Practice Problems

Section 15 – Practice Problems

Practice Problems

- Compaction Pay Factors
- Cost Analysis
- Cores vs. Nuclear Testing Correlation
- Density Random Number Selection
- Compaction Pay Factors-SD

Pay Factor Determination (p. 15-3)

Pay Factor Determination (p. 15-4)

Determine standard deviation (s)

$$s = \sqrt{\left(\frac{1}{n-1}\right) \sum \left(x - \bar{x}\right)^2}$$

Calculate the Quality Index (QI)

Upper Quality Index = $Q_u = \frac{SL_u - x}{s}$ Lower Quality Index = $Q_l = \frac{\overline{x} - SL_l}{s}$

$$\blacktriangleright \text{ Where:} \qquad \begin{array}{rcl} SL_U &=& 100\\ SL_L &=& 92\\ n &=& 7 \end{array}$$

► For PF < 0.75 Remove and Replace

Pay Factor Determination (p. 15-5) Table 113.1-1

		Table 113.1	-1				
Quali	ity Level Analy	sis by the Sta	ndard Deviatio	on Method			
Within Limits for	Upper Quality Index QU or						
Positive Values	Lower Quality Inex QL						
of QU or QL	n = 3	n = 4	n = 5	n = 6	n = 7		
100	1.16	1.50	1.79	2.03	2.23		
99		1.47	1.67	1.80	1.89		
98	1.15	1.44	1.60	1.70	1.76		
97		1.41	1.54	1.62	1.67		
96	1.14	1.38	1.49	1.55	1.59		
95		1.35	1.44	1.49	1.52		
94	1.13	1.32	1.39	1.43	1.46		
93		1.29	1.35	1.38	1.0		
92	1.12	1.26	1.31	1.33	1 5		
91	1.11	1.23	1.27	1.29	130		
90	1.10	1.20	1.23	1.24	1.2		
89	1.09	1.17	1.19	1.20	1.20		
88	1.07	1.14	1.15	1.16	16		
87	1.06	1.11	1.12	1.12	1.12		
86	1.04	1.08	1.08	1.08	1.08		
85	1.03	1.05	1.05	1.04	1.04		
84	1.01	1.02	1.01	1.01	.00		
83	1.00	0.99	0.98	0.97	0.91		
82	0.97	0.96	0.95	0.94	0.9		
81	0.96	0.93	0.91	0.90	(.90		
80	0.93	0.90	0.88	0.87	0.80		
79	0.91	0.87	0.85	0.84	0.8.		
78	0.89	0.84	0.82	0.80	(.80		
77	0.87	0.81	0.78	0.77	0.70		
76	0.84	0.78	0.75	0.74	0.7:		
75	0.82	0.75	0.72	0.71	70		
74	0.79	0.72	0.69	0.68	0.67		
73	0.76	0.69	0.66	0.65	0.64		

Pay Factor Determination (p. 15-6) Table 113.1-1

Qualit	y Level Analy	sis by the Star	idard Deviatio	on Method			
PU or PL percent Within Limits for	Upper Quality Index QU or Lower Quality Inex QL						
of QU or QL	n = 3	n = 4	n = 5	n = 6	n = 7		
72	0.74	0.66	0.63	0.62	0.61		
71	0.71	0.63	0.60	0.59	0.58		
70	0.68	0.60	0.57	0.56	0.55		
69	0.65	0.57	0.54	0.53	0.52		
68	0.62	0.54	0.51	0.50	0.49		
67	0.59	0.51	0.47	0.47	0.46		
66	0.56	0.48	0.45	0.44	0.44		
65	0.52	0.45	0.43	0.41	0.41		
64	0.49	0.42	0.40	0.39	0.48		
63	0.46	0.39	0.37	0.36	0.31		
62	0.43	0.36	0.34	0.33	0.32		
61	0.39	0.33	0.31	0.30	0.30		
60	0.36	0.30	0.28	0.27	0.27		
59	0.32	0.27	0.25	0.25	0.24		
58	0.29	0.24	0.23	0.22	0.21		
57	0.25	0.21	0.20	0.19	0.19		
56	0.22	0.18	0.17	0.16	0.16		
55	0.18	0.15	0.14	0.13	0.13		
54	0.14	0.12	0.11	0.11	0.11		
53	0.11	0.09	0.08	0.08	0.08		
52	0.07	0.06	0.06	0.05	0.05		
51	0.04	0.03	0.03	0.03	0.03		
50	0.00	0.00	0.00	0.00	0.00		

Note: If the value of Q_U or Q_L does not correspond exactly to a figure in the table, use the next highest figure. For values of Q_U or Q_L less than zero, use the absolute value of the calculated Q_U or Q_L to determine the corresponding value for P_U or P_L . The actual value of P_U or P_L equals 100 minus the table value for P_U or P_L .

Pay Factor Determination (p. 15-7)

Determine PWL(Density) (Quality Level)

quality level = $(P_U + P_L) - 100$

Calculate the Pay Factor(Density)

 $PF_D = 0.55 + 0.50 \times \frac{PWL_D}{100}$

Where:

PFD	=	pay factor for in-place density, rounded to the nearest 0.0001
PWLD	=	percent within limits for in-place density

Compaction Pay Factors

1. 94.3%	95.80%	94.70%	95.00%	95.60%	95.2%	94.90%
x = 95.07 s = 0.52					Ql = 9.48 Ql = 5.90 PU = 100 fr PL = 100 fr Quality Let PFD = 1.05	rom Table (113.1-1) rom Table (113.1-1) vel = 100
2. 95.7%	92.90%	92.80%	92.00%	95.40%	93.60%	93.50%
x = 93.70 s = 1.37					Qu = 4.60 Ql = 1.24 PU = 100 f PL = 90 fro Qualit y Le PFD = 1.0	from Table (113.1-1) om Table (113.1-1) evel = 90
3. 98.80%	98.2%	98.00%	98.90%	96.80%	92.30%	90.20%
x = 96.17 s = 3.48	,				Qu = 1.10 Ql = 1.20 PU = 87 fr PL = 89 fro Quality Le PFD = 0.93	om Table (113.1-1) om Table (113.1-1) evel = 76 3
4. 92.60%	90.70%	91.90%	93.40%	92.10%	91.00%	90.90%
x = 91.8 s = 1.00			Qu = Ql = - PU = PL = 4 Quali PFD =	8.20 0.20 100 from Table 42 ty Level = 42 : 0.76	(113.1-1)	Section 15 - 8

Cost Analysis

Example #1

Material	% of Total Mix	Cost/Ton
Aggregate #1	45	\$7.50
Aggregate #2	33	\$6.65
Aggregate #33	16	\$5.50
Asphalt	6	\$120

45% x \$7.50 or 0.45 x 7.50 = 3.38 33% x \$6.65 or 0.33 x 6.65 = 2.19 16% x \$5.50 or 0.16 x 5.50 = 0.88 6% x \$120 or 0.06 x 120 = 3.38

Density = 155 pcf

Pavement Thickness = 4.5 inches

Compute the Following:

- Mix Cost per Ton $\frac{\$}{yd^3} = \frac{\$13.65}{ton} x \frac{155 \ lb}{ft^3} x \frac{1 \ ton}{2000 \ lb} x \frac{27 \ ft3}{yd^3} = \$28.56/yd^3$ 1.
- 2. Cost per Cubic Yard
- 3. Cost per Square Yard

$$\frac{\$}{yd^2} = \frac{\$28.56}{yd^3} x 4.5 in x \frac{1 yd}{36 in} = \$3.57/yd^2$$

\$13.65 per mix ton

Cost Analysis

Example #2

Solution:

Mix Cost per Ton = \$25.00 Density = 150 pcf Pavement Thickness = 5 in

Compute the Following:

- 1. Cost per Cubic Yard
- 2. Cost per Square Yard

$$\frac{\$}{yd^3} = \frac{\$25.00}{ton} x \frac{150 \, lb}{ft^3} x \frac{1 \, ton}{2000 \, lb} x \frac{27 \, ft3}{yd^3} = \$50.63/yd^3$$
$$\frac{\$}{yd^2} = \frac{\$50.63}{yd^3} x \, 5.0 \, in \, x \frac{1 \, yd}{36 \, in} = \$7.03/yd^2$$

Table (MTM417.0) (p. 15-9)

Grading (Nominal Max. Size)						
	1"	3/4"	1/2"	3/8"	PMWC	
Sieve	Allow	able Diffe	rence	(% Pa	assing)	
1 1⁄4"	1.5					
1"	2 1.5					
3/4"	3	2	1.5			
1/2"	3.4	3	2	1.5	1.5	
3/8"	3.4	3.4	3.4	2	2	
No. 4	3.4	3.4	3.4	3.4	3.4	
No. 8	3.3	3.3	3.3	3.3	3.3	
No. 30	2.9	2.9	2.9	2.9		
No. 200	1.2	1.2	1.2	1.2	1.2	

Verification Testing (Aggregate Gradation)

See Section 9-33 Table (MTM417.0) Problem #1

A Contractor Obtained the Following Gradation for an Aggregate Sample:

For 3/4" size 95% - 94% = 1% Ok ($1 \le 2$) 75% – 72% = **3**% Ok (3≤ 3) For 1/2" size 68% – 65% = **3**% Ok (3≤ 3.4) For 3/8" size

For #30 size

the Following Gradation for an Aggregate	Sieve Size	% Passing
	1"	100
0.50/ $0.10/ - 10/$ Ok (1< 2)	3/4"	95
95% - 94% - 1% OK (12 Z)	1/2"	75
75% - 72% - 3% Ok (3< 3)	3/8"	68
1570 - 1270 - 570 OK (02 0)	#4	52
68% $65% - 3%$ Ok (3< 3 4)	#8	41
00/0 - 03/0 - 3/0 OK (323.4)	#30	27
270/2 $230/2 - 10/2$ Eail (1> 2 0)	#200	5.2

The DOT Performed the verification testing on the Corresponding Sample and Obtained the Following Results:

Grading (Nominal Max. Size)						
	1"	3/4" 📕	1/2"	3/8"	PMWC	
Sieve	Sieve Allowable Difference (% Passing)					
1 1⁄4"	1.5					
1"	2	1.5				
3⁄4"	3	• 2	1.5			
1⁄2"	3.4	3	2	1.5	1.5	est
3/8"	3.4	3.4	3.4	2	2	
No. 4	3.4	3.4	3.4	3.4	3.4	
No. 8	3.3	3.3	3.3	3.3	3.3	
No. 30	2.9	2.9	2.9	2.9		
No. 200	1.2	1.2	1.2	1.2	1.2	
	Sieve 1 ¹ ⁄ ₄ " 1" ³ ⁄ ₄ " ¹ ⁄ ₂ " 3/8" No. 4 No. 8 No. 30 No. 200	Grading 1" 1" Sieve Allow 1 ½" 1.5 1" 2 ¾" 3 ½" 3.4 3/8" 3.4 No. 4 3.4 No. 8 3.3 No. 30 2.9 No. 200 1.2	Grading (Nomina 1" 3/4" Sieve Allowable Diffe 1 1/4" 1.5 1" 2 1/4" 1.5 1" 2 1/4" 3 3/4" 3 3/4" 3 1/2" 3.4 3/8" 3.4 3/8" 3.4 3/8" 3.4 No. 4 3.4 No. 8 3.3 No. 30 2.9 2.9 1.2	Grading (Nominal Max.1" $3/4$ " $1/2$ "SieveAllowable Difference $1'/4$ " 1.5 1"2 1.5 $3/4$ "32 $3/4$ "32 $3/8$ " 3.4 3.4 No. 4 3.4 3.4 No. 8 3.3 3.3 No. 30 2.9 2.9 No. 200 1.2 1.2	Grading (Nominal Max. Size)1" $3/4"$ $1/2"$ $3/8"$ SieveAllowable Difference (% Patheta)1'4" 1.5 1.5 1"2 1.5 $3/4"$ 32 1.5 $3/4"$ 32 1.5 $3/8"$ 3.4 3.4 3.4 2 3.4 3.4 3.4 $3/8"$ 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.6 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 3.2 1.2 1.2 1.2 3.2 1.2 1.2 1.2	Grading (Nominal Max. Size)1" $3/4"$ $1/2"$ $3/8"$ PMWCSieveAllowable Difference (% Passing) $1 \frac{1}{4}"$ 1.5 1"2 1.5 $3\frac{4}"$ 32 1.5 $3\frac{4}"$ 32 3.4 32 1.5 1.5 $3/8"$ 3.4 3.4 3.4 2 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.3 3.3 3.3 3.3 3.0 2.9 2.9 2.9 2.9 2.9 2.9 2.00 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Sieve Size	% Passing
1"	100
3/4"	94
1/2"	72
3/8"	65
#4	50
#8	39
#30	23
#200	4.8

Verification Testing (Aggregate Gradation) Problem #2

A Contractor Obtained the Following Gradation for an Aggregate Sample:

The DOT Performed the verification testing on the Corresponding Sample and Obtained the Following Results:

Assuming that PMP 3/8" was used, Determine if the contractor's Test Results can be used for Calculating the Pay Factor.

Sieve Size	% Passing
1/2"	100
3/8"	93
#4	56
#8	43
#30	21
#200	6.1

ve Size	% Passing
	-
#200	4.2
#30	17

Sieve Size % Passing

100

96 52

39

47

1/2"

3/8"

#4 #8

<u>ш</u>ро

Verification Testing (Aggregate Gradation)

Same

Problem #3

A Contractor Obtained the Following Gradation for an Aggregate Sample:

The DOT Performed the verification testing on the Corresponding Sample and Obtained the Folloving Results

aha	
avove	
Assuming that PMP ½" was used, Determine if the contractor's Test	t

Results can be used for Calculating the Pay Factor.

Sieve Size	% Passing	
3/4"	100	
1/2"	96	
3/8"	79	
#4	61	
#8	48	
#30	26	
#200	4.5	

Sieve Size	% Passing	
3/4"	100	
1/2"	94	
3/8"	78	
#4	59	
#8	46	
#30	25	
#200	4.2	

Verification Testing (Density)

The Following Densities Were Obtained from Verification Testing. Determine Which Sets Confirm the Contractor's Results.

Contractor's	DOTs		Difference	Difference
Density	Density	Difference	Acceptable	Unacceptable
141.2	141.9	0.7 pcf	×	
142.3	142.1	0.2 pcf	×	
142.5	141.3	1.2 pcf	×	
143.5	141.1	2.4 pcf		×
141.3	144.5	3.2 pcf		×
143.1	142.9	0.2 pcf	×	
144.9	143.7	1.2 pcf	×	
142.3	142.5	0.2 pcf	×	

From Section 9-34 – Table 2 (TM529) --- Allowable Density Difference (*between technicians*) **1.50 pcf** If Diff. ≤ 1.50 pcf, then Acceptable If Diff. > 1.50 pcf, then Unacceptable