The p-rank of the $Sp(4,p)$ Generalized Quadrangle

D. de Caen1 and G. E. Moorhouse2

Abstract. We determine the p-rank of the point-line incidence matrix of the generalized quadrangle of type $Sp(4,p)$ where p is prime.

Keywords: p-rank, generalized quadrangle

1. Introduction

Let P be a finite generalized quadrangle of order s (i.e. with parameters $s = t$), and let N be a point-line incidence matrix of P. Thus N is a square $(0,1)$-matrix of size $(s^2+1)(s+1)$, and

$$NN^\top = (s + 1)I + A,$$

where A is the adjacency matrix of the collinearity graph of P. We recall that the latter graph is strongly regular and

$$A^2 = s(s+1)I + (s - 1)A + (s+1)(J - I - A)$$

where J is the all-1 matrix, from which we find that A has eigenvalues $s(s + 1)$, $s - 1$, $-s - 1$ with multiplicities 1, $\frac{1}{2}s(s + 1)^2$, $\frac{1}{2}s(s^2 + 1)$ respectively, and NN^\top has eigenvalues $(s + 1)^2$, $2s$, 0 with these same multiplicities. This proves

1.1 Lemma. $\text{rank}_Q N = \frac{1}{2}s(s + 1)^2 + 1$. In particular, $\text{rank}_K N \leq \frac{1}{2}s(s + 1)^2 + 1$ for any field K.

We are interested in a determination of $\text{rank}_F N$ for a finite classical GQ (i.e. one of type $Sp(4,F)$; or its dual, of type $O(5,F)$), which is to say, the rank of N in the natural characteristic. In this direction, Sastry and Sin [6] have obtained

$$\text{rank}_2 N = 1 + \left(1 + \sqrt{17}/2\right)^{2e} + \left(1 - \sqrt{17}/2\right)^{2e}$$

for every classical GQ of order $q = 2^e$. Our main result, proved in Section 3, is that for classical GQ’s of prime order, the upper bound of Lemma 1.1 is attained:

1 Dept. of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada.

2 Dept. of Mathematics, University of Wyoming, Laramie WY, U.S.A.
1.2 Theorem. If N is the incidence matrix of a generalized quadrangle of type $Sp(4,p)$ or $O(5,p)$ where p is prime, then $\text{rank}_p N = \frac{1}{2}p(p+1)^2 + 1$.

We remark that for classical GQ’s of odd order q, Bagchi, Brouwer and Wilbrink show that

$$\text{rank}_2 N = \frac{1}{2} q(q+1)^2 + 1;$$

see [1, Thm.9.4(ii)]. Note that this is the rank in characteristic 2 rather than the natural characteristic. It is therefore reasonable to expect that for a classical GQ of prime order p, the invariant factors of N should probably consist of $\frac{1}{2}p(p+1)^2+1$ ones and $\frac{1}{2}p(p^2+1)$ zeroes; and this we have verified for $p = 2, 3, 5$ by computer.

We remark that the incidence matrices of nonclassical objects typically have higher rank (in the natural characteristic) than their classical counterparts. For example, one nonclassical GQ of order 8 is known, denoted $T_2(O)$ where O is the essentially unique oval in $PG(2,8)$ other than a conic; see [7, p.393]. Its 2-rank is 310, which lies between 298 (the 2-rank of the $Sp(4,8)$ quadrangle) and 325, the upper bound of Lemma 1.1.

No nonclassical GQ’s of odd order are known. If a nonclassical GQ of odd prime order p exists, which seems unlikely, its p-rank cannot exceed that of a classical GQ of the same order.

2. Polynomials

(DOM: HERE I GIVE MORE GENERAL NOTATION AND RESULTS THAN REQUIRED IN SECTION 3, ANTICIPATING A GENERALIZATION OF THEOREM 1.2 TO PRIME POWERS)

Following the notation of [2] and [5], let

- $X = (X_0, X_1, \ldots, X_n)$, an $(n+1)$-tuple of indeterminates $(n \geq 1)$;
- F a finite field of order $q = p^e$;
- $F[X]$ the ring of polynomials in X_0, X_1, \ldots, X_n with coefficients in F;
- $F_d[X]$ the d-homogeneous component of $F[X]$.

Thus $\dim F_d[X] = \binom{n+d}{n}$. Let $\ell(X) = a_0X_0 + a_1X_1 + \cdots + a_nX_n \in F_1[X]$ where $a_k \in F$, and for a fixed exponent $d \geq 0$, consider the multinomial expansion

$$\ell(X)^d = \sum_i \binom{d}{i} a^i X^i$$
where the sum extends over all \((n+1)\)-tuples \(i = (i_0, i_1, \ldots, i_n)\) of nonnegative integers such that \(i_0 + i_1 + \cdots + i_n = d\). Here we abbreviate \(a^i := a_0^{i_0} a_1^{i_1} \cdots a_n^{i_n}\), \(X^i := X_0^{i_0} X_1^{i_1} \cdots X_n^{i_n}\), and the multinomial coefficient

\[
\binom{d}{i} := \binom{d}{i_0, i_1, \ldots, i_n} = \frac{d!}{i_0! i_1! \cdots i_n!}.
\]

Following [2] and [5], we let \(F^+_d[X]\) denote the subspace of \(F_d[X]\) spanned by all monomials \(X^i\) with \(i_0 + i_1 + \cdots + i_n = d\) such that the multinomial coefficient \(\binom{d}{i}\) is not divisible by \(p\). Thus the polynomials \(\ell(X)^d\) for \(\ell(X) \in F_1[X]\) clearly lie in \(F^+_d[X]\). By Lucas’ Theorem (see [2], [3] or [5]), \(\dim F^+_d[X] = \prod_k \binom{n+d_k}{n}\) where \(d = \sum_k d_k p^k\), \(0 \leq d_k \leq p - 1\). Although the following is not new (cf. [2, Cor.3.2]), for the sake of completeness we include a bare-bones proof here, modulo a few details found in [2].

2.1 Lemma. Let \(0 \leq d \leq q - 1\). The vector space \(F^+_d[X]\) is spanned by the polynomials \(\ell(X)^d\) for \(\ell(X) \in F_1[X]\). In particular for \(d \leq p - 1\), the polynomials \(\ell(X)^d\) span \(F_d[X]\).

Proof. Let \(V\) be the subspace of \(F^+_d[X]\) spanned by the polynomials \(\ell(X)^d\) for \(\ell(X) \in F_1[X]\). Then \(\dim V = p^{n+1} - \dim U\) where \(U\) is the vector space of all \(p^{n+1}\)-tuples \((c_a : a \in F^{n+1})\) with \(c_a = c_{a_0, a_1, \ldots, a_n} \in F\) such that \(\sum_a c_a(a_0 X_0 + a_1 X_1 + \cdots + a_n X_n)^d = 0\). Thus \((c_a)_a \in U\) iff

\[
0 = \sum_a c_a \sum_i \binom{d}{i} a^i X^i = \sum_i \binom{d}{i} \left[\sum_a c_a a^i \right] X^i.
\]

Thus \((c_a)_a \in U\) iff

\[
(2.1.1) \quad \sum_a a^i c_a = 0
\]

for all \(i = (i_0, i_1, \ldots, i_n)\) such that \(\binom{d}{i}\) is not divisible by \(p\). By the remarks above, the number of such \(i\) is given by \(\prod_k \binom{n+d_k}{n}\) where the \(d_k\) are the \(p\)-ary digits of \(d\), defined as above. Thus (2.1.1) is a linear system of \(\prod_k \binom{n+d_k}{n}\) equations in \(p^{n+1}\) unknowns \(c_a\). Since each \(i_k \leq d \leq q - 1\), the coefficient matrix of this linear system has full rank \(\binom{n+d}{n}\); see [2, Lemma 2.3]. Thus \(\dim U = p^{n+1} - \prod_k \binom{n+d_k}{n}\), whence \(\dim V = \prod_k \binom{n+d_k}{n}\) and \(V = F^+_d[X]\).

The following slight improvement of Lemma 2.1 will be useful later.
2.2 Corollary. Let $0 \leq d \leq q - 1$. The vector space $F_d[X]$ is spanned by the polynomials $\ell(X)^d$ for $\ell(X) \in F_1[X]$ of the form $\ell(X) = X_0 + a_1X_1 + a_2X_2 + \cdots + a_nX_n$, $a_k \in F$.

Proof. We use the well-known fact that

$$\sum_{\lambda \in F} \lambda^d = \begin{cases} 0, & 0 \leq d \leq q - 2; \\ -1, & d = q - 1. \end{cases}$$

In order to prove the corollary, it suffices to show that for $0 \leq d \leq q - 1$, the polynomial $f(X)^d$ is a linear combination of the polynomials $(X_0 + \lambda f(X))^d$ for $\lambda \in F$, where $f(X) = a_1X_1 + a_2X_2 + \cdots + a_nX_n$. Indeed

$$\sum_{\lambda \in F} \lambda^{q-1-d}(X_0 + \lambda f(X))^d = \sum_{\lambda \in F} \sum_{k=0}^{d} \binom{d}{k} \lambda^{q-1-k} X_k f(X)^{d-k}$$

$$= \sum_{k=0}^{d} \binom{d}{k} \left[\sum_{\lambda \in F} \lambda^{q-1-k} \right] X_k f(X)^{d-k} = -f(X)^d. \quad \square$$

3. Codes Spanned by Lines of $PG(3,p)$

We now specialize the notation of Section 2 to the case $n = 3$ and F is a field of prime order p. Let P_1, P_2, \ldots, P_N be the $N = (p^2 + 1)(p + 1)$ points of $PG(3,F)$. For every polynomial $f(X) \in F[X]$, all of whose homogeneous components have degree divisible by $p - 1$, the values $f(P_i)$ are well-defined and so we may define

$$\phi(f) := (f(P_1), f(P_2), \ldots, f(P_N)) \in F^N.$$

The code spanned by the (characteristic vectors of the) planes of $PG(3,F)$ is simply

$$C_2 := \langle \phi(1 - \ell(X)^{p-1}) : \ell(X) \in F_1[X] \rangle_F \leq F^N.$$

Note that for nonzero $\ell(X) \in F_1[X]$, the vector $\phi(1 - \ell(X)^{p-1})$ is the characteristic vector of the plane on which $\ell(X)$ vanishes. For $\ell(X) = 0$ we obtain $\phi(1) = (1, 1, \ldots, 1)$, which is the sum of the characteristic vectors of all planes. The code spanned by the lines is

$$C_1 := \langle \phi((1 - \ell(X)^{p-1})(1 - m(X)^{p-1})) : \ell(X), m(X) \in F_1[X] \rangle_F \leq F^N.$$

Note that if $\ell(X)$ and $m(X)$ are linearly independent, then the line on which they vanish simultaneously has characteristic vector $\phi((1 - \ell(X)^{p-1})(1 - m(X)^{p-1}))$. If $\ell(X)$ and $m(X)$ are linearly dependent, then the resulting vector $\phi((1 - \ell(X)^{p-1})(1 - m(X)^{p-1})) \in C_2 \subseteq C_1$.

4
It follows easily from Lemma 2.1 that the polynomials $(1 - \ell(X)p^{-1})(1 - m(X)p^{-1})$ span the space of polynomials

$$V := F \oplus F_{p-1}[X] \oplus F_{2p-2}[X].$$

Moreover, the map $\phi : V \rightarrow C_1$ is linear and surjective. Its kernel is $V_0 \oplus V_1 \oplus V_2 \oplus V_3$ where $V_k = (X_k^p - X_k)F_{2p-2}[X]$. Thus

$$\dim C_1 = 1 + \binom{p+2}{3} + \binom{2p+1}{3} - 4\binom{p+1}{2} = \frac{1}{6}(p+1)(5p^2 - 2p + 6),$$

in agreement with Hamada’s formula; see [3, Thm.4.8]. We remark that this argument shows that as an FG-module for $G = GL(n+1,p)$, C_1 has a filtration with quotients given by $F, F_{p-1}[X],$ and $F_{2p-2}[X]/F^\dagger_{2p-2}[X]$; this is because $F^\dagger_{2p-2}[X]$ is spanned by the monomials of degree $2p - 2$ divisible by some X_k^p.

We now prove Theorem 1.2, considering only a generalized quadrangle of type $Sp(4,p)$. (The GQ of type $O(5,p)$ is its dual.) We may choose

$$B(u,v) = u_0v_2 + u_1v_3 - u_2v_0 - u_3v_1$$

for our nondegenerate alternating bilinear form. The code spanned by the (characteristic vectors of the) totally isotropic lines with respect to B is $C := \phi(U)$ where $U \leq V$ is the subspace spanned by all polynomials of the form $(1 - \ell(X)p^{-1})(1 - m(X)p^{-1})$ such that the simultaneous zeroes of $\ell(X)$ and $m(X)$ form a totally isotropic line.

Order the monomials in $F[X]$ by graded reverse lex order (cf. [4]). This is the total order on monomials specified as follows. We have $X^i < X^j$ whenever $i_0 + \cdots + i_3 < j_0 + \cdots + j_3$. For monomials of the same degree, we have

$$X_0^i_0 X_1^i_1 X_2^i_2 X_3^i_3 < X_0^j_0 X_1^j_1 X_2^j_2 X_3^j_3 \iff \begin{cases} i_3 < j_3, & \text{or} \\ i_2 < j_2 & \text{or} \\ i_1 < j_1 & \text{or} \\ i_2 = j_2 & \text{or} \\ i_3 = j_3. & \end{cases}$$

For each nonzero polynomial $f(X)$, the initial monomial of $f(X)$, denoted $\text{Init}(f(X))$, is the largest monomial appearing in $f(X)$. Gaussian elimination shows that the dimension of U equals the number of initial monomials of the nonzero polynomials in U. Moreover since the kernel of $\phi : U \rightarrow C$ equals $U \cap (\sum_k V_k),$

$$\dim C = |\{\text{Init}(f(X)) : 0 \neq f(X) \in U, \text{Init}(f(X)) \text{ is not divisible by any } X_k^p\}|.$$

Clearly $F \oplus F_{p-1}[X] \subseteq U$, so that $\dim C \geq 1 + \binom{p+2}{3}$. In view of the upper bound given by Lemma 1.1, it suffices to find $\frac{1}{2}p(p+1)^2 + 1 - 1 - \binom{p+2}{3} = \frac{1}{6}p(p+1)(2p+1)$ monomials of degree $2p - 2$, none of which are divisible by any X_k^p, occurring as initial monomials of polynomials in U.

5
3.1 Lemma. The monomials $X_0^{j_0}X_1^{j_1}X_2^{j_2}X_3^{j_3}$ for $j_0 + \cdots + j_3 = 2p - 2$, $j_0 + j_2 \leq p - 1$, occur as initial monomials of polynomials in U.

Proof. Let $\alpha, \beta, \gamma \in F$. Then

$$\langle (-\alpha, 0, 1, \gamma), (\gamma, -1, 0, \beta) \rangle_F$$

is a totally singular line of $PG(3, p)$, equal to the set of common zeroes of

$$\ell(X) = X_0 + \gamma X_1 + \alpha X_2 \quad \text{and} \quad m(X) = \beta X_1 - \gamma X_2 + X_3.$$

Two applications of Corollary 2.2 show that

$$U \supseteq \langle [(X_0 + \gamma X_1) + \alpha X_2]^p - 1 [\beta X_1 + (X_3 - \gamma X_2)]^p - 1 : \alpha, \beta, \gamma \in F \rangle_F$$

$$= \langle (X_0 + \gamma X_1)^{i_0}X_1^{i_1}X_2^{i_2}(X_3 - \gamma X_2)^{i_3} : i_0 + i_2 = i_1 + i_3 = p - 1, \gamma \in F \rangle_F.$$

Now

$$(X_0 + \gamma X_1)^{i_0}X_1^{i_1}X_2^{i_2}(X_3 - \gamma X_2)^{i_3} = (X_0 + \gamma X_1)^{i_0}X_1^{i_1}X_2^{i_2}X_3^{i_3} + (\text{linear combinations of monomials } < X_0^{i_0}X_1^{i_1}X_2^{i_2}X_3^{i_3} >).$$

Another application of Corollary 2.2 shows that the monomials $X_0^{i_0-k}X_1^{i_1+k}X_2^{i_2}X_3^{i_3}$ for $i_0 + i_2 = i_1 + i_3 = p - 1, 0 \leq k \leq i_0$, occur as initial monomials of members of U. These monomials are the same as those listed in the statement of the lemma. \hfill \Box

Among the monomials listed in Lemma 3.1, those which are not divisible by any X_k^p are the monomials

$$X_0^{j_0}X_1^{j_1}X_2^{d-j_0}X_3^{2p-2-d-j_1}, \quad 0 \leq j_0 \leq d \leq p - 1, \quad p - 1 - d \leq j_1 \leq p - 1.$$

The number of such monomials is

$$\sum_{d=0}^{p-1} (d + 1)^2 = \frac{1}{6}p(p + 1)(2p + 1).$$

By the preceding arguments, this proves Theorem 1.2.
References