Skip to Main Navigation. Each navigation link will open a list of sub navigation links.

Skip to Main Content

Apply to the University of Wyoming

Global Resource Navigation

Give to UW
Download UW Viewbook
Visit Campus

Department of Geology and Geophysics


Cliff Riebe

Cliff Riebe

Associate Professor

Critical Zone Science, Ecogeomorphology, Cosmogenic Nuclides, Detrital Thermochronometry

office phone: +1 307 766-3965

1000 E. University Ave. Laramie, Wyoming 82071
Office: ESB 2008


Geology, PhD, University of California, Berkeley, 2000
Civil Engineering, BSE, University of Michigan, 1992, summa cum laude

Research Overview

My group seeks quantitative insight on processes that break rock down and move sediment across landscapes. To obtain it, we use a variety of geochemical, isotopic, and geophysical methods to measure properties of the surface and shallow subsurface. Together these measurements reveal patterns of erosion, weathering, regolith formation, and biogeochemical cycling. This work is vital to understanding connections between life and landscapes and to making advances in understanding how humans and natural processes shape Earth's dynamic surface.

Some of our research methods include:
  • cosmogenic nuclides, which reveal long-term erosion rates of rock, soil & entire catchments [PDF primer];
  • detrital thermochronometry, which sheds light on the sources of eroded material in streams and deposits;
  • geochemical mass balance, which constrains the relative importance of chemical and physical erosion; &
  • near-surface geophysics, which reveals the architecture of weathering and water storage in the critical zone.

Study Sites

Our research focuses on understanding the evolution of Earth's surface, with an emphasis on interpreting observations and measurements from the field. It should therefore come as no surprise that we often find ourselves in beautiful places around the world. Lately, we have been doing a lot of field work at NSF's Critical Zone Observatories. For example, two of our ongoing projects on erosion and weathering focuses on the region surrounding one of the three, original CZOs, in the southern Sierra Nevada.

Research Facilities

Cosmogenic Nuclide Labs: We oversee two spacious wet-chemical labs devoted to purification and dissolution of quartz and magnetite. Once minerals are dissolved, cosmogenic nuclides are extracted and prepared for analysis. We use these nuclides to measure rates of weathering, erosion, and sedimentation. Our cosmogenic nuclide lab facilities are open for use by collaborators on select projects. Contact me by e-mail for information.

Materials Characterization Labs: We have facilities for isolating other minerals, besides quartz; of particular interest to us at the moment is apatite, for detrital thermochronometry. We also boast a cottage industry in the geochemical analysis of soils and rock using XRF and XRD; this supports our quest for a quantitative understanding of weathering, erosion, and soil development in landscapes.

Current Funding


In my courses I challenge students to identify, understand, and quantify the chemical and physical processes that shape landscapes, generate soils, and modify water quality. My teaching approach emphasizes a mechanistic understanding of Earth systems, including hands-on field components and readings from current research whenever appropriate. Central in my teaching philosophy is the development of problem-solving skills and critical thinking abilities. Whenever possible, I include exercises based on my experience as an industry consultant – the goal is to help prepare our geology and geophysics graduates as best I can for the real-world problems they will face throughout their careers.

Recent courses:


Citation statistics: [click here to open Google Scholar Author Site]

* denotes student under my direct supervision; ◊ denotes student collaborator

Overstreet, B. T.*, Riebe, C. S., Wooster, J. K., Sklar, L. S., Bellugi, D. Gauging the capacity of salmon spawning substrates. (in review)

Riebe, C. S., Sklar, L. S., Lukens, C. E.*, Shuster, D. L. Climate and topography control the size and flux of sediment produced on steep mountain slopes. (in review)

Riebe, C. S., Hahm W. J.*, Brantley S. L. Going deep to quantify limits on weathering in the Critical Zone. Earth Surface Processes and Landforms. (in review)

Dixon, J. L., Riebe, C. S., Tracing and pacing soil across slopes. Elements. 10(5):363-368. [Article Website]

Hahm W. J.*, Riebe, C. S., Lukens, C. E.*, Araki, S.* 2014. Bedrock composition regulates mountain ecosystems and landscape evolution. Proceedings of the National Academy of Sciences. 111:3207-3212. doi: 10.1073/pnas.1315667111 [Article Website]

Riebe, C. S., Sklar, L. S., Overstreet, B. T.*, Wooster, J. K. 2014. Optimal reproductive potential in salmon spawning substrates linked to grain size and fish length. Water Resources Research 50:898–918. doi: 10.1002/2013WR014231 [Article Website]

Holbrook, W. S., Riebe, C. S., Elwaseif, M., Hayes, J. L.◊, Harry, D. L., Basler-Reeder, K., Malazian, A., Dosseto, A., Hartsough, P. C. & Hopmans, J. W. 2014. Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory. Earth Surface Processes and Landforms 39: 366-380. doi: [Article Website]

Granger, D. E. & Riebe, C. S. 2014. Cosmogenic Nuclides in Weathering and Erosion. In: "Treatise on Geochemistry, Volume 7: Surface and Ground Water, Weathering, and Soils." J. I. Drever (editor) Elsevier, London. 2nd edition: 401-436 [PDF reprint]

Riebe, C. S. & Granger D. E. 2013. Quantifying effects of deep and near-surface chemical erosion on cosmogenic nuclide buildup in soils, saprolite and sediment. Earth Surface Processes and Landforms 38:523-533. doi: 10.1002/esp.3339 [PDF reprint]

Jessup, B. S.*, Hahm, W. J.*, Miller, S. N., Kirchner, J. W. & Riebe, C. S. 2011. Landscape response to tipping points in granite weathering: The case of stepped topography in the Southern Sierra Critical Zone Observatory. Applied Geochemistry 26 (Supplement 1): S48-S50. [PDF reprint]

Brantley, S. L. & 28 others. 2011. Twelve Testable Hypotheses on the Geobiology of Weathering. Geobiology. DOI: 10.1111/j.1472-4669.2010.00264.x [PDF reprint]

Ferrier, K. L., Kirchner, J. W., Riebe, C. S. & Finkel, R. C. 2010. Mineral-specific chemical weathering rates over millennial timescales: Measurements at Rio Icacos, Puerto Rico. Chem. Geol. 277:101-114. [PDF reprint]

Granger, D. E. & Riebe, C. S. 2007. Cosmogenic Nuclides in Weathering and Erosion. In "Treatise on Geochemistry, Volume 5: Surface and Ground Water, Weathering, and Soils." J. I. Drever (editor). Elsevier, London. [PDF reprint]

Riebe, C. S., Kirchner, J. W. & Finkel. R. C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224:547–562. [PDF reprint]

Riebe, C. S., Kirchner, J. W. & Finkel, R. C. 2004. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet. Sci. Lett. 218:421–434. [PDF reprint]

Riebe, C. S., Kirchner, J. W., Finkel, R. C. 2003. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim. Cosmochim. Acta 67:4411–4427. [PDF reprint]

Riebe, C. S., Kirchner, J. W. & Granger, D. E. 2001. Quantifying quartz enrichment and its consequences for cosmogenic measurements of erosion rates from alluvial sediment and regolith. Geomorphology 40:15–19. [PDF reprint]

Riebe, C. S., Kirchner, J. W., Granger, D. E., Finkel, R. C. 2001. Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology 29:511–514. [PDF reprint]

Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L. & Megahan, W. F. 2001. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29:591–594. [PDF reprint]

Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. 2001. Minimal climatic control of erosion rates in the Sierra Nevada, California. Geology 29:447–450. [PDF reprint]

Granger, D. E., Riebe, C. S., Kirchner, J. W., Finkel & R. C. 2001. Modulation of erosion on steep granitic slopes by boulder armoring, as revealed by cosmogenic 26Al and 10Be. Earth Planet. Sci. Lett. 186:269–281. [PDF reprint]

Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. 2000. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26Al and 10Be in alluvial sediment. Geology 28:803–806. [PDF reprint]

Share This Page:

1000 E. University Ave. Laramie, WY 82071
UW Operators (307) 766-1121 | Contact Us | Download Adobe Reader

Twitter Icon Youtube Icon Instagram Icon Vimeo Icon Facebook Icon

Accreditation | Emergency Preparedness | Employment at UW | Gainfull Employment | Privacy Policy | Accessibility Accessibility information icon