Section 8 Practice Problems

WMTC Concrete Training & Certification Seminar

W Tare = 6.78 lbsContainer Vol. = 0.251 cuftW Total = 43.00 lbs(Container & Fresh Concrete)T = 153.7 lbs/cuft(Theoretical or Air Free Unit Weight)Total Batch Weight = 35,066 lbsBatch Designed to Produce = 9.0 cy

1. Compute measured unit weight (D).

2. Compute yield (Y_f) in both cuft & cy.

3. Compute relative yield (Ry).

4. Compute gravimetric air content (A).

Wt. Net or Free Water = 296 lbs Cement = 705 lbs Silica Fume = 60 lbs

5. Compute the w/cm ratio.

6. If the contractor added 20 gals of water to adjust the slump on a 9.0 cuyd load, what is the new w/cm ratio? Compare to maximum w/cm allowed by WYDOT?

Moisture Problems

DRY Aggregate Weight = 7784 lbs Moisture Content = 2.0% Absorption = 1.48%

7. What is the percent (%) Free or Net moisture?

8. Calculate the SSD aggregate weight.

9. How much water is absorbed in the aggregates?

10. Calculate the total water content in pounds.

11. Calculate the Net or Free water content.

12. What amount of water contributes to the mixing water?

13. Compute how much water can be added on-site?

<u>Mix Design</u> 590 lbs Cement 1200 lbs Sand (dry)

Max w/c ratio = 0.45 1.482 % Absorption 2.5% Moisture Content

1180 lbs Rock (dry)

0.831% Absorption 1.8% Moisture Content

Batch Water Added:

27.0 gal/cy or 225.18 lbs/cy

14. For a fresh concrete temperature of 75°F, what is the maximum placing time in minutes?

15. For a Level II <u>paving project</u>, determine the following:

	Testing	Frequency
	QC	QA
Strength Test		
Air Content		
Slump Test		
Yield/Unit Weight		
Temperature		
Number of Cylinders		

- a. What is the maximum concrete lot size for QA?
- b. What is the maximum concrete sublot size for QA?

c. If the total concrete placement consist of 45,000 SY, design a QC and QA testing program:

d. How many QA cylinders are required to represent 45,000 SY of pavement?

16. Correlate the following slump, air content & unit weight test results: (PCCP Concrete)

Correlation of Field Testing				
Test	Contractor's Tester	WYDOT's Tester	Difference	Pass/Fail
Slump	3.25"	3.50"		
Air Content	5.2%	4.5%		
Unit Weight	142.5 pcf	143.1 pcf		

17. For a Level I structural concrete project, determine the following:

	Testing	Frequency
	QC	QA
Strength Test		
Air Content		
Slump Test		
Yield/Unit Weight		
Temperature		
Number of Cylinders		

For a one day concrete placement of 135 cubic yards, compute the following for QC and QA:

a. Minimum number of air content and slump test?

b. Minimum number of 4" x 8" strength cylinders?