Section 7 Admixtures, Hot & Cold Weather Concreting

WMTC Concrete Training & Certification Seminar

Types of Admixtures

Air-entraining Agents

(ASTM C260, AASHTO M154)

Chemical Admixtures

(ASTM C494, AASHTO M194)

Type A Water-reducing

Type B Retarding

Type C Accelerating

Type D Water-reducing & Retarding

Type E Water-reducing & Accelerating

Type F Water-reducing, High Range

Type G Water-reducing, High Range & Retarding

Supplementary Cementitous Materials

Pozzolans - Fly Ashes (Types F & C)

Natural Pozzolans

Silica Fume

Ground, Granulated Blast-furnace Slag (GGBFS)

Requirements for Admixtures

No chemical composition requirements

 Must meet specified physical requirements as set by ASTM or AASHTO

Must be approved by WYDOT

TABLE 1 Physical Requirements^A

	Type A, Water Reducing	Type B, Retarding	Type C, Acceler- ating	Type D, Water Reducing and Retarding	Type E, Water Reducing and Accelerating	Type F, Water Reducing, High Range	Type G, Water Reducing, High Range and Retarding
Water content, max, % of control	95		***	95	95	88	88
Time of setting, allowable							
deviation from control, h:min:							
Initial: at least	•••	1:00 later	1:00 earlier	1:00 later	1:00 eartler	***	1:00 later
not more than	1:00 earlier nor 1:30 later	3:30 later	3:30 earlier	3:30 later	3:30 earlier	1:00 earlier nor 1:30 later	3:30 later
Final: at least		***	1:00 earlier	***	1:00 earlier	***	-1-
not more than	1:00 earlier nor 1:30 later	3:30 later	***	3:30 later	•••	1:00 earlier nor 1:30 lates	3:30 later
Compressive strength, min, % of control: ⁸						iono-q	
1 day		•••	***	***	***	140	125
3 days	110	90	125	110	125	125	125
7 days	110	90	100	110	110	115	115
28 days	110	90	100	110	110	110	110
6 months	100	90	90	100	100	100	100
1 year	100	90	90	100	100	100	100
Flexural strength, min, % control: ⁸							
3 days	100	90	110	100	110	110	110
7 days	100	90	100	100	100	100	100
28 days	100	90	90	100	100	100	100
Length change, max shrinkage (alternative requirements): C							
Percent of control	135	135	135	135	135	135	135
Increase over control	0.010	0.010	0.010	0.010	0.010	0.010	
Relative durability factor, min ^D	80	80	80	80	80	80	0.010 80

AThe values in the table include allowance for normal variation in test results. The object of the 90 % compressive strength requirement for a Type-B admixture is to require a level of performance comparable to that of the reference concrete.

^bThe compressive and flexural strength of the concrete containing the admixture under test at any test age shall be not less than 90 % of that attained at any previous test age. The objective of this limit is to require that the compressive or flexural strength of the concrete containing the admixture under test shall not decrease with age.

^CAlternative requirements, see 17.1.4, % of control limit applies when length change of control is 0.030 % or greater; increase over control limit applies when length change of control is less than 0.030 %.

^DThis requirement is applicable only when the admixture is to be used in air-entrained concrete which may be exposed to freezing and thawing while wet.

Handling & Storage

- Come in solids, flakes or liquid
- Come in different concentrations
- Available in 5, 55 or 5,000 gallon supplies
- Some admixtures need to be protected from freezing

Adding Admixtures to Fresh Concrete

Must keep the following consistent

- Dosage amount
 - Based on cementitious material content (x ounces per 100 lbs of cement)
- Rate of discharge
- Timing in batching sequence

Otherwise, expect different admixture performance

Ways to Measure Admixtures

- Use Calibrated Dispenser
 - Positive volumetric displacement
 - Visual volumetric containers
 - Timer controlled
 - Weight
- Batching Accuracy: ±3%

Things that Affect Air Content in Concrete ...

Everything!

	Characteristic/Material	Effects	Guidance
	Alkali content	Air content increases with increase in cement alkali level.	Changes in alkali content or cement source require that air-entraining agent dosage be adjusted.
		Less air-entraining agent dosage needed for high-alkali cements.	Decrease dosage as much as 40% for high-alkali cements.
cement		Air-void system may be more unstable with some combinations of alkali level and air-entraining agent used.	
Portland cement	Fineness	Decrease in air content with increased fineness of cement.	Use up to 100% more air-entraining admixture for very fine (Type III) cements. Adjust admixture if cement source or fineness changes.
	Cement content in mixture	Decrease in air content with increase in cement content.	Increase air-entraining admixture dosage rate as cement content increases.
		Smaller and greater number of voids with increased cement content.	
	Contaminants	Air content may be altered by contamination of cement with finish mill oil.	Verify that cement meets ASTM C 150 (AASHTO M 85) requirements on air content of test mortar.
is materials	Fly ash	Air content decreases with increase in loss on ignition (carbon content).	Changes in LOI or fly ash source require that air- entraining admixture dosage be adjusted. Perform "foam index" test to estimate increase in dosage.
Supplementary cementitious materials		Air-void system may be more unstable with some combinations of fly ash/cement/air-entraining agents.	Prepare trial mixes and evaluate air-void systems.
	Ground granulated blast-furnace slag	Decrease in air content with increased fineness of GGBFS.	Use up to 100% more air-entraining admixture for finely ground slags.
ppleme	Silica fume	Decrease in air content with increase in silica fume content.	Increase air-entraining admixture dosage up to 100% for fume contents up to 10%.
Su	Metakaolin	No apparent effect.	Adjust air-entraining admixture dosage if needed.
	Water reducers	Air content increases with increases in dosage of lignin-based materials.	Reduce dosage of air-entraining admixture.
ries			Select formulations containing air-detraining agents.
Chemical admixtures		Spacing factors may increase when water-reducers used.	Prepare trial mixes and evaluate air-void systems.
cals	Retarders	Effects similar to water-reducers.	Adjust air-entraining admixture dosage.
me.	Accelerators	Minor effects on air content.	No adjustments normally needed.
c	High-range water reducers (Plasticizers)	Moderate increase in air content when formulated with lignosulfonate.	Only slight adjustments needed.
		Spacing factors increase.	No significant effect on durability.
	Maximum size	Air content requirement decreases with increase in maximum size.	Decrease air content.
Aggregate		Little increase over 37.5 mm (1½ in.) maximum size aggregate.	
Aggr	Sand-to-total aggregate ratio	Air content increases with increased sand content.	Decrease air-entraining admixture dosage for mixtures having higher sand contents.
	Sand grading	Middle fractions of sand promote airentrainment.	Monitor gradation and adjust air-entraining admixture dosage accordingly.

	Characteristic/Material	Effects	Guidance	
du	Water chemistry	Very hard water reduces air content.	Increase air entrainer dosage.	
		Batching of admixture into concrete wash water decreases air.	Avoid batching into wash water.	
slump		Algae growth may increase air.		
Mix water and	Water-to-cement ratio	Air content increases with increased water to cement ratio.	Decrease air-entraining admixture dosage as water to cement ratio increases.	
	Slump	Air increases with slumps up to about 150 mm (6 in.).	Adjust air-entraining admixture dosages for slump.	
M		Air decreases with very high slumps.	Avoid addition of water to achieve high-slump concrete.	
		Difficult to entrain air in low-slump concretes.	Use additional air-entraining admixture; up to ten times normal dosage.	

	Procedure/Variable	Effects	Guidance		
	Batching sequence	Simultaneous batching lowers air content.	Add air-entraining admixture with initial water or on sand.		
		Cement-first raises air content.			
Production procedures	Mixer capacity	Air increases as capacity is approached.	Run mixer close to full capacity. Avoid overloading.		
	Mixing time	Central mixers: air content increases up to 90 sec. of mixing.	Establish optimum mixing time for particular mixer.		
		Truck mixers: air content increases with mixing.	Avoid overmixing.		
		Short mixing periods (30 seconds) reduce air content and adversely affect air-void system.	Establish optimum mixing time (about 60 seconds).		
Pro	Mixing speed	Air content gradually increases up to approx. 20 rpm.	Follow truck mixer manufacturer recommendations.		
		Air may decrease at higher mixing speeds.	Maintain blades and clean truck mixer.		
	Admixture metering	Accuracy and reliability of metering system will affect uniformity of air content.	Avoid manual-dispensing or gravity-feed systems and timers. Positive-displacement pumps interlocked with batching system are preferred.		
	Transport and delivery	Some air (1% to 2%) normally lost during transport.	Normal retempering with water to restore slump will restore air.		
Sie		Loss of air in nonagitating equipment is slightly higher.	If necessary, retemper with air-entraining admixture to restore air.		
dellve			Dramatic loss in air may be due to factors other than transport.		
Transport and delivery	Haul time and agitation	Long hauls, even without agitation, reduce air, especially in hot weather.	Optimize delivery schedules. Maintain concrete temperature in recommended range.		
	Retempering Regains some of the lost air.		Retemper only enough to restore workability. Avoid		
		Does not usually affect the air-void	addition of excess water.		
	system.		Higher admixture dosage is needed for jobsite admixture additions.		
		Retempering with air-entraining admixtures restores the air-void system.	admixidio additions.		

Chemical Admixture Summary

All admixtures are somewhat sensitive to concrete temperature

As the temperature of the mix increases, the effectiveness of the admixture decreases, so ...

- As temperature <u>increases</u>, may need to <u>increase</u> dosage rate for same effects
- As temperature <u>decreases</u>, may need to <u>reduce</u> dosage rate for same effects

All admixtures are somewhat sensitive to brands, types, mix design, cement composition and batching sequence

If anything changes, then expect different performance from admixtures

Hot & Cold Weather Concreting

Rate of hydration is sensitive to temperature of the fresh concrete

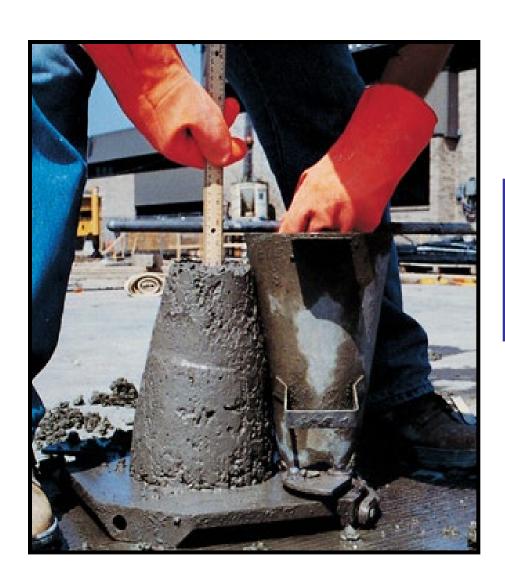
Hydration – chemical reaction between portland cement & water

Temperature

Rate of Hydration

How Do We Define Hot Weather?

Any combination of the following that impair quality of freshly mixed or hardened concrete


- High air temperatures
- High concrete temperatures
- Low relative humidity
- Wind velocity
- Solar radiation

These conditions will accelerate ...

Rate of Cement Hydration and Rate of Moisture Loss

Knowing this is the *key* to understanding how to handle hot weather concreting

Hot Weather Increases Water Demand

Amount of water to produce a given slump increases with increasing concrete temperature

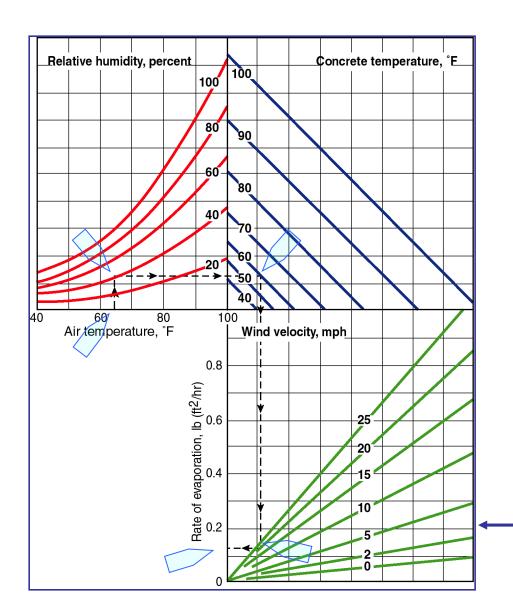
If fresh concrete temperature increases 10°F, then

 About 1 gal/cuyd is needed to maintain slump

Air content decreases about 1%

 Decreases strength from 150 psi to 200 psi

Air Content & Fresh Concrete Temperature



Less air is entrained as the concrete temperature increases.

- Monitor fresh concrete air test
 & concrete temperature
- Offset loss of air by increasing dosage of air-entraining admixtures

Evaporation Chart (SSRBC Figure 513.4.2-2)



Instructions

- 1. Air temperature (65F)
- 2. Relative humidity (40%)
- 3. Concrete temperature (60F)
- 4. Wind velocity (20 mph)
- 5. Read evaporation rate
 - 0.13 lb sqft per hr

When evaporation exceeds
- 0.2 lbs(sqft per hr), take
precautions.
7-18

(SSRBC 513.4.2.5)

Foggers

Water Reducing & Retarding Admixtures

- Type B Water Reducing
 - Delays setting & hardening from 1 to 3½ hrs
- Type D Water Reducing & Retarding
 - Reduces water content 5% min.
 - Retards set from 1 to 3½ hrs

- Type G Water Reducing & Retarding
 - Reduces water 12% to 30%
 - Retards set from 1 to 3½ hrs

Cold Weather Objectives ...

1. Protect from Early Age Freezing

2. Strength Development

3. Prevent Thermal Shock & Cracking

If batch water freezes,up to 50% strength reduction can occur₇₋₂₂

Mix Design Options

- Type III portland cement
- Additional portland cement

```
(100 to 200 lbs cuyd) can increase shrinkage & curling, especially if cement content exceeds 600 to 625 lbs/cy
```

- Hot water & heated aggregates
- Chemical admixtures (non-chloride)

Chemical Accelerators

Type C - Accelerator (non-chloride)

- Type E Water-Reducer & Accelerator
 - Offsets slow set times
 - Aids finishing process
 - Reduces bleed water
 - May contain some chlorides (check project limits)

Maintaining Curing Temperatures

Insulate & Capture Heat of Hydration

- Internal heat generate for first 3 days
- Want to capture as much as possible

Supply Heat (\$\$\$)

- Hydronic Systems
- Electric (Heat) Blankets
- Heated Enclosures

Cover fresh concrete ASAP but don't damage finish

