Capsaicin triggers brown remodeling of white adipocytes to antagonize diet-induced obesity

Baskaran Thyagarajan, Vivek Krishnan, Jun Ren, and Padmamalini Baskaran

School of Pharmacy, University of Wyoming, Laramie, WY 82071

Recent research provides evidence for browning of white (BRITE) adipocytes is a novel mechanism to counteract obesity. The molecular mechanism of brown remodeling of white adipose tissue (WAT) is tightly regulated by the protein machinery, which consists of sirtuin-1 (SiRT-1), PR domain zinc finger protein 16 (PRDM-16) and peroxisome proliferator-activated receptor gamma (PPARgamma). SiRT-1 deacetylates PPARgamma and stabilizes the interaction between PPARgamma and PRDM-16 to cause browning of WAT. Here we evaluated the hypothesis that capsaicin, an agonist of transient receptor potential vanilloid 1 (TRPV1), inhibited high fat diet induced obesity by inducing browning of WAT. Capsaicin increased the expression of brown fat specific thermogenes, PGC-1alpha, uncoupling protein-1 (UCP-1) and bone morphogenetic protein b8 (BMP8b) in the subcutaneous and brown fat pads of wild type mice. Capsaicin increased the expression of SiRT-1 and PRDM-16 in these fat pads and triggered SiRT-1-dependent deacetylation of PPARgamma to facilitate PPARgamma-PRDM-16 interaction, which we determined by coimmunoprecipitation technique. Capsaicin also increased the respiratory coefficient, heat production and locomotor activity of wild type mice. These effects of capsaicin are associated with a decrease in body weight gain. Capsaicin feeding did not modify the amount of food or water consumed by either wild type or TRPV1−/− mice. Further, capsaicin prevented lipid accumulation in the adipocytes and prevented hepatic steatosis in wild type mice. The anti-obesity action of capsaicin was only observed in the wild type mice but not in TRPV1−/− mice suggesting that capsaicin exerts its effects by activating TRPV1. In conclusion, our data unambiguously demonstrate that capsaicin ablates high fat diet-induced obesity by stimulating metabolism through browning of WAT.
Atherosclerosis Thrombosis and Vascular Biology conference abstract was presented as a podium talk during the ATVB annual meeting held in San Francisco, CA 07-11, May 2015. This abstract was chosen as one of the best 10 abstracts and I was asked to present it at the American Heart Association Conference held in November 2015 at Orlando, FL.