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Abstract. We present a particle method for studying a quasilinear partial dif-

ferential equation (PDE) in a class proposed for the regularization of the Hopf

(inviscid Burger) equation via nonlinear dispersion-like terms. These are ob-
tained in an advection equation by coupling the advecting field to the advected

one through a Helmholtz operator. Solutions of this PDE are “regularized” in

the sense that the additional terms generated by the coupling prevent solution
multivaluedness from occurring. We propose a particle algorithm to solve the

quasilinear PDE. “Particles” in this algorithm travel along characteristic curves

of the equation, and their positions and momenta determine the solution of the
PDE. The algorithm follows the particle trajectories by integrating a pair of

integro-differential equations that govern the evolution of particle positions and

momenta. We introduce a fast summation algorithm that reduces the compu-
tational cost from O(N2) to O(N), where N is the number of particles, and
illustrate the relation between dynamics of the momentum-like characteristic
variable and the behavior of the solution of the PDE.

1. Introduction. Consider the quasilinear partial differential equation (PDE)

mt + umx = 0, m = u− α2uxx, α > 0. (1)

We refer to the above equation as the Helmholtz-regularized Hopf equation. The
equation is the b = 0 member of the b-family

mt + umx + b uxm = 0, m = u− α2uxx, α > 0, (2)

described in [7]. The present paper will focus only on equation (1), the b = 0 case.
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With the definition of the one dimensional Helmholtz operator as

H = 1− α2∂xx, (3)

and its Green’s function, one can represent the solution of equation (1) u in terms
of m as

u(x, t) =
1

2α

∫ ∞
−∞

e−|x−y|/αm(y, t)dy. (4)

The Leray-type [10] smoothed velocity u has been recently proposed for its role of
regularizing the inviscid Burgers (Hopf) equation.

ut + uux = 0. (5)

With nonzero viscosity, the Burgers equation

ut + uux = νuxx (6)

is the simplest model combing the nonlinear propagation effect and the diffusive
effect, while its inviscid version for ν = 0, also known as Hopf equation, is the
simplest model of shock forming hyperbolic equation. In [11, 12], attempts were
made to compare regularization effects induced by the viscosity and the filtered
velocity (4).

It is well-known that one can study the Burgers equation to determine the physi-
cally relevant solutions of the Hopf equation. The regularized Burgers equation (1),
written in the form

ut + uux = α2 (uxxt + uuxxx) , (7)

is a quasilinear equation that consists of the Hopf equation plus O(α2) nonlinear
terms. An approach, similar to that for the Burgers equation, is proposed (see,
e.g., [1]) to show that solutions of this equation converge strongly to physically
relevant weak solutions of the Hopf equation (5) as α→ 0, provided the initial data
u(0, x) are in a suitable function space. Thus, equation (7) has been proposed as an
alternative to Burgers equation (5) in this respect. Part of the interest in studying
this particular class of regularizations stems from the fact that, unlike its Burger
counterpart, it can be endowed with interesting mathematical structures [7] shared
with the rest of the family (2).

It is worth noting that in the absence of either of the two terms on the right
hand site of (7), the equation becomes

ut + uux = α2uuxxx, (8)

or
ut + uux = α2uxxt . (9)

Both of these are dispersive equations (as linearization around a constant solution
readily shows) and have zero-dispersion limits. One can expect that high-frequency
oscillation will occur when α is small. However, when the two third derivative terms,
uuxxx and uxxt, appear together in equation (7), the delicate balance between the
two terms will cancel the high-frequency oscillation expected to arise in passing to
the zero-dispersion limits. For most numerical schemes, certain care is required to
discretize the two third-order terms in order to achieve a higher-order accuracy,
while maintaining the delicate balance of the two terms. A dispersion-relation-
preserving scheme is developed in [6] that maintains the balance between the two
dispersive terms and is suitable to study the long-time solution behavior of equation
(7). The study in this paper, however, takes a different route by developing a particle
method that avoids any discretization of the spatial derivative terms in equation
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(7). “Particles” in this algorithm travel along characteristic curves of the equation,
and their positions and momenta determine the solution of the PDE. The algorithm
follows the particle trajectories by integrating a pair of integro-differential equations
that govern the evolution of particle positions and momenta. The particle method
is a self-adaptive algorithm, since particles normally cluster in areas with sharp
gradients. The particle method reveals dynamics of particle position and momenta,
which sheds light on solution behaviors of the PDE we study. Such a special feature
distinguishes the particle method from Eulerian methods.

The rest of the paper is organized as follows. In Section 2, we define the char-
acteristic variables and derive the evolution (integro-differential) equations for the
characteristic variables. We introduce a finite dimensional particle system in Section
3 by discretizing the integro-differential equations. We derive an implicit analytic
solution for a special case of two-particle dynamics, the particle-antiparticle colli-
sion, which, although very simple, is remarkably informative on the trend of PDE
solutions with more general initial conditions. We verify the particle method in Sec-
tion 4 by comparing the numerical solution of the particle-antiparticle collision with
the implicit exact solution. Then we present an example with an initial condition
that is a Gaussian hump. We introduce a fast summation algorithm that reduces
the computational cost from O(N2) to O(N), where N is the number of particles.
Using these more general initial data, we verify the proposed method by comparing
our numerical solution with the solution computed by a two-step iterative method.
Finally, we illustrate the relation between dynamics of the momentum-like charac-
teristic variable and solution behaviors of the PDE.

2. Characteristic variables. In this section we introduce a particle method for
the regularized Burgers equation (1) following the one proposed in [3] (and studied
extensively in, e.g., [4, 5, 6, 8, 9]) for a shallow water equation that shares a similar
structure. By introducing the characteristics variable (curve)

x = q(ξ, t), q(ξ, 0) = ξ, (10)

equation (1) is equivalent to

dm

dt
= ṁ = 0, q̇ = u(q, t), (11)

where the material (total) derivative is defined as

d

dt
=

∂

∂t
+ u

∂

∂x
. (12)

Equation (11) suggests that the variable m is a constant along the characteristic
curve, or

m(q, t) = m0(ξ). (13)

Equations (11) and (4) imply that

q̇ =
1

2α

∫ ∞
−∞

e−|q(ξ,t)−q(η,t)|/αm0(η)qη(η, t)dη. (14)

Defining an auxiliary variable

p(η, t) ≡ m0(η)qη(η, t), (15)



4 ROBERTO CAMASSA, PAO-HSIUNG CHIU, LONG LEE AND TONY W.-H. SHEU

taking a time derivative about the above equation, and using equation (14) yields
the evolution equation

ṗ = − 1

2α2

∫ ∞
−∞

sgn(q(ξ, t)− q(η, t))e−|q(ξ,t)−q(η,t)|/α

m0(ξ)qξ(ξ, t)m0(η)qη(η, t)dη.

(16)

Equations (14), (15), and (16) yield a pair of continuous evolution equations for p
and q:

q̇(ξ, t) =
1

2α

∫ ∞
−∞

e−|q(ξ,t)−q(η,t)|/αp(η, t)dη,

ṗ(ξ, t) = − 1

2α2

∫ ∞
−∞

sgn(q(ξ, t)− q(η, t))e−|q(ξ,t)−q(η,t)|/αp(ξ, t)p(η, t)dη.
(17)

After solving the above evolution equation, solutions of the PDE (1) u are found by

u(x, t) =
1

2α

∫ ∞
−∞

e−|x−q(η,t)|/αp(η, t)dη. (18)

Here the characteristic q(ξ, t) plays the role of positions conjugate to the momentum-
like variable p(ξ, t). The initial conditions for p(ξ, t) and q(ξ, t) are

q(ξ, 0) = ξ, p(ξ, 0) = m0(ξ). (19)

The choice of initial condition for the position variable, dictated by the character-
istics condition, implies qξ(ξ, 0) = 1, so that the constraint, obtained from equation
(15),

qξ(ξ, t) =
p(ξ, t)

p(ξ, 0)
, (20)

is maintained at all times of existence of the solution (q(ξ, t), p(ξ, t)). Thus, the mo-
mentum variable p(ξ, t) could be eliminated from the system to obtain an evolution
equation containing only the dependent variable q(ξ, t) and its first derivative with
respect to the initial label ξ. Vanishing of this derivative generically corresponds
to crossing of characteristics curves, with loss of uniqueness of solutions ξ(x, ·) to
the equation x = q(ξ, ·) that defines the characteristic map. Constraint (20) can
then be used to show that if the initial condition p(ξ, 0) is bounded, then qξ(·, t) is
bounded away from zero, thereby preventing characteristics from crossing, as long
as p(·, t) does not have zeros.

We argue, by contradiction, that for a finite ξ the derivative qξ cannot vanish
in any finite time, provided the initial data p(ξ, 0) 6= 0. Suppose that t = T is the
first time when crossing of characteristics occurs. Let Ξ be the location from which
this curve emanates at t = 0. That is, qξ(Ξ, T ) = 0, and qξ(ξ, t) 6= 0 for all finite ξ
and 0 < t < T . For simplicity, suppose that p(ξ, 0) is sign definite and p(ξ, 0) > 0;
definition (20) then implies that qξ(ξ, t) > 0 for t ≤ T , as long as p(ξ, t) > 0 for
t ≤ T . If we can show that p(ξ, t) > 0 for t ≤ T , then we have the contradiction.
To show this, let the kernel in equation (4) be

G(ξ, η) ≡ 1

2α
e−|q(ξ,t)−q(η,t)|/α, (21)

where α > 0. Since 0 < G(ξ, η) ≤ 1
2α , the q̇ equation satisfies the inequality

q̇(ξ, t) ≤ 1

2α

∫ ∞
−∞

p(η, t)dη ≡ 1

2α
P, (22)
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where

P =

∫ ∞
−∞

p(η, t)dη. (23)

By Gronwall’s inequality, it follows that

q(ξ, t) ≤ 1

2α
Pt+ ξ (24)

for all characteristic initial conditions ξ ∈ R, and times t ≤ T .
We now argue that p(ξ, t) > 0 for 0 ≤ t ≤ T . For the time period 0 ≤ t ≤ T , the

sign definiteness of p(·, t) and the ṗ equation in (17) imply

ṗ(ξ, t) ≥ −p(ξ, t)
∫ ∞
−∞

G(ξ, η)p(η, t)dη, (25)

or
ṗ(ξ, t)

p(ξ, t)
≥ −q̇(ξ, t), (26)

by the q̇ equation in (17). Using Gronwall inequality again, we obtain

p(ξ, t) ≥ p(ξ, 0)e−q(ξ,t)+ξ ≥ p(ξ, 0)e−
1
2αP > 0 (27)

for all 0 ≤ t ≤ T . This contradicts qξ(Ξ, T ) = 0.
Contradiction could be resolved by failure of the assumption qξ < ∞ for t ≤ T :

Suppose that there could exist a time T1 < T and a point ξ̂ such that qξ(ξ̂, T1) =∞.
At this time, since

1

qξ(ξ, t)
=
p(ξ, 0)

p(ξ, t)
, (28)

where p(ξ, 0) is sign definite, p(ξ, t) could change sign. Thus, qξ could change sign.
However, it is easy to show that p(ξ, t) < ∞, and hence qξ(ξ, t) < ∞ by (20). In
fact, similar to (25), for the time interval 0 ≤ t ≤ T ,

ṗ(ξ, t) ≤ p(ξ, t)
∫ ∞
−∞

G(ξ, η)p(η, t)dη, (29)

or
ṗ(ξ, t)

p(ξ, t)
≤ q̇(ξ, t). (30)

By Gronwall’s inequality, we obtain

p(ξ, t) ≤ p(ξ, 0)eq(ξ,t)−ξ ≤ e 1
2αP <∞, (31)

for all ξ and 0 ≤ t ≤ T . This contradicts qξ(ξ̂, T1) =∞.

3. Finite dimensional particle system. The integrals in system (17) can be ap-
proximated by their Riemann sums, thereby yielding discrete systems for “particles”
with coordinates

qi(t) ≡ q(ξi, t) (32)

and momenta
pi(t) ≡ p(ξi, t), (33)

where ξi = Ξ + ih for some real Ξ, step-size h > 0 and i = 1, · · · , N . The dis-
cretized version of the system results in the finite dimensional dynamical system of
N particles,

q̇i =
h

2α

N∑
j=1

e−|qi−qj |/αpj , ṗi = − h

2α2
pi

N∑
i 6=j=1

sgn(qi − qj)e−|qi−qj |/α pj . (34)
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System (34) constitutes our particle method for solving the regularized equation (7).
Solution of the PDE are found by

u(x, t) =
h

2α

N∑
j=1

e−|x−qj |/αpj , (35)

which is often referred to as “peakon” superposition in the literature.

3.1. Two-particle dynamics. Substituting the scaled variables q∗, p∗, x∗, t∗, and
u∗ into system (34) and equation (35), where

q∗ =
q

α
, p∗ =

q

α
, x∗ =

x

α
, t∗ =

2

h

t

α
, u∗ =

2

h
u, (36)

yields (drop ‘∗’, herein and after)

q̇i =

N∑
j=1

pje
−|qi−qj |, ṗi = −pi

N∑
j=1,j 6=i

pjsgn(qi − qj)e−|qi−qj |, (37)

and

u(x, t) =

N∑
j=1

e−|x−qj |pj . (38)

The scaled system of evolution equations (37) corresponds to the case α = 1 in the
PDE (7)

u+ uux = uxxt + uuxxx. (39)

It is worth noting that making use of spacial and temporal scalings we can find
solutions of equation (7) from equation (39). That is, given a solution u(x, t) of
(39), the solution of (7) ũ(x, t) can be found by

ũ(x, t) = u

(
x

α
,
t

α

)
. (40)

We now study the dynamics of two particles (N = 2) for the evolution equations
(37). Suppose that two particles are initially well separated and have speeds c1 and
c2, with c1 > c2, and c1 > 0, so that they collide. Define the new variables

P = p1 + p2, Q = q1 + q2,

p = p1 − p2, q = q1 − q2,
(41)

which obey the equations

Ṗ = 0, Q̇ = P
(

1 + e−|q|
)
,

ṗ = −1

2

(
P 2 − p2

)
sgn(q)e−|q|, q̇ = p

(
1− e−|q|

)
.

(42)

Consider the special case P ≡ 0 (p1 = −p2 at all times). Equation (42) becomes

ṗ =
p2

2
sgn(q)e−|q|,

q̇ = p
(

1− e−|q|
)
.

(43)

Equation (43) implies

dp

dq
=
p

2

sgn(q)e−|q|

1− e−|q|
. (44)
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Solving equation (44), we obtain

p = ±C
√

1− e−|q|, (45)

for some constant C > 0. Substituting equation (45) into the the q̇ equation in
(43), we obtain

dq(√
1− e−|q|

)3 = ±Cdt. (46)

Considering the case q < 0 for some t and letting u ≡ e−|q|, we integrate equation
(46) to obtain

2√
1− u

+ log

[
1−
√

1− u
1 +
√

1− u

]
= ±C(t− t0), (47)

for some t0. Hence an implicit expression of the solution q is given by(
1−
√

1− e−|q|

1 +
√

1− e−|q|

)
e

2√
1−e−|q| = e±C(t−t0). (48)

Note that equation (48) implies when q → 0−,

2√
1− eq

∼ C(t− t0), (49)

or

q ∼ log

[
1− 4

C2(t− t0)2

]
. (50)

Equation (50) suggests that, in the course of particle and antiparticle collision,
q → 0 at the rate of O(t−2), when t → ∞. On the other hand, equation (45)
implies that p→ 0 at the rate of O(t−1), when t→∞.

4. Numerical investigation. The particle algorithm based on system (34) can
be readily implemented numerically with an appropriate ODE integrator. A simple
test of its performance is provided by the two particle (or peakon) collision case
itself.

4.1. Particle-antiparticle collision. Consider the initial data

u(x, 0) = e−|x+2| − e−|x−2|, (51)

for which p1 = 1, p2 = −1, q1 = −2, and q2 = 2. This implies that the initial data
for p and q in the evolution equations (43) are p = 2 and q = −4. Substituting
the initial p and q into equation (45) and (48), we obtain C ∼ 2.018571138566857
and t0 ∼ 1.663801583149832. Therefore, when t = 1, we solve equations (45) and
(48) to obtain q ∼ 2.1436607474 and p ∼ 1.89657093400691, which implies q1 ∼
−1.0718303737, q2 ∼ 1.0718303737, p1 ∼ 0.9482854670, and p2 ∼ −0.9482854670.
In Figure 1, we solve the evolution equation (37) with the initial momenta p1 = −1,
p2 = 1, and particle positions q1 = −2, q2 = 2. The final times of the calculation
are: (a) t = 1, (b) t = 3. Solutions of the PDE (39) u are found by equation
(38) with 8001 grid points (xi, i = 1 · · · 8001) in the domain [−8, 8]. The time
integrator is a fourth-order Runge-Kutta method. Our numerical solutions confirm
that pi and qi computed from the evolution equations (37) are identical to those
computed from the exact expressions (45) and (48), within fourteen decimal digits
(machine precision). We summarize the calculation in Table 1.
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Figure 1. An example of perfectly antisymmetric particle-
antiparticle collision. The final times of the calculation are: (a)
t = 1, (b) t = 3.

t = 1 t = 3
p1 = 0.9482854670, p2 = −p1 p1 = 0.5244565921, p2 = −p1
q1 = −1.0718303737, q2 = −q1 q1 = −0.1573669575, q2 = −q1

Table 1. Computed pi and qi in the example of perfectly anti-
symmetric particle-antiparticle collision.

4.2. Gaussian disturbance initial data. Next, we validate the particle method
on the case of the initial condition corresponding to a Gaussian disturbance

u0 =
1

5
√
π

exp

(
−
(
x− 50

w

)2
)
, (52)

where w is related to the initial width of the Gaussian disturbance. We choose
w = 20 and α = 1. Figure 2(a) compares the evolution results by using the
proposed particle method and the two-step iterative algorithm developed in [6] for
the solutions at the final time t = 300 and t = 600. As demonstrated by the figures,
to within graphical accuracy the two independent numerical methods are identical.
The simulations are performed using particle number (grid cells) N = 10000 in the
domain [−50, 150]. In Figure 2(b), we show particle trajectories of about 50 particles
in the (x, t) plane. The formation of the sharp gradient (quasi-shock) in Figure 2(a)
is associated with the particle clustering in Figure 2(b). The clustering process
acts as a high particle-density front sweeping through the computational domain.
This front corresponds to the trailing edge of a quasi-shock wave leaving behind
a rarefaction wave. As a consequence of the particle clustering, we implement a
redistribution algorithm to prevent two particles from occupying one location at
any finite time: when two particles, with positions qi and qi+1, are too close to be
distinguished within machine precision, we replace them with one particle at the
same location carrying a momentum equal to the sum of pi and pi+1. After we
carry out this replacement, we relabel the rest of the particles from the original
i + 2, . . . , N/2 to i + 1, . . . , N/2 − 1. The end result is to reduce the dimension
of the system of ordinary differential equations (ODEs) from 2N to 2N − 2 by
combining any two clustering particles. Of course, this method is somewhat crude,
as this process of replacement depletes the total number of particles. While it is not
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too difficult to implement a true redistribution that conserves particles, we leave
this out for simplicity. The redistribution algorithm results in the following fast
summation algorithm.

(a)
−50 0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

initial data
particle, t=300
            t=600
two−step,  t=300
               t=600

(b)
−50 0 50 100 150
0

100

200

300

400

500

600

particle positions

tim
e

Figure 2. (a) Comparison of the evolution results between the
particle method and the two-step iterative algorithm developed in
[6] for the solutions at the final time t = 300 and t = 600. (b)
Particle trajectories of about 50 particles in the (x, t) plane. The
formation of the sharp gradient (quasi-shock) in (a) is associated
with the particle clustering in (b).

4.3. Fast summation algorithm. The redistribution algorithm prevents particle
collision. Without particle collision, we strip the absolute value notation in the
power of the exponential function, which in turn makes a recursion relation for
evaluating the sums possible. With the help of this recursion formula, the total
operations needed for performing the summation is reduced to O(N) for the N -
particle system. Because particles do not collide, the particle method (34) has
qi > qj if i > j and vice-versa if i < j. Hence equation (34) can be written as

q̇i =
h

2α

(i−1∑
j=1

e−(qi−qj)/αpj + pi +

N∑
j=i+1

e−(qj−qi)/αpj

)
,

ṗi = − h

2α2
pi

(i−1∑
j=1

e−(qi−qj)/αpj −
N∑

j=i+1

e−(qj−qi)/αpj

)
.

(53)

Define new variables:

f li =

i−1∑
j=1

e−(qi−qj)/αpj , fri =

N∑
j=i+1

e−(qj−qi)/αpj . (54)

Equation (53) then becomes

q̇i =
h

2α

(
f li + pi + fri

)
, ṗi = − h

2α2
pi
(
f li − fri

)
. (55)

One can see that with a pre-computed f l and fr the number of operations needed for
the Riemann sum is O(N) for the N ×N system of equations. Since the operations
required for f l or fr are also growing as O(N), the total number of operations is
O(N).
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We now establish the recursion relation for f l and fr:

f li+1 =

i∑
j=1

e−(qi+1−qi)/αpj

=

i−1∑
j=1

e−(qi+1−qj)/αpj + e−(qi+1−qi)/αpi

=

i−1∑
j=1

e−(qi+1−qi)/α−(qi−qj)/αpj + e−(qi+1−qi)/αpi

= e−(qi+1−qi)/α
(i−1∑
j=1

e−(qi−qj)/αpj + pi

)
= e−(qi+1−qi)/α

(
f li + pi

)
.

(56)

Similarly,
fri+1 = e−(qi−qi+1)/αfri − pi+1. (57)

Because e−(qi−qi+1)/α leads to an exponential growth, for numerical stability the
recursion relation for fr is better solved backward as

fri =
(
fri+1 + pi+1

)
e−(qi+1−qi)/α. (58)

4.4. Dynamics of momentum-like variable. In the paper [6], we demonstrate
that for smooth nearly square-wave initial data,

u0(x) =
1

2

(
tanh

(
x+ 15

w

)
− tanh

(
x− 15

w

))
, (59)

where w is related to the width of the profile of the hyperbolic tangent function, the
regularized Burger equation (7) exhibits markedly different behavior from the corre-
sponding Hopf equation, for an arbitrary small α. The mechanism of such solution
behavior is appreciated when looking at the finite dimensional dynamical system
of the particle method. Figure 3(a) shows the velocity u of the nearly square-wave
initial data with w = 0.1, while Figure 3(b) is the initial condition of the momentum-
like variable p. The initial distribution of p exhibits an “antiparticle-particle” struc-
ture on the left and a “particle-antiparticle” structure on the right. We show in [6]
that when the initial distribution of p is associated with the “antiparticle-particle”
structure, the left region of the nearly square wave grows into a hump almost im-
mediately after the initial time. The amplitude of the hump depends on both w
and the parameter α. Our numerical experiments indicate that as w decreases or α
increases, the amplitudes of the humps also become larger. The mechanism of such
a growth is related to the magnitude of the second derivative of u, which increases
when w decreases. Hence, for a fixed α, no matter how small α is, m = u− α2uxx
departs significantly from u.

To investigate further the mechanism of such a growth, we consider the following
initial data

u0(x) = sech
( x
w

)
tanh

( x
w

)
, (60)

u0(x) = −sech
( x
w

)
tanh

( x
w

)
. (61)

The initial p distributions of equations (60) and (61) are reminiscent of the left and
right region of p in Figure 3(b), respectively.
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Figure 3. (a) The velocity u of the nearly square-wave initial
data with w = 0.1. (b) The initial condition of the momentum-like
variable p. The initial distribution of p exhibits a “antiparticle-
particle” structure on the left and a “particle-antiparticle” struc-
ture on the right.
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Figure 4. The evolution of the initial condition exhibits an
antiparticle-particle structure. (a) The evolution of the velocity
u. (b) The evolution of the momentum-like variable p.

Figure 4(a,b) show the evolutions of the velocity u and the momentum-like vari-
able p, respectively, with the initial data (60). The simulations show that with the
antiparticle-particle structure, the initial waves travel away from each other and
the magnitudes of the peaks grow and then decay, while the magnitude of the p-
variable continues to grow. The parameters α and w in the simulations are both
set to be one. Since the initial p is equal to m0 = u0 − α2u0xx, the growth of
amplitude depends on the magnitude of the second derivative of u initially, which
increases when w decreases, and on the parameter α. Hence when α increases, or
w decreases, the initial growth of the antiparticle-particle waves becomes more sig-
nificant. Such behavior distinguishes the regularization effect by the diffusion term
νuxx in the Burgers equation (6) from that by the third-order derivative terms
α(uuxxx + uxxt) in the regularized Burgers equation (7). For the diffusion term,
when ν increases, the amplitude of waves will be dissipated with time more notice-
ably, regardless of whether the initial condition is an antiparticle-particle wave or a
particle-antiparticle wave.
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Figure 5. The evolution of the initial condition exhibits a particle-
antiparticle structure. (a) The evolution of the velocity u. (b) The
evolution of the momentum-like variable p.

Figure 5 is the counterpart of Figure 4. The negative sign in the initial data
(61) turns the anitparticle-particle wave structure upside down. Such a particle-
antiparticle structure behaves similarly to the particle-antiparticle collision de-
scribed in Section 3.1. One can expect that both velocity and momentum approach
zero as time approaches infinity. Figure 5’s panels (a) and (b) show that both
amplitudes of the velocity u and the momentum-like variable p decay with time.

The implication of the above examples is that for the nearly square-wave initial
condition (59), in the limiting case when w → 0, the left edge of the wave (resembling
to the Riemann problem ul < ur) might grow indefinitely for any fixed α. Based
on a rescaling of the independent spatial variable with w, x̃ = x/w, so that the
Helmholtz operator becomes 1−α2/w2 ∂2x̃, one can see that a power law magnitude
orderings between w and α might exist, for which the time scale when solutions of
the regularized Burgers equation can be expected to behave like those of the Hopf
equation can be made arbitrarily large. On the other hand, for the right edge of the
nearly square-wave initial data (59), the particle-antiparticle example predicts that
since m decays, this edge (resembling to the Riemann problem ur < ul as w → 0)
does not exhibit any growth, and the solution appears to be smeared out around
the corners, just like solutions of the Burgers equation.

5. Conclusion. We introduce a particle algorithm for studying the regularized
Burgers equation. The equation consisting of the Hopf equation and two third-
order derivative terms is a model that regularizes the shock formation observed in
the Hopf equation. The small parameter α in front of the third-order derivative
terms is analog to the viscosity (diffusion coefficient) in the Burgers equation. We
illustrate that dynamics of the momentum-like variable p in the particle method
is related to solution behaviors of the PDE. When p has a particle-antiparticle
structure (resembling to shock waves in the Hopf equation), solutions of the regu-
larized Burgers equation behave like the particle-antiparticle collision. Namely, p
approaches to zero as time approaches to infinity, and the wave amplitude decreases
with time. On the contrary, when p has an antiparticle-particle structure (resem-
bling to rarefaction waves in the Hopf equation), the wave amplitude first grows



PARTICLE METHOD AND HELMHOLTZ REGULARIZATION 13

and then decays 1. Such behavior is different from that of the Burgers equation,
where viscosity dissipates both shock waves and rarefaction waves immediately.
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