Two-Graphs
and
Skew Two-Graphs

Two-graphs \leftrightarrow Switching-equivalence classes of ordinary graphs

Skew Two-graphs \leftrightarrow Switching-equivalence classes of tournaments

Eric Moorhouse, U. Wyoming
Problem: Given translation planes $\pi_1, \pi_2, \ldots, \pi_n$ of order n, determine the isomorphism classes.

$n=16$ Dempwolf, Reifart (1983)

$n=25$ Oakden, Czerwinski (1992)

$n=49$ Mathon, Royle; Chames, Dempwolf (1992)

$n=27$ Dempwolf (1994)

J.H. Conway's invariant (n odd):

plane π \hspace{1cm} \rightarrow \hspace{1cm} \text{Fingerprint } f(\pi)$

(a sequence of integers) computable in $O(n^3)$ operations

$$\pi \rightarrow \begin{cases} \text{two-graph } \Delta(\pi), & n \not\equiv 3 \mod 4 \\ \text{(trivial if } g \text{ even)} \\ \text{skew two-graph } \nabla(\pi), & n \equiv 3 \mod 4 \end{cases}$$

\text{degree sequence } \rightarrow \text{ fingerprint } f(\pi)$

In all known cases, $f(\pi') = f(\pi) \iff \pi', \pi$ isomorphic or polar for $n \equiv 1 \mod 4$

This fails badly for $n \equiv 3 \mod 4$.

Eg $n=27$, $\exists \pi_1, \pi_2, \ldots, \pi_7$, $f(\pi_7) = f(\pi_5) = f(\pi_3)$. Dempwolf introduced Ken vector (computable in $O(n^4)$ time) to distinguish them.
$|X| = v \geq 3$

A two-graph is a $\Delta \leq \binom{X}{3}$ such that every 4-subset of X contains an even number (i.e. 0, 2 or 4) of triples from Δ.

E.g. the trivial two-graphs $\{\emptyset\}$ (empty) $\{\binom{X}{3}\}$ (complete)

Δ two-graph $\Rightarrow \overline{\Delta} := \binom{X}{3} \setminus \Delta$ complementary two-graph

The degree of $\{x, y, z\} \subset X$ is the number of triples $\{x, y, z\} \in \Delta$ containing $\{x, y, z\}$.

Δ is regular \iff every 2-subset $\{x, y\} \subset X$ has the same degree $\iff \Delta$ is a 2-$(v, 3, \lambda)$ design, some λ

Γ ordinary graph with vertex set X.

For $X_1 \subseteq X$, $\Gamma(X_1)$ is the graph formed by replacing edges between X_1 and $X \setminus X_1$ by nonedges.

Γ, Γ' are switching-equivalent $\iff \Gamma' = \Gamma(X_1)$, some $X_1 \subseteq X$.

$\iff A' = DAD$, some ± 1-diagonal matrix D where A, A' are the $(0, \pm 1)$-adjacency matrices of Γ, Γ' (-1 for adj., +1 for nonadj., 0 on diag.)

$\Delta(\Gamma) := \{ \{x, y, z\} \in \binom{X}{3} : \Gamma$ contains an odd number (i.e. 1 or 3) of $\{x, y, z\}, \{x, z\}, \{y, z\}$

$\Delta(\Gamma) = \Delta(\Gamma') \iff \Gamma, \Gamma'$ are switching equivalent

$\Delta(\overline{\Gamma}) = \overline{\Delta(\Gamma)}$
$|X| = v \geq 3$

$\text{Sym}(X) = \{ \text{permutations of } X \}$

$\mathcal{J}(X) = \{ 3\text{-cycles } (x, y, z) \in \text{Sym}(X) \}$

$|\mathcal{J}(X)| = \frac{(v-1)(v-2)}{2}$

A skew two-graph (Cameron, 1977): oriented two-graph

is a subset $\mathcal{D} \subseteq \mathcal{J}(X)$ such that

(i) $\forall \tau \in \mathcal{J}(X)$, exactly one of τ, τ' is in \mathcal{D};

(ii) $\forall \{x, y, z, w\} \in \binom{X}{4}$, \mathcal{D} contains an even number (i.e. 0, 2 or 4) of the 3-cycles $(x, y, z), (x, w, y), (x, z, w), (y, w, z)$.

(The latter is a conjugacy class of $\text{Alt}(\{x, y, z, w\})$.)

$\overline{\mathcal{D}} := \{ \tau': \tau \in \mathcal{D} \}$ is the complementary skew two-graph.

$\overline{\mathcal{D}}$ is a trivial skew two-graph.

The degree of an ordered pair (x, y) in X, is the number of $z \in X$ such that $(x, y, z) \in \mathcal{D}$.

\mathcal{D} is regular \iff every pair (x, y) has the same degree, necessarily $\frac{v-2}{2}$.

A tournament T on X is an orientation of the complete graph on X.

For $X \leq X$, a tournament $T(X_i)$ is obtained by reversing all edges between X_i and $X - X_i$.

T, T' switching-equivalent \iff $T' = T(X_i), \text{ some } X_i \leq X$

$\iff A' = DAD$, some ± 1-diagonal matrix D

where A, A' are the $(0, \pm 1)$-adjacency matrices of T, T' (skew-symmetric).

$\mathcal{D}(T) := \{ (x, y, z) \in \mathcal{J}(X) : T \text{ contains an odd no. (i.e. 1 or 3) of } (x, y), (y, z), (z, x) \}$

$\mathcal{D}(T) = \mathcal{D}(T') \iff T, T'$ switching equivalent

$\mathcal{D}(T) = \overline{\mathcal{D}(T)}$

$\mathcal{D}(T)$ regular \iff A skew-symmetric conference matrix

$\iff A + I \text{ (skew) Hadamard matrix}$

$\Rightarrow v \equiv 0 \mod 4$
\(\mathcal{P} \): classical finite polar space embedded in \(PG(V) \).
\(f(\cdot,\cdot) \): associated bilinear/sesquilinear form.
Elements of \(\mathcal{P} \) are totally isotropic (or tot. singular)
subspaces of \(V \):
- points, lines, ..., m-flats, ..., generators.

A cap \(\mathcal{O} \) in \(\mathcal{P} \) is a set of points, no two collinear
in \(\mathcal{P} \) (perp. with respect to \(f \)).
\(\mathcal{O} \) is an ovoid if each generator meets \(\mathcal{O} \) in a
unique point.

Theorem: If \(\mathcal{P} \) is of \(\begin{cases} \text{orthogonal} \\ \text{unitary} \\ \text{symplectic, } q \equiv 3 \mod 4 \end{cases} \) type, then
\[\Delta(\mathcal{O}) := \{ \{ \omega_1, \omega_2, \omega_3 \in \mathcal{O} \} : f(\omega_1, \omega_2) f(\omega_2, \omega_3) f(\omega_3, \omega_1) = [\mathcal{O}] \} \]
is a two-graph (trivial if \(q \) even).

If \(\mathcal{P} \) is of symplectic type, \(q \equiv 3 \mod 4 \), then
\[\Delta(\mathcal{O}) := \{ \{ \omega_1, \omega_2, \omega_3 \in \mathcal{O} \} : f(\omega_1, \omega_2) f(\omega_2, \omega_3) f(\omega_3, \omega_1) = [\mathcal{O}] \} \]
is a skew two-graph.

Isometries preserve \(\Delta(\mathcal{O}) \) (or \(\Delta(\mathcal{O}) \)).
Similarities preserve \(\Delta(\mathcal{O}) \) (or \(\Delta(\mathcal{O}) \)) to within complementation.

Eq. Paley two-graphs \(\Delta_q \quad (q \equiv 1 \mod 4) \)
and skew two-graphs \(\Delta_q \quad (q \equiv 3 \mod 4) \)
from the \(Sp(2,q) \) ovoids:

\(F = GF(q), \quad q \) odd
\(\mathcal{O} = X = PG(1,F) \) projective line
\(G = Sp(V,f) = Sp(2,F) \cong SL(2,q) \)
acts 2-transitively on \(X \); two orbits on-triples
\(\langle \omega_1, \omega_2, \omega_3 \rangle \), distinguished according to whether
or not \(f(\omega_1, \omega_2) f(\omega_2, \omega_3) f(\omega_3, \omega_1) \) is a square.

If \(q \equiv 1 \mod 4 \) then \(\Delta_q := \Delta(X,f) \) is one \(G \)-orbit
on \((X)_3 \); the other is \(\overline{\Delta_q} \cong \Delta_q \)
regular two-graph of degree \(\frac{q-1}{2} \).

If \(q \equiv 3 \mod 4 \) then \(\Delta_q := \Delta(X,f) \) is one \(G \)-orbit
on \((X)_3 \); the other is \(\overline{\Delta_q} \cong \Delta_q \).
Taylor (1992) classified the 2-transitive two-graphs.

Theorem. Every 2-transitive skew two-graph \(V \) is isomorphic to \(\Delta_2 \) (Paley type), some \(q \equiv 3 \mod 4 \).

Proof. Let \(G = \text{Aut} \, V \), and let \(g \in G \) involution.

If \(g \) fixes \(x \in X \) then \((x, y, z) \overset{g}{\rightarrow} (x, z, y)\) for some \(y, z \in X \). But only one of \(\tau, \tau^{-1} \) is in \(V \), contradiction. So involutions in \(G \) are fixed-point-free.

Bender (1968) \(\Rightarrow \) \(G \cong \text{PSL}(3, q) \), \(X = \text{PG}(1, q) \), \(q \equiv 3 \mod 4 \).

\(\Rightarrow \) Both orbits of \(G \) on \(X \) are isomorphic to \(\Delta_2 \).

Kleidman (1988) classified the 2-transitive ovoids.

If \(O \) is a 2-transitive ovoid then \(\Delta(O) \) is 2-transitive or trivial (or \(V(O) \) is 2-trans.)

<table>
<thead>
<tr>
<th>Ovoid</th>
<th>Restrictions</th>
<th>Nontrivial (\Delta) or (V)?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sp(2,q))</td>
<td>(q \equiv 1 \mod 4)</td>
<td>nontrivial (\Delta)</td>
<td>Paley (\Delta_q)</td>
</tr>
<tr>
<td>(Sp(2,q))</td>
<td>(q \equiv 3 \mod 4)</td>
<td>nontrivial (V)</td>
<td>Paley (V_q)</td>
</tr>
<tr>
<td>(O_7(q))</td>
<td>(q) odd</td>
<td>trivial (\Delta)</td>
<td>Theorem 7.3</td>
</tr>
<tr>
<td>(U(3,q))</td>
<td>(q) odd</td>
<td>nontrivial (\Delta)</td>
<td>unitary two-graph</td>
</tr>
<tr>
<td>(O_2^+(q))</td>
<td>(q) odd</td>
<td>trivial (\Delta)</td>
<td>(1 + \frac{q}{2}) siml. classes</td>
</tr>
<tr>
<td>(O_2^+(q))</td>
<td>(q) odd</td>
<td>nontrivial (\Delta)</td>
<td>Paley (\Delta_q^2)</td>
</tr>
<tr>
<td>(O_6(q), O_4^2(q))</td>
<td>(q) odd</td>
<td>nontrivial (\Delta)</td>
<td>induced from (O_4(q))</td>
</tr>
<tr>
<td>(U(4,q))</td>
<td>(q) odd</td>
<td>nontrivial (\Delta)</td>
<td>induced from (U(3,q))</td>
</tr>
<tr>
<td>(O_7(3))</td>
<td>(q = 3)</td>
<td>nontrivial (\Delta)</td>
<td>(Sp(6,2))</td>
</tr>
<tr>
<td>(O_8(q))</td>
<td>(q = 3^s), (s) odd</td>
<td>nontrivial (\Delta)</td>
<td>(PSU(3, q))</td>
</tr>
<tr>
<td>(O_7(q))</td>
<td>(q = 3^s), (s) odd</td>
<td>nontrivial (\Delta)</td>
<td>(2G_2(q))</td>
</tr>
<tr>
<td>(O_8^+(q))</td>
<td>(q = 3^s)</td>
<td>nontrivial (\Delta)</td>
<td>induced from (O_7(q))</td>
</tr>
</tbody>
</table>

Our construction of the unitary two-graphs from the \(U(3,q) \) ovoid follows [Sel1]. The non-triviality of \(\Delta(O) \) for the last four entries, follows from Theorem 7.4; hence by [Ta2], these are the usual unitary and Ree two-graphs. All remaining cases are covered by remarks above and Theorems 7.2 and 7.3.

Suppose \(I(O) \) is an invariant of caps \(O \) which is computed by testing just \(k \)-subsets of \(O \), and that the invariant \(I \) is nontrivial (able to distinguish at least two inequivalent caps of the same size). In the octagonal case, Theorem 4.3 shows that \(k \geq 3 \), and if \(k = 3 \), then \(I(O) \) is a function of \(\Delta(O) \) and the characteristic is odd. [Note: It is usually possible to define a nontrivial invariant graph \(I(O) \); for example, fix \(t \geq 0 \) and let \(I(O) \) be the set of pairs \((u, \langle \rangle) \) in \(O \) such that \(|r \cap O| = t \) for some plane \(r \) of \(PG(V) \) containing \((u, v) \). However, the latter definition evidently requires testing subsets of \(O \) of size \(\geq 4 \).]

For symplectic polar spaces, however, there are nontrivial triple-based invariants in even characteristic, computed by testing for collinear triples (cf. Theorem 4.4).

4.3 Theorem. Let \(P \) be an orthogonal polar space in \(PG(V) = PG(s, F) \), \(s \geq 2 \), with associated quadratic form \(Q \) on \(V \). Then the number of orbits of \(PG(V, Q) \) on ordered 3-caps in \(P \) is

(i) \(1 \), if \(q \) is even and \(s \) is odd;

(ii) \(2 \), if \(q \) is odd and \(P \neq \theta(4,q) \) (the orbit containing \((u, \langle \rangle, \langle \rangle) \) being determined by whether \(f(u,v)f(v,w)f(w,u) \) is a square or a nonsquare in \(F \)); or
Theorem. Suppose \mathcal{P} is of orthogonal type, but not $O_q^+(2)$. The number of orbits of $PSL(V,Q)$ on caps of size 3 is

1. if q even;
2. if q odd, distinguished by whether or not $f(u,v)f(v,w)f(w,u)$ is a square.

\[
\Delta = \Delta(\Gamma) \quad \text{or} \quad \nabla = \nabla(\Gamma)
\]

\[
A = (\alpha, \pm 1) - \text{adjacency matrix of } \Gamma \text{ or } T \quad \rightarrow \quad f(\Delta) \quad \text{or} \quad f(\nabla)
\]

\[
f(\Delta) \triangledown := \text{multiset of entries of } |AA^T|,
\]

\[
f(\nabla)
\]

Theorem. If $n_\lambda = \text{no. of } \{(x,y)\} \text{ of degree } \lambda \text{ in } \nabla$

\[
f(\Delta) = \begin{cases}
2^{n_{r+1}} & \text{if } v = 2r+1 \\
2^{n_{r+1}} & \text{if } v = 2r-1 \\
2^{n_{r+1}} & \text{if } v = 2r \end{cases}
\]

\[
f(\nabla) = \begin{cases}
0 & \text{if } v = 2r+1 \\
2^{n_{r+1}} & \text{if } v = 2r-1 \\
2^{n_{r+1}} & \text{if } v = 2r \end{cases}
\]
A partial m-system in \mathcal{P} is a collection $M = \{ \pi_1, \pi_2, \ldots, \pi_k \}$ of m-flats s.t. $\pi_i^\perp \cap \pi_j = \emptyset$ for all $i \neq j$.

Theorem (Shult, Thas) There exists an upper bound for $k = |M|$ depending on \mathcal{P} but not on m.

If $|M|$ attains this upper bound, M is an m-system.

<table>
<thead>
<tr>
<th>partial 0-system</th>
<th>=</th>
<th>cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-system</td>
<td>=</td>
<td>ovoid</td>
</tr>
<tr>
<td>partial r-system</td>
<td>=</td>
<td>partial spread</td>
</tr>
<tr>
<td>r-system</td>
<td>=</td>
<td>spread</td>
</tr>
</tbody>
</table>

$\{ \nu_{i_0}, \nu_{i_1}, \ldots, \nu_{i_m} \}$ basis for π_i

$\text{sgn} (\pi_i, \pi_j) := \text{sgn} \det \left[f(\nu_{i_0}, \nu_{j_0}), f(\nu_{i_0}, \nu_{j_1}), \ldots, f(\nu_{i_0}, \nu_{j_m}) \right]_{0 \leq \alpha, \beta \leq m} = \pm 1$

Theorem If \mathcal{P} is orthagonal, unitary, symplectic, $q^{m+1} \not\equiv 3 \mod 4$ then

$\Delta(M) := \{ \{ \pi_i, \pi_j, \pi_k \} : \text{sgn}(\pi_i, \pi_j) \text{sgn}(\pi_j, \pi_k) \text{sgn}(\pi_k, \pi_i) = -1 \}$

is a two-graph (trivial if q even).

If \mathcal{P} is of symplectic type, $q^{m+1} \equiv 3 \mod 4$,

similarly get a skew two-graph $\nabla(M)$.

$\Delta(M)$ (or $\nabla(M)$) invariant under isometries.

$\Delta(M)$ (or $\nabla(M)$) invariant (to within complementation) under similarities.
J.H. Conway's Description

\(\pi \): translation plane of order \(n \)

\[1 \quad 2 \quad 3 \ldots \quad i \ldots \quad n+1 \]

O

\[a_{ij} = \text{sign of this permutation} \]

\(a_{ii} = 0 \)

A = \((a_{ij})_{1 \leq i, j \leq n+1}\)

Fingerprint \(f(\pi) \) = multiset of entries of \(|AA^T| \).

Theorem

Let \(\{M_1, M_2, \ldots, M_n\} \) be a spread set for \(\pi \). Then WLOG

\[a_{ij} = \begin{cases}
\text{sgn} \det(M_i - M_j), & 1 \leq i, j \leq n \\
1, & i < n+1 = j \\
\pm 1, & j < n+1 = j \\
0, & i = j = n+1
\end{cases} \]

* choose 5 if \(n \equiv 3 \mod 4 \)

\[l-1 \text{ if } n \equiv 3 \mod 4 \]

Theorem

If \(\Omega \) is an ovoid in \(O^+_6(q) \) and \(\pi \) is the corresponding translation plane of order \(q^2 \), then \(\Delta(\Omega) = \Delta(\pi) \) to within complementation. So \(f(\Omega) = f(\pi) \).
How large can a cap \mathcal{O} in \mathcal{P} be if $\Delta(\mathcal{O})$ is trivial? What structure of \mathcal{O} attains this maximum?

Theorem. A cap of type $\mathcal{O}_5(q)$, q odd, $S = \text{disc}(\mathcal{O})$.

\mathcal{O} cap in \mathcal{P}.

(i) $\Delta(\mathcal{O})$ complete and $-2S = \emptyset \Rightarrow |\mathcal{O}| = q+1$.

(ii) $\Delta(\mathcal{O})$ empty and $-2S = \emptyset \Rightarrow |\mathcal{O}| \leq q+1$.

Moreover, \mathcal{O} is a BLT-set \Leftrightarrow equality holds in (i) or (ii).

Recall: A BLT-set in $\mathcal{O}_5(q)$ is a collection of $q+1$ singular points s.t. $\langle u, v, w \rangle^\perp$ is an elliptic (anisotropic) line V distinct $\langle u \rangle, \langle v \rangle, \langle w \rangle$ in \mathcal{O}.

BLT-set \mathcal{O} \Leftrightarrow q-clan \Leftrightarrow Flock of quadratic cone in $PG(3, q)$

Theorem. Let \mathcal{O} be a $(q+1)$-cap in $O_q^-(q^*)$, q odd.

Then $\Delta(\mathcal{O})$ trivial \iff \mathcal{O} conic.

Theorem. $(q+1)$-cap in $O_q^+(q^*), q = p^e$ odd.

Then $\Delta(\mathcal{O})$ trivial \iff \mathcal{O} 2-transitive

(e iso. classes, $1 + \frac{e}{2}$ simil. classes)

(BLT $\mathcal{O} \Leftrightarrow$ linear or Kantor flock)

These results are equivalent to Thas (1987) in flock language.
Theorem: A polar space is naturally embedded in $\text{PG}(n, q)$, where $q = p^e$ and p is odd.

For a cap in \mathcal{Q}, $\Delta(\mathcal{Q})$ trivial $\Rightarrow |\mathcal{Q}| \leq \binom{n + \frac{p-1}{2}}{n}^e + 1$.

$\varphi \in V^*$

$v \in V$

Classical Circle Geometries

$\varphi(v) q^{-1}$ has p-rank $\left(\binom{n + p - 1}{n}\right)^e$

Mobius (inversive) plane

$\varphi \in V^*$

$v \in V$

has p-rank $\left(\binom{n + \frac{p-1}{2}}{n}\right)^e$

Laguerre plane

Minkowski plane
\(E = \{ C_1, C_2, \ldots, C_k \} \) **doubly intersecting circles** in Laguerre plane, i.e. \(|C_i \cap C_j| = 2 \ \forall i \neq j \)

Theorem There is a family of \((3q-1)/2 \) doubly intersecting circles.

Theorem \(k = |E| \leq \frac{q^2 + 1}{2} \)

(cf. Blokhuis and Bruen (1989) for Miquelian inversive plane)

Theorem \(|E| \leq \left(\frac{q^{q+1}}{4} \right)^e \) where \(q = p^2 \) odd.

\[|E| \leq \begin{cases} q^{1.47} & p = 3 \\ q^{1.68} & p = 5 \\ q^{1.83} & p = 7 \end{cases} \]