT & ELONGATE	1000	1:5 Ratio		University of the Control	AL PASSING				DRY VT	B OF KGJ MOISTURE	1.7	
	(A) (A) (A) (A)		.	N. S. A. S. S. S. S.	AL PASSING	ajrtE orrj			.=(MOIST./ DF		4.8	
✓ FINENESS MO			M., Sect.	r -	MOISTUR	Dre Vt -			•	ST V 1 J2100		N. 100 (100 (100 (100 (100 (100 (100 (100
BLOWS = 18	Tin No.	Vet∙Tare= AA	Tare= BB	Tare = CC	AA - BB - DD	Dry Vt = BB - CC = EE		E) = 100	Corr. Factor		PLASTIC IN (PI) =LL -	DEX PL
LIQUID LIMIT (LL)	7 <i>A</i>	48.5	45.8	21.2	2.7	24.6		1.1	0.961	11.0	3.0	
PLASTIC LIMIT (PL)	7B	35.9	34.9	22.3	1.0	12.6	8	.0				
REMARKS												
						(T. ERTIFICA	ESTED BY	3			

T-166 Example 2

	3									
	WE	IGHT	(lbs or	kg)					Weight	% Retained =
	COARSE	AGG.	100000000000000000000000000000000000000	FINE AG	G.				Retained	A or B x 100
Sample	35.6	= (E)	37	76.2	= (F)				(lbs or kg)	(5)
After Wash				357.3		RETA	AINED No. 4 [4.75 mm] = (A)	18.07	50.8 = (H)
Pass No. 200 [75μm]				18.9				4.75 mm]= (B)	17.53	49.2 = (I)
Pass No. 200 [75 μm], Pan				23.2		F	TOTA	L, A + B = (D)	35.60	
Total Pass No. 200 [75µm]										
		% RET =	WT	% RET =	% RET			COMBINE	ED AGGRE	GATE
SIEVE	WT RET	K X 100	RET	P x 100	RxI			% PAS	SSING	CDEC
SIZE		E		F	100			100 - 5	S(Z)	SPEC % PASSING
	=K	=L	=P	=R	=S		=Z	to 0.1 %	to 1 %	/VIASSETS
1 1/2" [37.5 mm]			15					100.0	100	
1" [25mm]			16					-		100
3/4" [19 mm]	3.25	9.1	4				9.1	90.9	91	90-100
1/2" [12.5 mm]	5.83	16.4					16.4	74.5	75	55-90
3/8" [9.5 mm]	4.68									45-85
No. 4 [4.75 mm]	4.31						00.000.000.000			30-65
No. 8 [2.36 mm]			67.3	17.9	8.8		8.8		2000	20-50
No. 16 [1.18 mm]			59.3	15.8	7.8		7.8	32.7		
Νο. 30 [600 μm]			52.6					25.8	26	5-30
Νο. 40 425 [μm]			49.5							
Νο. 50 [300 μm]										
No. 100 [150 µm]			53.3		7.0				12	
Νο. 200 [75 μm]			52.1				6.8	5.5	5.5	2-7
Pass No. 200 [75 μm], Pan	17.53		42.1	1377/2007	5.5					
TOTAL PASSING	<u> </u>	99.9	376.2	100.0						
SHAKER LOSS %	0.0	%	0.	0 %			WET WT (lb or kg)		(lb or kg)	37.3
FRACTURED FACES %	One or more	20	SHAKE	R LOSS F	ORMULA		DRY WT (lb or kg)			35.6
FLAT & ELONGATED %	1:5 Ratio		([E or F] - TC	OTAL PASSING)) / [E or F] * 100		WET - DRY = MOISTURI			1.7
						grande de la companya de				

PROJECT NO(S).: PIT OR QUARRY: SAMPLE I.D.: 3/4" Superpave Mix QUANTITY: ENGINEER: WYOMING DEPARTMENT OF TRANSPORTATION 1-166 MATERIALS TESTING LABORATORY AGGREGATE ANALYSIS PROJECT NAME: TEST NUMBER: SAMPLED BY: FOR USE AS: TOWN: (Rev. 10-13)

			CERTIFICATION NO.	Ω.					
		2007	TESTID BY						
									RUMARKS
			œ	12.5	1.0	22.3	34.9	35.9	PLASTIC LIMIT (PL) 78
4	11	0.961	11.0	24.6	2.7	21.2	45.8	18.5	LIQUID LIMIT (LL) 7A
[PI] =LL - PL	L'Coir, Facto	ō.	[DD / EE] = 100	DD - CC - 1	AA - BB	20	Taic- BB	AA	18 No.
DI ACTIC INDE		38 ITSION 60	- F	Dry Vt.	MOISMIE		Dry .	U. T.	RIOWS = T.
4.8	Y VT)x100	MOIST [MDISTADINY YT]×100	TOIOM X			16.0:	L. Sect. 81	sec M.I.A	FINENESS MODULUS: sec M.I.M. Sect. 816.0:
1.7	MOISTIRF	VFT - DRY = MOISTIRE		F] -TOTAL PASSING) / [F or F] '	NI PASSING	F] -TOT	100	I:5 Ratio	FLAT & ELONGATED %
35.6	b or kq)	DRY VT (16 or kq)		ORMULA	SHAKER LOSS FORMULA	SHAKE		One on more	FRACTURED FACES %
3/.3	lb or kg)	WET VT (lb or kg)			8000		2		SHAKER LOSS %
					100.1	376 2	99.9	35.60	TOTAL PASSING
				5.5	11.2	42.1	49.2	17.53	Pass No. 200 [75 µm], Pan
2-7	5.5	5.5	6.6	6.8	13.8	52.1		8 8	No. 200 [75 µm]
	12	12,3	7.0	7.0	14.2	53.3		6	No. 100 [150 µm]
								. 2	No. 501300 µm1
	19	19.3	6.5	6.5	13.2	49.5			No. 4U 4Z5 [µm]
5-30	26	25.0	6.9	6.9	14.0	52.6		S	No. 30 [G00 µm]
	33	32.7	7.8	7.8	15.8	E9.3			No. 16 [1.18 mm]
20-50	41	40.5	8.8	8.8	17.9	6/3			No. 8 [2.36 mm]
30-65	49	49.3	12.1				12.1	4.31	No. 4 [4.75 mm]
45-85	61	61.7	13.1				13.1	4.68	318" [9.5 mm]
55-90	75	74.5	16.4				16.4	5.83	1/2" [12.5 mm]
90-100	I.é	90.9	F.6				1.6	3.25	344" [13 mm]
100	100	100,0			· ·			3	1 [25mm]
	100	100,0							11/2" [37.5 mm]
A0 F. F. S. S. L. S. S. S. L. S. S. S. L. S.	to 1%	to 0.1%	=Z	=S	#	=P	#	= K	
SPEC	S(Z)	% PASSING 100 S(Z)		100 Lx E	F # 100	RET	E E	WI KEI	TZIS
ATE	OMBINED ACCRECATE	COMBIN		72 PFT	% RFT =	WI	Z RFT=		
					42.1				lotal Pass No. 200 [/5µm]
	35.60	TOTAL . A + B = (0)	TOTAL	0	23.2		Q: 2		Pass No. 200 75 µm], Pan
49.2 = 00	17.53	.75 mm]= (B)	PASS No. 4 [4.75 mm]= (B)		18.9				Pass No. 200 [75µm]
50.8 = (H)	18.07	75 mml = (A)	RETAINED No. 4 [4.75 mm] = (A)		357.3				After Wash
Aor B x 100	(lbs or kg)			= = =	376.2	37	- IFI	COARSE AGG	Sample
% Retained =	Weight				Kg)		WEIGHT (Booming)	W	
	9		DATE TESTED:						DATE RECEIVED:
		-	TOR COL GO.						Comment.

Note: sheet with water content, Atterburg Limits and Gradations all calculated. This is a complete

The actual calculations of the correlation will not be on the exam but you would need to have an appreciation to the process. In addition, you would need to be able to answer general questions about the process.

(WYDOT MTM 126.0)

- General
 - Compares aggregate gradations obtained by WYDOT field laboratory and Contractor's laboratory.
 - ► The paired t-test is used.
 - ► If difference is significant, then the dispute resolution procedure will start.
 - ▶ Re-correlate if either tester is changed.
 - ► Can be done during aggregate production.

- > Procedure
 - Obtain 15 aggregate samples
 - Groups of 3
 - Sample according to WYDOT MTM 804
 - ◆5 samples for WYDOT, 5 for contractor, and 5 for referee
 - When sampling from a belt, the middle sample should be the referee sample
 - ▶ Test samples
 - WYDOT MTM 814.0

Procedural Steps on Form

➤ Determine percent passing each sieve size

Perform t-test separately for each sieve size

Calculate the difference between % passing

➤ Determine the mean and the Standard Deviation (s) of the differences

Procedure (continued)

➤ Compare s to the minimum and maximum values in Table 1.

> Calculate

$$t = \frac{\left| x \right|}{\sqrt{\frac{s^2}{n}}}$$

- > If t < 4.604; No significant difference
- ➤ If t > 4.604; Significant difference
- ➤ Check for Sign Error Do the Differences all have the same sign? May Indicate Bias.

Table 1. Allowable Range of Standard Deviation

			Grading	
Percent Retained		Coarse	Fir	ne
reicent Retained	Maximum	Minimum	Maximum	Minimum
< 3%	3.00	0.39	0.60	0.21
3% - 10%	3.00	1.06	1.60	0.57
10% - 20%	4.70	1.66	2.70	0.95
20% - 30%	5.70	2.01	3.50	1.24
30% - 40%	6.90	2.44	4.00	1.41
>40%	9.00	3.18	5.20	1.41

 Use the coarse values unless the nominal maximum aggregate size is #4 or less, in which case use the fine values

Directional Bias

- Evaluate for directional bias. "Directional bias" exists when all of the paired test differences are positive or negative and the average difference on at least one sieve exceeds the Allowable Gradation Difference in Table 3.
- ➤ If directional bias exists, consult Subsection 114.3.3, Correlation.
- > Continue evaluation to find the cause of the directional bias.

Table 3 Allowable Gradation Differences

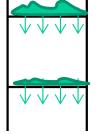
Table 3. Allowable Gradation Difference

-	G. E. O. i. D. i. D. i. C.											
Į.		Gra	ding (Nomina	l Maximum S	ize)							
	1 inch	3/4 inch	½ inch	3/8 inch	PMWC	Concrete						
Sieve				Difference ssing)								
1 1/4 inch	1.5					1.5						
1 inch	2.0	1.5				2.0						
3/4 inch	3.0	2.0	1.5			3.0						
½ inch	3.4	3.0	2.0	1.5	1.5	3.4						
3/8 inch	3.4	3.4	3.4	2.0	2.0	3.4						
No. 4	3.4	3.4	3.4	3.4	3.4	3.4						
No. 8	3.3	3.3	3.3	3.3	3.3	3.3						
No. 16						3.3						
No. 30	2.9	2.9	2.9	2.9								
No. 50						2.9						
No. 100						2.9						
No. 200	1.2	1.2	1.2	1.2	1.2	1.2						

Resolving Directional Bias

Perform additional correlation tests if the correlation procedure shows that directional bias is present. Continue performing correlation testing until the directional bias no longer exists in accordance with **Subsection 114.3.4, Resolving Field Test** Discrepancies. The department's test results will be used for pay factor analysis while correlation testing is being done. Perform new correlation tests if new equipment or personnel (department or contractor) are introduced during testing.

114.3.4 Resolving Field Testing Discrepancies


- 1. Meet with department personnel and review testing procedures, equipment condition, and equipment calibrations in attempt to solve the problem.
- 2. When cause of the discrepancy has been identified and corrected, repeat the correlation procedure.
- 3. If the second correlation determines that the contractor's and department's test results represent different sample populations, conduct referee testing.

114.3.4 Resolving Field Testing Discrepancies

- 4. The Materials Program will conduct the referee tests using the retained referee samples for aggregate gradations and the department's cores for density testing.
- 5. The Materials Program will make its results available within five working days of receiving the samples.
- 6. If the samples represent a quality acceptance lot, the engineer will use test results correlating with the Materials Program test results for the quality acceptance calculations.

Correlation of Testing Technicians for Gradation Example- #1:

Sampler: Contractor: Project: Location: **Test Sieve Size:** Date: Average % Passing 1/2" is 57.2% **Grading W - Coarse Gradation**

$\downarrow\downarrow\downarrow\downarrow$	
$\downarrow\downarrow\downarrow\downarrow$	% Retained =

Min

WYDOT

Sample	WIDOI	Contractor	Difference
	(A)	(B)	(A) - (B)
Α	49.2	49.8	No. 200 - 12 - 12 - 12 - 12 - 12 - 12 - 12
В	50.6	46.3	
С	49.6	51.2	
D	51.2	48.3	
E	50.9	48.2	

Mean -x:

Contractor

Difference

Average Passing = 49.53

Max

Sample

Std Dev - s:

Min SD: Max SD:

SD Used:

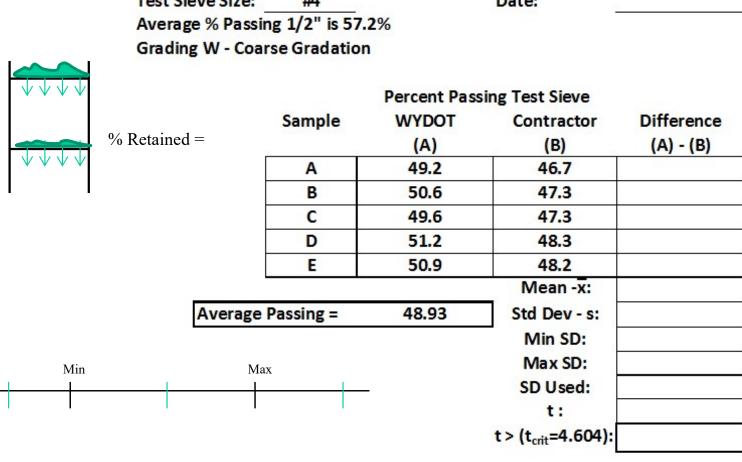
s ²	6.315
n	5
s ² _	-1 263

 $s^2 = 6.315$

s = 2.513

 $s \times s = 2.513 \times 2.513$

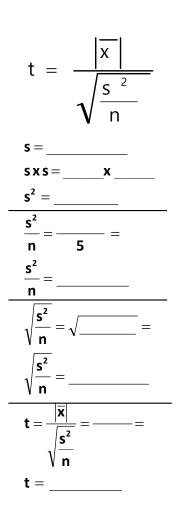
$$\frac{\frac{3}{n} = 1.263}{\frac{1}{n}}$$


$$\sqrt{\frac{s^2}{n}} = 1.124$$

$$t = \frac{|\overline{x}|}{\sqrt{\frac{s^2}{n}}} = \frac{1.54}{1.124}$$

t = 1.371

If t > t_{crit}, then the data sets are Significantly Different If $t \le t_{crit}$, then the data sets are Not Significantly Different Is there directional bias?_____


Sampler: Contractor:
Project: Location:
Test Sieve Size: #4 Date:

If $t > t_{crit}$, then the data sets are <u>Significantly Different</u>

If $t \le t_{crit}$, then the data sets are <u>Not Significantly Different</u>

Is there directional bias?

Contractor

Sampler

	Sumpren.			Contractor.		
	Project:			Location:		
	Test Sieve Size:	#200		Date:		
	Average % Passir	ng #30 is 14.	5%	1500/000		
	Grading W - Coar	rse Gradatio	n			$ \overline{x} $
~						t = <u>- </u>
$\downarrow \downarrow \downarrow \downarrow \downarrow$			Percent Pas	sing Test Sieve		S
		Sample	WYDOT	Contractor	Difference	\mathbf{v} n
	% Retained =		(A)	(B)	(A) - (B)	
$\downarrow \downarrow \downarrow \downarrow \downarrow$		Α	2.75	2.64		
1 1		В	2.60	2.81		
		С	3.12	3.53		
		D	3.05	3.69		
		E	2.88	3.01		
				Mean -x:		
	Average	Passing =	3.01	Std Dev - s:		
	-5			Min SD:		
Min	Max			Max SD:		
	IVIUA			SD Used:		
				t:		
				t > (t _{crit} =4.604):		

If t > t_{crit} , then the data sets are <u>Significantly Different</u>

If t $\leq t_{crit}$, then the data sets are <u>Not Significantly Different</u>

Is there directional bias?

Correlation of Aggregate Gradations

WYOMING DEPARTMENT OF TRANSPORTATION

T 165 AG REV (4-2004)

CORRELATION OF AGGREGATE GRADATIONS

Contractor:				Consultan	ıt:							
WYDOT:				Resident I	Engineer:	-			Test is to			
Testing Date:				_					Project No(s): Test is to Correlate (Check One) Testers A B Max SD Min SD t crit= Pass Fail			
QC Supervisor	:			Mechanica	al Sampler	:					В	
Control Sieve									1		t c	rit=
Sizes &	Tester		Perc	ents Passi	ng		Avg	Std Dev	Max SD	Min SD		
Average %		Pair A	Pair B	Pair C	Pair D	Pair E					t=	
	Contractor											
	WYDOT											
	Difference											
	Contractor											
	WYDOT											
	Difference											
	Contractor											
	WYDOT											
	Difference											
	Contractor											
	WYDOT											
	Difference											
	Contractor											
	WYDOT											
	Difference											
	Contractor											
	WYDOT											
	Difference											
Directional Bias	s on Any Sieve	? _				_	Which (One(s)?				
Comments:												
Signature of					Signatur					Data		
Tester A:					Tester B	<u>:</u>				Date:		

Correlation of Aggregate Gradations

WYOMING DEPARTMENT OF TRANSPORTATION

T 165 AG REV (4-2004)

CORRELATION OF AGGREGATE GRADATIONS

Contractor: Curly Queue	Consultant: Besttesters	Project No(s): 12-34-(56)
WYDOT: Moe Thyme	Resident Engineer: Larry Stuge	Test is to Correlate (Check One)
Testing Date: 2/29/99		Testers A X
QC Supervisor: M. Magoo	Mechanical Sampler:	В
	-	

Control Sieve		Percents Passing				1			t crit=			
Sizes &	Tester		reice	FIILS PASSIII	y		Avg Std Dev		Max SD	Min SD	t=	Pass /
Average %		Pair A	Pair B	Pair C	Pair D	Pair E					ι-	Fail
1"	Contractor	89.9	88.5	92.5	91.1	86.5	89.8					
	WYDOT	91.0	89.6	88.4	92.0	88.9	09.0					
10.2	Difference	-1.1	-1.1	4.1	-0.9	-2.4	-0.28	2.52	4.7	1.66	0.248	Pass
3/4"	Contractor	78.6	79.0	77.2	81.2	81.0	79.2					
	WYDOT	79.2	78.9	76.5	79.9	80.5	19.2					
10.6	Difference	-0.6	0.1	0.7	1.3	0.5	0.4	0.71	4.7	1.66	0.539	Pass
1/2"	Contractor	56.3	55.4	55.0	60.4	59.8	58.6					
	WYDOT	58.9	58.0	59.5	60.2	62.3						
20.6	Difference	-2.6	-2.6	-4.5	0.2	-2.5	-2.4	1.68	5.7	2.01	2.67	Pass
#4	Contractor	24.8	24.2	27.2	22.3	24.7	1 28.2 II					
	WYDOT	31.3	35.6	31.1	31.6	29.5						
30.4	Difference	-6.5	-11.4	-3.9	-9.3	-4.8	-7.18	3.13	6.9	2.44	5.129	Fail
#30	Contractor	11.5	12.6	10.5	14.0	14.6	13.3					
	WYDOT	14.0	12.9	11.6	15.4	15.9						
14.9	Difference	-2.5	-0.3	-1.1	-1.4	-1.3	-1.32	0.88	4.7	1.66	1.778	Pass
#200	Contractor	6.5	8.2	6.8	7.3	8.9	7.6					
	WYDOT	7.1	8.4	7.3	7.1	7.9						
5.8	Difference	-0.6	-0.2	-0.5	0.2	1.0	-0.02	0.65	3	1.06	0.042	Pass

Directional Bias on Any Sieve? Yes	Which One(s)?	Which One(s)? #4			
Comments: There appears to be a significant problem on	the #4.				
Signature of	Signature of				
Tester A: Curly Queue	Tester B: Moe Thyme	Date: 2/29/99			