
The Faustus Programming Language
Adding formally verified parameterized abstractions to the smart contract language Marlowe.

 Summer 
2022

Advisor: Dr. James Caldwell
Group Members:
• Kegan McIlwaine (kmcilwai@uwyo.edu)
• Stone Olguin (aolguin1@uwyo.edu)
• James Caldwell (jlc@uwyo.edu)

Background

Problem Statement

Methods

Results

Challenges & Future Work

- Isabelle/HOL (Isabelle) is an interactive 
theorem prover that can be used to prove 
the correctness of programs and 
programming languages.

- Marlowe and its evaluator have been 
formalized in the Isabelle theorem prover. 
Marlowe contracts will not “lose” money 
and can run on the blockchain.

- The methods for adding functions and 
procedures with parameters are 
cornerstones in general purpose 
programming languages.

Marlowe is a formally verified domain 
specific language (DSL) for programming 
financial smart contracts. The only control 
flow statements in Marlowe are an 
if-then-else statement and a When statement 
that waits for valid user input. There are no 
looping constructs, no recursion, and no 
parameterized functions or contracts. 
Marlowe contracts can be executed on the 
blockchain, it is a good target for 
compilation; however, programs become 
hard to read and maintain. Faustus is 
designed to address these weaknesses.

- Formalize the semantics of Marlowe with 
respect to the already formalized evaluator.

- Create the Faustus abstract syntax by adding 
new constructs to Marlowe that will bind 
parameterize procedures to identifiers.

- Formalize the semantics of Faustus.
- Formalize a type system that will prevent 

undefined behavior in the new semantics.
- Formalize a compiler that maps Faustus 

contracts to Marlowe contracts. (compile)
- Proved the compiler correct with respect to the 

formalized semantics.

In 4,883 lines of Isabelle definitions and proofs, 
we have formalizd the Faustus DSL for writing 
financial contracts. The Isabelle proofs show 
that the compiler is correct. Faustus allows 
programmers to write maintainable code by 
reducing code duplication. An example 5 party 
multi-signature contract written in 199 lines of 
Faustus code requires 4,030 lines of Marlowe 
code.

Challenges
- Marlowe’s limited features made compilation 

of Faustus’ complex features quite difficult.
- Formal verification depends on correct 

formulations of specifications. This is difficult, 
and errors are only discovered when 
attempting proofs.

Future Work
- Developing modular methods for extending 

DSLs.
- Formalizing and adding new features to 

Faustus. e.g. merkleization of contracts 
compactifies them, this allows them to be 
stored on the blockchain which is needed 
due to severe time and space constraints for 
on-chain code.

Faustus Team Members✝

Kegan McIlwaine - COSC Ph.D. Student
Stone Olguin - COSC M.S. Student
Professor James Caldwell - Advisor

University of Wyoming | IOG
Advanced Blockchain Research Lab

✝The research presented here was generously supported by a grant from IOG Singapore Pte. Ltd. and funding from the State of Wyoming and the University of Wyoming and the College of Engineering and Physical Sciences.
 Special thanks to the Marlowe development team at IOG for their biweekly meetings over the last year and a half.


