

	Practice Problems
≻ Co	ompaction Pay Factors
> Co	ost Analysis
> Co	ores vs. Nuclear Testing Correlation
≽ De	ensity Random Number Selection
> Co	ompaction Pay Factors-SD

2

Pay Factor Determination (p. 15-3)

- **≻** Density
 - ▶ Determine core densities
 - **◆WYDOT MTM 415.0**
 - ◆ Round to 0.01%
 - ▶ Determine % density

% Density =
$$\frac{\text{density}}{\text{max. theor.}} = x$$

▶ Determine average (\overline{x}) $\overline{x} = \frac{\sum_{x}}{n}$

$$\overline{X} = \frac{\Sigma_X}{R}$$

Pay Factor Determination (p. 15-4)

➤ Determine standard deviation (s)

$$s = \sqrt{\left(\frac{1}{n-1}\right) \sum_{x} \left(x - \bar{x}\right)^2}$$

▶ Calculate the Quality Index (QI)

$$\begin{aligned} & \text{Upper Quality Index} = \mathbf{Q}_{\mathbf{u}} = \frac{SL_{n} - \overline{x}}{S} \\ & \text{Lower Quality Index} = \mathbf{Q}_{\mathbf{i}} = \frac{\overline{x} - SL_{r}}{S} \end{aligned}$$

► Where: SL_v = 1

n = 7

▶ For PF < 0.75 Remove and Replace

Section 15 - 4

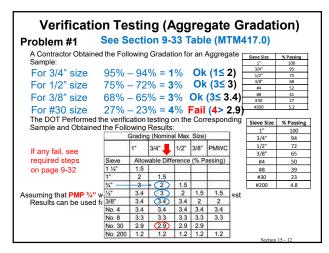
4

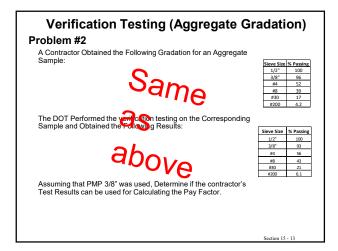
	Table 113.1-1						
Qualit	v Level Analy	sis by the Star		on Method			
PU or PL percent Within Limits for			Quality Index Quality Inex		,		
Positive Values of QU or QL	n = 3	n = 4	n = 5	n = 6	n-7		
100	1.16	1.50	1.79	2.03	2.23		
99		1.47	1.67	1.80	1.89		
98	1.15	1.44	1.60	1.70	1.76		
97		1.41	1.54	1.62	1.67		
96	1.14	1.38	1.49	1.55	1.59		
95		1.35	1.44	1.49	1.52		
94	1.13	1.32	1.39	1.43	1.46		
93		1.29	1.35	1.38	1.0		
92	1.12	1.26	1.31	1.33	1.65		
91	1.11	1.23	1.27	1.29	130		
90	1.10	1.20	1.23	1.24	12		
89	1.09	1.17	1.19	1.20	2		
88	1.07	1.14	1.15	1.16	.16		
87	1.06	1.11	1.12	1.12	.12		
86	1.04	1.08	1.08	1.08	1.08		
85	1.03	1.05	1.05	1.04	1.04		
84	1.01	1.02	1.01	1.01	7.0		
83	1.00	0.99	0.98	0.97	9		
82	0.97	0.96	0.95	0.94	.9.		
81	0.96	0.93	0.91	0.90	.91		
80	0.93	0.90	0.88	0.87	.84		
79	0.91	0.87	0.85	0.84	.8.		
78	0.89	0.84	0.82	0.80	0.80		
77	0.87	0.81	0.78	0.77	.7		
76	0.84	0.78	0.75	0.74	.7.		
75	0.82	0.75	0.72	0.71	2		
74	0.79	0.72	0.69	0.68	0.67		

5

Pay Factor Determination (p. 15-6) Table 113.1-1							
Table 113.1-1 Onality Level Analysis by the Standard Deviation Method							
PU or PL percent Within Limits for	,	Upper (Quality Index r Quality Inex	QU or			
Positive Values of OU or OL	n = 3	n = 4	n = 5	n = 6	n = 7		
72	0.74	0.66	0.63	0.62	0.61		
71	0.71	0.63	0.60	0.59	0.58		
70	0.68	0.60	0.57	0.56	0.55		
69	0.65	0.57	0.54	0.53	0.52		
68	0.62	0.54	0.51	0.50	0.49		
67	0.59	0.51	0.47	0.47	0.46		
66	0.56	0.48	0.45	0.44	0.44		
65	0.52	0.45	0.43	0.41	0.41		
64	0.49	0.42	0.40	0.39	0.48		
63	0.46	0.39	0.37	0.36	A		
62	0.43	0.36	0.34	0.33	0.32		
61	0.39	0.33	0.31	0.30	0.30		
60	0.36	0.30	0.28	0.27	0.27		
59	0.32	0.27	0.25	0.25	0.24		
58	0.29	0.24	0.23	0.22	0.21		
57	0.25	0.21	0.20	0.19	0.19		
56	0.22	0.18	0.17	0.16	0.16		
55	0.18	0.15	0.14	0.13	0.13		
54	0.14	0.12	0.11	0.11	0.11		
53	0.11	0.09	0.08	0.08	0.08		
52	0.07	0.06	0.06	0.05	0.05		
51	0.04	0.03	0.03	0.03	0.03		
50	0.00	0.00	0.00	0.00	0.00		

Pay Fact	or	Determination (p. 15-7)
> Determine	PW	VL(Density) (Quality Level)
qua	lity leve	$P = (P_U + P_L) - 100$
1		ne Pay Factor(Density) $55 + 0.50 \times \frac{PWL_D}{100}$
▶ Where:		
PF ₀	-	pay factor for in-place density, rounded to the nearest 0.0001
PWLD	=	percent within limits for in-place density
		Section 15 - 7


	Com	paction	on Pa	y Fac	tors	
1. 94.3% x = 95.07 s = 0.52	95.80%	94.70%	95.00%	95.60%	Qu = 9.48 Ql = 5.90 PU = 100 f	
2. 95.7%	92.90%	92.80%	92.00%	95.40%	93.60%	93.50%
x = 93.70 s = 1.37						from Table (113.1-1 om Table (113.1-1) evel = 90
3. 98.80%	98.2%	98.00%	98.90%	96.80%	92.30%	90.20%
x = 96.17 s = 3.48						rom Table (113.1-1) om Table (113.1-1) evel = 76
4. 92.60%	90.70%	91.90%	93.40%	92.10%	91.00%	90.90%
x = 91.8 s = 1.00			Qu = QI = PU = PL =	-0.20 100 from Table	(113.1-1)	
				ity Level = 42		Section 15 - 8


LAC	mple #1			
l⊏	Material	% of Total Mix	Cost/Ton	
Αį	gregate #1	45	\$7.50	45% x \$7.50 or 0.45 x 7.50 = 3.38
Αį	gregate #2	33	\$6.65	33% x \$6.65 or 0.33 x 6.65 = 2.19
Ag	gregate #33	16	\$5.50	16% x \$5.50 or 0.16 x 5.50 = 0.88
	Asphalt	6	\$120	6% x \$120 or 0.06 x 120 = 3.38
Cor	npute the	Following:		
1.	•		\$ \$1	3 65 155 lb 1 ton 27 ft3
l	Cost ner	Cubic Vard	$\frac{3}{vd^3} = \frac{3}{3}$	$\frac{3.65}{ton} x \frac{155 lb}{ft^3} x \frac{1 ton}{2000 lb} x \frac{27 ft^3}{yd^3} = 28.5
2) 2000 ib yu
2.	Coat no			
2. 3.	Cost per	Square raid		$\frac{$28.56}{yd^3}$ x 4.5 in $x \frac{1 \ yd}{36 \ in} = $3.57/yd^2$

	st Analysis
Example #2	Solution:
Mix Cost per Ton = \$25.00	
Density = 150 pcf	
Pavement Thickness = 5 in	
Compute the Following:	
 Cost per Cubic Yard 	
2. Cost per Square Yard	
$\frac{\$}{yd^3} = \frac{\$25.00}{ton} x \frac{150}{ton}$	$\frac{lb}{ft^3}x \frac{1\ ton}{2000\ lb}x \frac{27\ ft^3}{yd^3} = \$50.63/yd^3$
$\frac{\$}{vd^2} = \frac{\$50.63}{vd^3} \times 5.0 i$	$in x \frac{1 yd}{36 in} = \$7.03/yd^2$

Table (MTM417.0) (p. 15-9) Grading (Nominal Max. Size) 3/4" 1/2" 3/8" PMWC Allowable Difference (% Passing) Sieve 1 1/4" 1.5 2 1.5 3/4" 3 2 1.5 1/2" 3.4 3 2 1.5 1.5 3/8" 3.4 3.4 3.4 2 2 No. 4 3.4 3.4 3.4 3.4 3.4 3.3 No. 8 3.3 3.3 3.3 3.3 No. 30 2.9 2.9 2.9 2.9 No. 200 1.2 1.2 1.2 1.2 1.2 Section 15 - 11

11

Verification Testing (Aggregate Gradation) Problem #3 A Contractor Obtained the Following Gradation for an Aggregate Sample: Sample: Sample: Sieve Size 15 Passing 1/3/4" 100 1/3/2" 96 1/3/8" 79 96 1/3/8" 79 96 1/3/8" 100 1/3/8

14

Verification Testing (Density) The Following Densities Were Obtained from Verification Testing. Determine Which Sets Confirm the Contractor's Results. DOT's Difference Difference Contractor's Density Density Difference Acceptable Unacceptabl 142.3 142.1 142.5 141.3 1.2 pcf 143.5 141.3 143.1 144.9 142.3 141.1 144.5 142.9 143.7 142.5 From Section 9-34 - Table 2 (TM529) --- Allowable Density Difference (between technicians) 1.50 pcf If Diff. ≤ 1.50 pcf, then Acceptable If Diff. > 1.50 pcf, then Unacceptable