Education:
Ph.D. Applied Mathematics, University of Washington, Seattle, 2002
Research Interests:
Numerical simulations and mathematical modeling for fluidflexible body interactions; Multiphase flow and nonlinear waves
Publication: Google
Scholar Profile ;
Researchgate
* == graduate student
** == undergraduate student
 Y.H. Kuo*, L. Lee, and G. Lyng,
Analysis and development of compact finite difference
schemes with optimized numerical dispersion
relations. Submitted; arXiv
 R. Camassa and L. Lee,
A connection between the shallowwater equations and the
EulerPoincaré equations.
 D. Kuang* and L. Lee, A stable
numerical method for the doublegyre nonlinear
shallowwater model, TAM under revision; arXiv
 R. Camassa, D. Kuang*, and L. Lee,
Solitary waves and Nparticle algorithms for a class of
EulerPoincaré equations. Submitted; arXiv
 Y. Kim**, L. Lee, and G. Lyng, The WKB
approximation of semiclassical eigenvalues of the
ZakharovShabat problem, J. Math. Phys. 55(8) (2014), 083516, arXiv
 L. Lee and G. Lyng, A second look at
the Gaussian semiclassical soliton ensemble for the
focusing nonlinear Schrödinger equation, Phys. Lett. A, 377
(2013), 11791188.
Download
 R. Camassa, M. G. Forest, L. Lee,
H. R. Ogrosky*, and J. Olander*, Ringwave as a mass
transport mechanism in airdriven coreanular flows,
Physical Review E, v8 (6), Dec. (2012), 066305. Download
 L. Lee, G. Lyng, and I. Vankova**, The Gaussian
semiclassical soliton ensemble and numerical methods
for the focusing nonlinear Schrödinger equation,
Physica D, 241 (2012), 17671781. Download
 L. Lee and I. Vankova**, A class of Cartesian grid
embedded boundary algorithms for incompressible flow
with timevarying complex geometries, Physica D, 240
(2011), 15831592. Download
 R. Camassa, P. H. Chiu*, L. Lee, and
T. W. H. Sheu, A particle method and numerical
investigation of a quasilinear partial differential
equation, Commun. Pure and Appl. Analysis, 10 (2011),
15031512. Download
 R. Camassa, P. H. Chiu*, L. Lee, and
T. W. H. Sheu, Viscous and inviscid regularizations in
a class of evolutionary partial differential
equations, J. Comp. Phys., 29, (2010), 66766687. Download
 L. Lee, A class of highresolution
methods for incompressible flows, Computers & Fluids,
39, (2010) 1022 1032. Download
 P. H. Chiu*, L. Lee, and T. W. H. Sheu,
A sixthorder dual preserving algorithm for the
CamassaHolm equation, J. Comput. Appl. Math. 223,
(2010), 27672778. Download
 P. H. Chiu*, L. Lee, and T. W. H. Sheu,
A dispersionrelationpreserving algorithm for a nonlinear
shallowwater wave equation, J. Comput. Phys. 228, (2009), 80348052. Download
 R. Camassa and L. Lee, Complete integrable particle methods and the recurrence of initial states for a nonlinear shallowwater wave equation, J. Comput. Phys., 227, (2008), 72067221. Download
 R. Camassa and L. Lee, A completely integrable particle method for a nonlinear shallowwater wave equation in periodic domains, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 14(S2), (2007), 15. Download
 R. Camassa, J. Huang, L. Lee, Integral and integrable algorithm for a nonlinear shallowwater wave equation, J. Comput. Phys. 216, (2006), 547572.
 R. Camassa and L. Lee, Thin film dynamics in a liquid lined circular pipe, Advances in Engineering Mechanics  Reflections and Outlooks, edited by A. T. Chwang, M. H. Teng and D. T. Valentine, World Scientific Publishing, March (2006), 222238.
 R. Camassa, J. Huang, and L. Lee, On a completely integrable numerical scheme for a nonlinear shallowwater wave equation, Journal of Nonlinear Mathematical Physics, 12, (2005), 146162.
 L. Lee and R.J. LeVeque. An immersed interface method for the incompressible NavierStokes equations, SIAM Sci. Comp. 25, (2003), 832856.
 HC. Chiu, SD. Ni, Y. T. Yeh, L. Lee, W. S. Liu, C. F. Wen, and C.C. Liu. A new strongmotion array in Taiwan: SMART2, Terr. Atm. Ocean. Sci., 5, (1994), 463475.
