Typical Raw Syngas

- H2: 30 - 50%
- CO: 30 - 50%
- Ar: 0.5 - 1%
- N2: 0.7 - 1.5%
- CO2: 5 - 19%
- H2S: 0.5 - 2%
- COS: 200-1000 ppmv
- Ni & Fe Carbonyls
- HCN, NH3...

Applications:
- Power
- Chemicals
- Hydrogen
- Liquid Fuels
- etc
Solvent Loading Comparison

![Graph showing Solvent Loading vs. Partial Pressure for Chemical and Physical processes. The graph indicates a higher solute loading for the Chemical process compared to the Physical process at lower partial pressures.]
Acid Gas Removal Unit Options
Gasification Syngas

<table>
<thead>
<tr>
<th></th>
<th>CO_2</th>
<th>H_2S</th>
<th>COS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical solvents</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Physical solvents</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Membranes</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Molecular sieves</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

UOP 4685A-41
Selexol for Sulfur Removal & CO₂ Capture

- Used for hydrogen, chemical, coal to liquids and IGCC with CCS applications
- Independent absorbers with common solvent regeneration

Diagram: CO₂ Absorber

Diagram: Sulfur Absorber

Diagram: CO₂ Stripped Feed Gas

Diagram: H₂S Stripper

Diagram: Lean Solution Filter

Diagram: H₂S Concentrator

Diagram: Packinox Exchanger

Diagram: Reflux Pump

Diagram: Reboiler

Diagram: Export Water

Diagram: Makeup Water

Diagram: Acid Gas

Diagram: Treated Gas

Diagram: Shifted Feed Gas

Diagram: Reflux Accumulator

Diagram: Export Water

Diagram: Stripper Reboiler
Selexol Features

Sulfur Removal & CO$_2$ Capture

CO$_2$ is partially released at elevated pressures.

Converted metal sulfides are captured by the solvent filtration system.

Export water contains absorbed trace components HCN, NH$_3$...

- CO$_2$ Absorber
- Lean Solution Filter
- Shifted Feed Gas
- Sulfur Absorber
- Cool to atmospheric temperatures or mild chilling
- Packinx Exchanger
- H$_2$S Concentrator
- Reflux Pump
- H$_2$S Stripper
- Export Water
- Treated Gas
UOP Selexol™ Process
Commercial Experience

• 57 operating units
 - Both Natural Gas and Gasification applications

• 4 Recent Gasification Applications in Operation
 - Sarlux – Italy – IGCC Power plus H₂
 - API – Italy – IGCC Power
 - Coffeyville Resources - USA -NH₃/UAN
 - OptiCanada – Oil Sands Canada – H₂ plus fuel

• Multiple large units in engineering phase
 - Residue gasification for H₂ production, Oil Sands Canada
 - Other gasification projects
 • Power - USA, Europe
 • NH₃ - USA
 • Coal to Liquids - USA
 • Methanol – USA
 • CO₂ from Natural Gas - USA
Project Considerations That Impact Acid Gas Removal Technology

- **Gasifier pressure**
 - Acid gas component partial pressures in syngas
- **Product quality requirements**
 - Treated syngas
 - CO$_2$ product
 - Acid gas – H$_2$S, hydrocarbon, H$_2$, CO
- **CO$_2$ Capture requirements**
 - Recovery
 - Purity – CO$_2$, CO, H$_2$
 - Destination
Syngas Processing Issues

- Required process blocks are application specific and dependent on:
 - Desired treated syngas product slate
 - Syngas product quality objectives
 - CO₂ separation or capture targets
 - Acid gas specifications

- A gasification project requires collective optimization of all process blocks in the complex
Gasification Syngas Treating
Typical Project Drivers

• Treated syngas product sulfur
 – Less than 1 ppmv total sulfur from Selexol
 – Sulfur guard bed for downstream catalytic processing

• CO₂ separation or capture
 – Treated syngas CO2 content optimized in conjunction with downstream processing
 – 90 % recovery typical when CO2 capture is part of project
 – Have designed up to 97% CO₂ recovery
 – CO₂ purity and sulfur requirements can impact cost
Solvent & Flow Scheme Improvements & Complex Optimization

- Improvement examples
 - Power recovery systems
 - High efficiency equipment
 • Packinox Heat Exchangers
 • Column Internals / Packing

- Complex optimization
 - CO shift location
 - Tail gas recycle streams
 • Eliminates a portion of Claus Tail Gas Treatment (TGTU)
 • Maximize CO₂ capture
 - Product stream purification alternatives
Solvent & Flow Scheme Improvements & Complex Optimization

- **Improvement examples**
 - Power recovery systems
 - High efficiency equipment
 - Packinox
 - Column Internals / Packing
- **Complex optimization**
 - CO shift location
 - Tail gas recycle streams
 - Eliminates a portion of Claus Tail Gas Treatment (TGTU)
 - Maximize CO$_2$ capture
 - Product stream purification alternatives
Selexol Integration Opportunities

• Integrating streams across the gasification complex can result in significant project savings
 – Minimization of off gas streams, such as PSA tail gas, SRU tail gas, flash gas, etc
 • Recycling to the right location
 – Maximization of sulfur removal and recovery
 • Minimizing treating requirements downstream
 – Maximization of CO$_2$ removal and recovery
 • Targeted CO$_2$ destination and recovery level can impact complex design
Solvent & Flow Scheme Improvements & Complex Optimization

• Improvement examples
 – Power recovery systems
 – High efficiency equipment
 • Packinox
 • Column Internals / Packing
• Complex optimization
 – CO Shift location
 – Tail gas recycle streams
 • Eliminates a portion of Claus Tail Gas Treatment (TGTU)
 • Maximize CO₂ capture
 – Product stream purification alternatives
Summary

• Selexol has clear process and economic advantages over other technology options for power, H2, and chemical applications

• Integrated solutions provide the best opportunities to maximize margins

• UOP can drive optimization discussions and assist in maximizing the value of the gasification project

• UOP has commercial experience for gasification applications
UOP Selexol™ Technology
Applications for CO₂ Capture

3rd Annual Wyoming CO₂ Conference
June 23rd and 24th

© 2009 UOP LLC. All rights reserved.