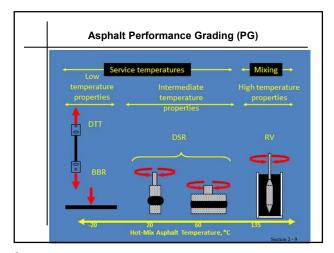
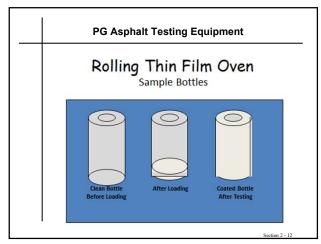
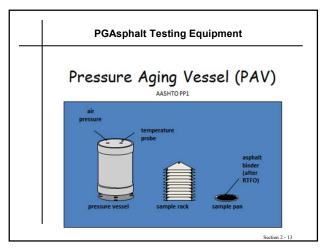

 Grading of Asphalt Binde	r
➤ Viscosity of original	
➤ Viscosity of aged asphalt	
➤ Penetration of original	
> SHRP performance grading	
	Section 2 - 2

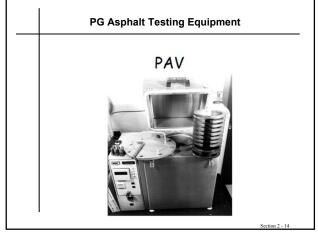


Performance (Grading (PG) Asp Equipment	halt Testing				
Equipment	Purpose	Performance Property				
Rotational Viscometer	Handling pumping	Flow				
Rolling Thin Film Oven Test Pressure Aging Vessel	Simulate aging through Hot Plant Simulate long term aging	n/a				
Dynamic Shear Rheometer	Measure properties @ high & intermediate temperature	Permanent deformation & fatigue cracking				
Bending Beam Rheometer Direct Tension Tester	Measure properties @ low temperature	Low temperature cracking				

PG Asphalt Tests (Aging)


- Rolling Thin Film Oven (RTFO): It simulates the condition of asphalt immediately after construction
- Pressure Aging Vessel (PAV): It simulates the aging of asphalt after years of being in service. PAV samples must be RTFO aged first


Section 2 - 10


10

Rolling Thin Film Oven (RTFO)

11

PG Asphalt Tests (Rotational Viscometer) > RV measures the viscosity of asphalt or tank asphalt at 135°C > RV is used to determine if the asphalt is fluid enough to handle > RV is performed on unaged asphalt only

PG Asphalt Testing Equipment

Rotational Viscometer

Section 2 - 1

16

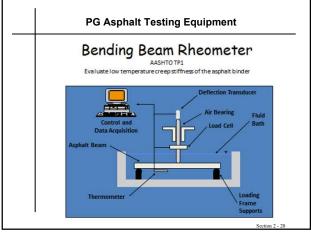
PG Asphalt Tests (Dynamic Shear Rheometer)

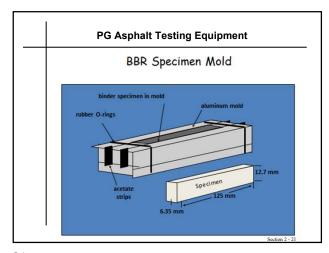
- >DSR is performed to check rutting and fatigue cracking
- >DSR is used to characterize the viscous and elastic behavior of asphalt
- ➤ DSR measures the complex shear modulus (G*) and phase angle (delta)
- ➤ DSR is performed on original, RTFO aged binder, and PAV aged binder

Section 2 -

17

DSR

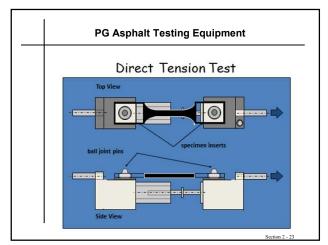

Section 2 - 18


PG Asphalt Tests (Bending Beam Rheometer)

- ➤ BBR is performed to check low temperature cracking
- ➤ BBR measures stiffness at very low temperatures
- BBR measures asphalt deflection under a constant load at a constant temperature. Parameters determined are stiffness (s) and slope (m)
- **≻BBR** is performed on PAV aged asphalt

Section 2 - 19

19

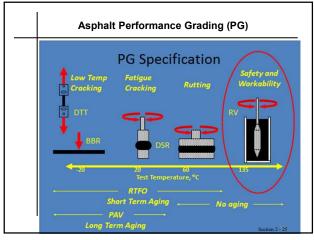


PG Asphalt Tests (Direct Tension Tester)

- >DTT is performed to check low temperature cracking
- ➤ DTT supplements the BBR
- >DTT is not used in specification compliance
- >DTT is performed on PAV aged asphalt

Section 2 - 22

22



23

Asphalt Performance Grading (PG)

- The main objective of PG is to improve field performance by limiting the potential of asphalt to contribute toward rutting, fatigue cracking, and low temperature cracking
- ➤ Physical properties are constant but the testing temperatures are different

Section 2 - 24

Asphalt Performance Grading (PG)

- > The required PG grading for a specific location can be determined based on high and low pavement temperature
- High pavement temperature is calculated at a .8" (20 mm) depth based on sevenday average high air temperature and the geographic latitude of the project
- Low pavement surface temperature is determined based on the one-day minimum air temperature

Section 2 - 26

26

Asphalt Performance Grading (PG)

- > The reliability concept is used to determine a degree of design risk to high and low temperatures
- ➤ Reliability levels range from 50 to 98 percent
- > Current SHRP recommendations are to use 98% for the high traffic end and 50% for the low traffic end
- Air temperatures are available for thousands of weather stations nationwide

Section 2 27

Asphalt Performance Grading (PG)

- ➤ Seven grades are available based on high temperature (46, 52, 58, 64, 70, 76, and 82°C)
- ➤ Up to seven grades are available based on low pavement temperature [-10, -16, -22, -28, -34, -40, and -46°C]
- > Examples: PG 52-22, PG 64-28
- ➤ Not all low temperatures are available with some high temperatures
- ➤ Deeper pavement layers may have lower grades

Section 2 - 2

28

Performance Grade		PG 46		PG 52								
	-34 -40		-46	-10	-16	-22	-28	-34	-40	-40		
Average 7-day maximum Pavement Design temperature, C		<46		<52								
Minimum Pavement Design temperature, ⁰ C	>-34	>-40	>-46	>-10	>-10 >-16 >-22 >-28				>-34 >-40 >-4			
			Origina	l Binder								
Plash Point Temp, T48: Minimum ⁶ C					2	30						
Viscosity, ASTM D 4402: Maximum, 3 Pas (3000cP), Test, ⁹ C				135								
Dynamic Shear, TP5: G*/sin8, Minimum, 1.00 kPa Test Temperature @ 10rad/s. °C.		46		52								
R	olling This	n Film Ove	in (T 240)	or Thin Pile	n Oven (T	179) Reside	ie					
Mass Loss, maximum . %					1.00							
Dynamic Shear, TP5: G*sinō, Maximum, 2.20 kPa Test Temp @ 10rad/sec, ⁹ C,		46		52								
		Pressur	e Aging Ve	essel Resid	ie (PPI)							
PAV Aging Temperature, °C		90					90					
Dynamic Shear, TP5: G*sin8, Maximum, 5000 kPa Teat Temp ⊕ 10rad/sec, ⁰ C	10	7	4	25	22	19	16	13	10	. 7		
			Re	port								
Creep Stiffness, TP1: S, Maximum, 300 MPa m-value, Minimum, 0.300 Test Temp. @ 60 sec. ⁹ C	-24	-30	-36	0	-6	-12	-18	-24	-30	-36		
Direct Tension, TP3: Failure Strain, Minimum, 1.00% Test Temp @ 1.0 mm/min.*C	-24	-30	-36	0	-6	-12	-18	-24	-30	-30		

29

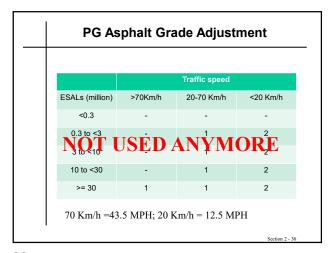
Performance Grade			PG 58					PC	64		
	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-4
Average 7-day maximum Pavement Design temperature, C			<58			<64					
Minimum Payement Design temperature, C	>16	>22	>28	>34	>40	>10	>16	>22	>28	>34	>4
			Ori	ginal Bir	der						
Plash Point Temp, T48: Minimum ⁶ C						230					
Viscosity, ASTM D 4402: Maximum, 3 Pas (3000cP), Test, ⁹ C		135									
Dynamic Ehear, TPS: C*ArinS, Minimum, 1.00 kPa Test Temperature @ 10red/s, ⁹ C,	58 64										
	Rolling	g Thin Film	Oven (T	240) or Thi	n Film Ove	n (T 179) I	Residue				
Mass Loss, maximum, %						1.00					
Dynamic Shear, TP5: G*sin5, Maximum, 2.20 kPa Test Temp @ 10rad/sec, ⁹ C,		58 64									
		P	ressure Agi	ng Vessel F	Residue (PF	D					
PAV Aging Temperature, *C			100			100					
Dynamic Shear, TF5: C*sin8, Maximum, 5000 kPa Test Temp @ 10rad/sec, °C	25	22	19	16	13	31	28	25	22	19	1
Physical Hardening				Report							_
Creep Stiffness, TP1: S. Maximum, 300 MPa m-value, Minimum, 0.300 Test Temp, @ 60 sec, ⁵ C	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-3
Direct Tension, TP3: Pailure Strain, Minimum, 1.00% Text Temp @ 1.0 mm/min,*C	-6	-12	-18	-24	-30	O	-6	-12	-18	-24	-3

Performance Grade			PG 70						PG 76					PG 82		
	-10	-16	-22	-28	-34	-40	-10	-16	-22	-28	-3	4 -10	-16	-22	-28	-3
Average 7-day maximum Pavement Design temperature, C	<70			<76				<82								
Minimum Pavement Design temperature, C	-10	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-10	-16	-22	-28	-3
					Original	Binder	•				_	-				_
Flash Point Temp, T48: Minimum ⁹ C							230									
Viscosity, ASTM D 4402: Maximum, 3 Pas (3000cP), Test, ⁹ C		135														
Dynamic Shear, TP5: G*/sin8, Minimum, 1.00 kPa Test Temperature @ 10rad/s, *C,	70						76				82					
	Rollin	g Thin	Film O	ven (T	240) 0	Thin I	ilm O	ren (T	79) 10:	idue						
Mass Loss ,Minimum , %								1.0	ю							
Dynamic Shear, TP5; G*/sinō, Minimum, 2.20 hPa Test Temp ⊕ 10md/sec, ⁶ C	70					76					82					
			Pe	recover A	ging Vm	el Resid	ne (PP1)					_				_
PAV Aging Temperature, ⁶ C			1000	110)					00(110)					100(110)		
Dynamic Shear, TPS: G*sinō, Maximum, 5000 kPa Test Temp @ 10rad/sec, *C	34	31	28	25	22	19	34	31	28	25	22	34	31	28	25	21
Physical Hardening					•			Rep	pet							
Creep Stiffness, TP1: S, Maximum, 300 MPa m- value, Minimum, 0.300 Text Temp. @ 60 sec. ⁹ C	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	-18	-24
Direct Tension, TP3: Pailure Strain, Minimum, 1.00% Test Temp @ 1.0 mm/min.*C	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	-18	-24

32

Table: Asphalt Binder Grades and Reliability for Selected Cities (Asphalt Institute)

ST	Station	Latitude	Min 50% Grade		ual bility	Min 98%	Actual Reliability		
			Grade	High	Low	Grade	High	Low	
FL	Miami WSCOMO AP	25.80	PG 58-10	99	99.9	PG 58-10	99	99.9	
WY	Cheyenne WSFOAP	41.15	PG 52-22	68	55	PG 58-28	99.9	98.9	
TX	Houston FAAAP	29.65	PG 64-10	99.9	99.3	PG 64-10	99.99	99.3	
NY	New York Inter AP	40.65	PG 52-16	61	97.1	PG 58-16	99.9	97.1	
со	Denver WSFOAP	39.77	PG 58-22	99.9	78	PG 58-28	99.9	99	
CA	Los Angles WSO AP	33.93	PG 52-10	66	99.9	PG 58-10	99.9	99.9	


.....

Asphalt Performance Grading (PG)

- ➤ Cheyenne, Wyoming PG 52-22 @ 50 percent reliability
- ➤ Cheyenne, Wyoming PG 58-28 @ 98 percent reliability
- ➤ Miami Florida PG 58-10 @ 50 percent reliability
- ➤ Miami Florida PG 58-10 @ 98 percent reliability
- ➤ WYDOT uses LTPP-Bind for determination of appropriate grade for any particular layer.

Section 2 22

Asphalt Performance Grading (Example) > Frontier PG 64-22 > Tested at the Materials office: PG 64-22 > Is it good for Cheyenne at 50% reliability? > Is it good for Cheyenne at 98% reliability?

WYDOT MSCR PGAB Specifications

Section 2 - 37

37

WYDOT MSCR PGAB Spec

- ➤ Current Spec (AASHTO M320)
- ➤ MSCR Spec (AASHTO M332)
 - ▶ Background
 - ▶ Differences
 - ▶ State Implementation
- **≻WYDOT Special Provision**
 - ▶ Changes
 - **▶** Summary
 - ▶ Timeline

38

38

WYDOT MSCR PGAB Spec

Current Spec (AASHTO M320)

- ➤ Used since mid-1990's
- > Improvement over pen & viscosity grading (AC's)
- ≻1st 'performance-based' spec for neat binders
 - ▶ Research basis
 - (fundamental materials science -SHRP \$150M, 5 yrs 1987-92;not anecdotal or empirical)
- > 'Workarounds' for Modified binders
 - Luses 'grade-bumping' (58→64, 64→70, 70→76)

WYDOT MSCR PGAB Spec

MSCR Spec (AASHTO M332) -Background

- ➤ Multiple Stress Creep Recovery (MSCR)
 - ▶ Research
 - NCHRP 9-10 project (Report 459, August 2001)
 - ► Data Collection (WYDOT)
 - +2009-present

40

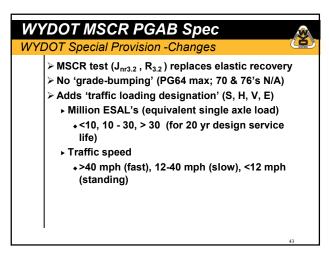
40

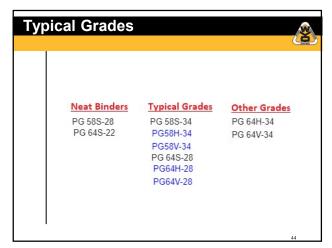
WYDOT MSCR PGAB Spec

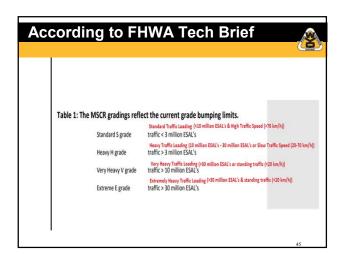
MSCR Spec (AASHTO M332) -Differences

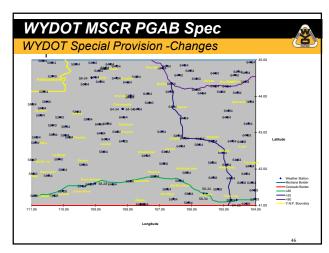
- > Measures performance of neat & modified PGAB
 - ► Rutting (pavement mix; binder & aggregate)
 - Differentiate modifiers (quantity, system synergy)
 - •Replaces 'SHRP+' tests with % Recovery
 - ➤ Eliminates 'grade-bumping' (64→70,...)
 - ➤ Includes temperature <u>and traffic</u>
 - ► Climate (LTPPBind; 7900+ stations, US & Canada)
 - ► Traffic loading (ESAL's & speed)

41


WYDOT MSCR PGAB Spec


MSCR Spec (AASHTO M332) –State Implementation


- ➤ Implemented by States (26 as of 2023)
 - ▶ 2013 (FL, RI)
 - ► 2014 (CT, MD, ME, NY, PA)
 - **▶ 2016-2018**


(DE, GA, HI, IA, KY, LA, MA, MN, MO, NE, ND, NJ, OK, TN, VA, WA, WI, WV)

- ► 2023 (MT)
- ► 2024 (WY)

WYDOT MSCR PGAB Spec WYDOT Special Provision - Timeline ➤ Short term (2024) • Add to all plans starting with Oct' 2023 letting ➤ Long term (after 2026?) • Move SP to Supplemental Specs then Standard Spec

47

Changing Grade of Binder

- > The grade of asphalt will be specified.
- The contractor may use a different grade according with the following (WYDOT 401.2.1)
 - ► The upper temperature may be increased.
 - ► The lower temperature may be decreased
 - The DOT should be notified in writing of any changes before mix production begins.
 - Repeated changing of grades will not be allowed.

Santian 2 49