

1

Mix Design-Marshall Method

- > Test Procedure AASHTO T 245 (Wyoming Modified)*
- ➢ General
 - \blacktriangleright 4 inch ϕ x 2.5 inch specimens
 - ▶ Same aggregate blend
 - ▶ Varying binder content
 - ▶ Multiple specimens at each binder content
- **≻** Components
 - ▶ Bulk Specific Gravity Measurement
 - ► Density Voids Analysis
 - ▶ Stability Flow Test

Section 5

2

Procedure

- **≻** Sample Preparation
 - ► Obtain representative Asphalt and Aggregate Samples
 - Proposed for Use
 - ► Dry Aggregate
 - +230°F
 - ◆Constant Weight
 - ▶ Conduct Sieve Analysis
 - ► Determine S.G. of Aggregate and binder

Section 5 2

3

Procedure (continued)

- ➤ Prepare Mix Samples
 - ▶ Select binder Content Range
 - ► Heat binder and Aggregate to mix temperature specifications
 - ▶ Combine binder and Aggregate
 - ▶ Mix to thoroughly coat
 - ► Cure 2 hours at compaction temperature (Wyoming modified)
 - ▶ Place in heated molds

Section 5 - 4

Δ

Procedure (continued)

- ▶ Compact with Marshall Hammer
 - +10 lbs
 - +18" drop
 - +50 or 75 blows per side
- ▶ Cool and remove for molds

Section 5 - 5

5

Marshall Compactor

Santion 5 6

Procedure (continued)

> Testing

- ▶ Measure Bulk S.G. of samples
 - +AASHTO T 166
 - •Weight in air dry mass
 - ◆Immerse in water 3 5 minutes and determine mass in water
 - •Remove and blot dry with damp cloth
 - •Weight immediately SSD mass
 - Calculate Bulk S.G.

BULK $S.G. = \frac{dry mass}{(SSD mass - mass in water)}$

Section 5 7

7

Procedure (continued)

- ➤ Measure Stability And Flow Of Samples
 - ▶ Immerse in water 140°F, 30 minutes
 - ► Remove from water and place in Marshall Tester
 - ► Apply load to failure
 - •2 inches per minute
 - ▶ Record Stability failure load
 - ► Record Flow 0.01 inch
 - ▶ Complete in < 30 seconds

Section 5 - 1

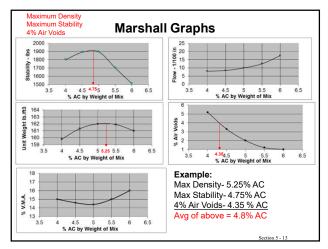
8

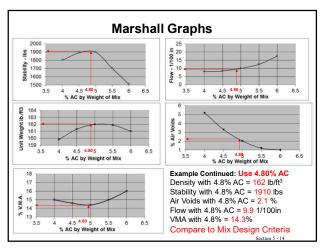
Marshall Stability Device

Section 5 0

9

Procedure (continued) > Analyze Density And Voids • Calculate Density • Calculate Air Voids • Calculate VMA • Calculate VFA


10



11

Procedure (continued) > From Plots, Find Binder or Asphalt Content At: • Maximum Density • Maximum Stability • 4% Air Voids > Calculate Average > Determine Characteristics at Average > Compare vs. Criteria > Select Binder Content

Section 5 - 12

Table 401.4.1-2					
	Class I-M	Class II-M	Class		
Number of Marshall Blows	75	75	50		
Marshall Stability (lbs [N]) minimum 1910 - Fail	2500 [11000]	2500 [11000]	2000 [9000]		
Marshall Flow (0.01 in [0.25 mm]) 14.3 - Pass	8-16 [8-16]	8-16 [8-16]	8-16 [8-16]		
% Voids in Laboratory Mix 2.1 - Fail % Voids in Production Mix	5.0-6.0 4.0-6.0	4.0-5.0 3.0-5.0	4.0-5.0 2.5-5.0		
Dust/Effective Asphalt	0.8-1.4	0.8-1.4	0.8-1.4		
Minimum % Asphalt 4.8 - Pass	4.5	4.5	4.5		
Minimum Tensile Strength Retained %	75	75	75		
Film Thickness µm	6-12	6-12	6-12		

Percent Voids in Mineral Aggregate (VMA)

Table 401.4.1-3

	1 in Maximum Nominal Size	3/4 in Maximum Nominal Size	½ in Maximum Nominal Size	3/8 in Maximum Nominal Size
	9.9 - Fail	Laboratory Mix		
CLASS IM, IIM	12.0-15.0	13.0-16.0	14.0-17.0	14.0-17.0
CLASS IIIM	11.0-14.0	12.0-15.0	13.0-16.0	13.0-16.0
		Production Mix		
CLASS IM, IIM	11.0-15.0	12.0-16.0	13.0-17.0	13.0-17.0
CLASS IIIM	10.0-14.0	11.0-15.0	12.0-16.0	12.0-16.0

Due to Fails -- Need to Redesign Mix

Section 5 - 16

16

Mix Design- Moisture Resistance

Test Procedure - AASHTO T 283

Procedure

- ► Mix samples at Marshall Design AC Content
- ► Cure 16 hours at 140°F
- ▶ Heat to compaction temperature
- ► Compact to 7.0 ± 0.5% air voids with Marshall hammer
- ► Remove from molds and cure in air for 24 ± 3 hours
- ▶ Divide into two subsets

Section 5 - 17

17

Mix Design-Moisture Resistance (continued)

➤ Procedure

- ▶ Test one subset in indirect tension
- ▶ Condition other subset
 - ◆ Vacuum saturate to 70% to 80%
 - Freeze 16 hours at 0°F
 - Immerse in water 24 hours at 140°F
- ▶ Immerse in water bath 1 hour at 77°F
- ▶ Test in indirect tension
- ▶ Calculate % retained strength

 $\frac{Conditioned\ Subset\ Average\ Strength}{Unconditioned\ Subset\ Average\ Strength}(100) = \%\ Retained\ Strength$

WYDOT - greater than 80% retained

Section 5 - 18