

 Physical Properties

 > Texture

 > Gradation

 > Absorption

Gradatio	on
≻Size	
 Fractionation Gradation 	
> Uniform	
≻ Well	
≻Gap	
≻ Open	

Gradation
Nominal maximum Size: One sieve size larger than the first sieve to retain more than 10 percent
Maximum Size: one sieve size larger than nominal maximum size.

 Absorption

 > Surface Porosity

 • Hydrophobic – repels

 • Hydrophylic – attracts

 > High Absorption = High % Binder

 • AFFINITY FOR ASPHALT

 > Mechanical

 • Absorption

 • Chemical

 • Asphalt / Aggregate

 > Stripping

Aggregate Tests
Coarse aggregate angularity
Fine aggregate angularity
Flat and elongated particles
Clay content
Soundness
Durability
Deleterious materials

ASTM D 5821
 (Coarse Aggregate Angularity)
➢ ASTM D 5821 – Standard Test Method for
Determining the Percentage of Fractured
Particles in Coarse Aggregate
> Summary: The percentage of aggregate
larger than #4 with one or more fractured
faces is determined
> Significance: Internal friction of coarse
aggregate affect the workability,
consolidation, strength, stability, and VMA
of asphalt mixes. More fractured faces will
result in a higher internal friction.

Section 3 - 10

 (Fine Aggregate Angularity) > AASHTO T 304 (Method A) – Standard Test Method for Uncompacted Void Content of Fine Aggregate (MTM 824.0) > Summary: The void content of a loose sample of #8 to #100 fine aggregate is determined as a percent of the original mass. > Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and bituminous concrete stability
 > AASHTO T 304 (Method A) – Standard Test Method for Uncompacted Void Content of Fine Aggregate (MTM 824.0) > Summary: The void content of a loose sample of #8 to #100 fine aggregate is determined as a percent of the original mass. > Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and bituminous concrete stability
 Summary: The void content of a loose sample of #8 to #100 fine aggregate is determined as a percent of the original mass. Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and bituminous concrete stability
Significance: Void content is influenced by particle shape, texture and gradation. It can be an indicator of: water demand in concrete; flowability or workability; influence of fine aggregate on VMA; and bituminous concrete stability

ASTM D4791 (Flat and Elongated Particles) M D4791 – Flat and Elongated Particles in Coarse Aggregate (MTM 835.0) nmary: Individual particles of aggregate measured to determine the ratio of length
(Flat and Elongated Particles) M D4791 – Flat and Elongated Particles in Coarse Aggregate (MTM 835.0) mmary: Individual particles of aggregate measured to determine the ratio of length
M D4791 – Flat and Elongated Particles in Coarse Aggregate (MTM 835.0) nmary: Individual particles of aggregate measured to determine the ratio of length
nmary: Individual particles of aggregate
hickness.
nificance: Flat and elongated particles ect workability and consolidation and may icate degradation.
uenced by crushing method & aggregate neralogy.

AASHTO T 176
 (Clay Content)
AASHTO T 176: Plastic Fines in Graded
Aggregates and Soils by Use of the Sand Equivalent Test (MTM 836.0)
Summary: A sample of fine aggregate is mixed with a flocculating solution in a graduated cylinder. The cylinder height of suspended clay and sedimented sand is measured.
Significance: Clay content would affect the aggregate surface area and the asphalt content
Section 3 - 14

ΔΔΣΗΤΟ Τ 96
(Durability)
AASHTO T 96 – Resistance to Degradation by Abrasion and Impact in the Los Angeles Machine (MTM 818.0) 2004
Summary: A sample of coarse aggregate is placed in a steel drum along with a certain number of steel spheres. The drum is rotated 500 times and the sample is then washed over a #12 sieve. The difference in mass between initial and final mass is the % loss
Significance: Abrasion loss is related to aggregate quality or durability.
Section 3 - 16

A	ASHTO T 104
(Soundness)
AASHTO T 104:	Soundness of Aggregate by
Use of Sodi	ium Sulfate or Magnesium
	Sulfate
≻ Summary: An	aggregate sample is
exposed to rep	peated immersions in
saturated solu	tions of sodium or
magnesium su drying.	Ifate followed by oven
> Significance: 1	The percent loss over various
sieves is relate	ed to the freeze/thaw
resistance of t	he aggregate.
	Section 3

AASHTO T 112
(Deleterious Material)
AASHTO T 112: Clay Lumps and Friable Particles in Aggregate
Summary: Wet sieving aggregate size fractions over specified sieves. The percentage of mass lost is reported as the percentage of clay lumps.
Significance: The percent to clay lumps will affect the optimum asphalt content and the performance of the asphalt mix

Specifications
Asphalt Binder– PMP
≻WYDOT Standard Specifications 803.5
Shall consist of crushed stones, crushed gravel or natural gravel
 Uniform quality; crushed; sound, tough, durable particles
 Coarse and Fine Aggregates shall be stockpiled in separate piles
▶ Pit Run Filler in separate pile.
Section 3 - 20

Gradation Requirements, Marshall and Superpave Mixes				
Sieve		% Passing, N	Iominal Maximur	n Size
Sleve	1 in	3/4 in	1/2 in	3/8 in
1 1/4 in	100	-	-	-
1 in	90-100	100	-	-
3/4 in	65-90	90-100	100	-
1/2 in	50-85	55-90	90-100	100
3/8 in	40-75	45-85	55-90	90-10
No. 4	30-60	30-65	35-70	45-85
No. 8	20-45	20-50	20-55	30-65
No. 30	5-25	5-30	5-35	10-40
No. 200	2.7	2-7	2-7	2.7

Aggregate Properties, Flexible Pavements					
Properties	Agg I	Agg II	Agg III	Agg IV	Agg
LA Abrasio maximum loss, %	35	40	40	40	40
Flat and Elongated (1 to 5					
ratio) maximum, %	10	10	10	10	-
Sand Equivalent minimum (2)	45	45	45	40	40
Fractured Faces minimum (1)	95/90	95/90	85/80	75/-	55/-
Fine Aggregate Angularity minimum (2)	45	45	45	40	40
Plasticity Index (2)	NP	NP	NP	NP	NP
Soundness (MgSO4)					10

Gradation Requirements, Plant Mix Wearing Course			
Sieve	% Passing		
½ in	100		
3/8 in	97-100		
No. 4	25-45		
No. 8	10-25		
No. 200	2-7		

Polish Resistant Aggregate Requirement			
Test Method	Description	Specificatio	
AASHTO T279	9 hour (Polish Value), minimum	32	
AASHTO T 242	(1) Skid Number, minimum	40	

Gradation Requirements, Microsurfacir			
Sieve	% Passing		
3/8 in	100		
No. 4	70-90		
No. 8	45-70		
No. 16	28-50		
No. 30	19-34		
No. 50	12-25		
No. 100	7-18		
No. 200	5-15		

