

Developing transformational catalytic chemical looping refining technology for fuel and chemical extraction from coal

UW ID: 16-051

Inventors: Patent Status:
Maohong Fan, Patent Pending
Xin Huang,
Xinjun Wang,
Bang Xu, and
Mingchen Tang

Description of Technology

Coal is currently needed to meet our energy requirements, but there are concerns about the carbon dioxide (CO₂) emissions resulting from its wide-spread combustion. Conventional Combustion Looping (CL) processes work at high temperatures and are therefore energy intensive. Furthermore, the major outcomes of conventional CL processes are not value-added chemical and fuel products.

To solve this problem, researchers at the University of Wyoming have worked to develop a catalytic low-temperature CL-pyrolysis based low- CO_2 -emsision coal refinery (CLT-CLP-B-LCECR) technology. It mainly consists of two parts: a catalytic pressurized steam pyrolysis reactor (CPSPR) and a catalytic oxygen carrier regenerator (COCR). Fe_2O_3 or rare-earth promoted Fe_2O_3 (REP- Fe_2O_3) is used as a catalytic oxygen carrier (COC). The overall objective of this technology is to develop a transformational catalytic low-temperature CL-pyrolysis based coal refinery or CLT-CLP-B-LCECR technology. This new technology will lower CO_2 emissions in the energy industry and results from the process including value-added chemical and fuel products such as olefins, naphtha, diesel, paraffin, and carbon materials.

Applications

Chemical looping (CL) processes offer an effective and versatile reduction-oxidation scheme that can convert coal into electricity, hydrogen, liquid fuels and valuable chemicals while providing a low-cost CO₂ capture pathway.

Features & Benefits

- Fixes the past downfalls associated with Combustion Looping
- Significantly reduce CO₂ emission.
- Waste water generated during the CLT-CLP-B-LCECR will be consumed internally in the steam pyrolysis reactor.
- Produces value-added carbon materials (e.g., char, which can be processed into needle coke, activated carbon, carbon black, carbon fiber, graphite, and graphene); also chemicals including olefins, naphtha and paraffin, and fuels such as diesel.

Marketing Opportunities

The CLT-CLP-B-LCECR technology is designed to create a win-win scenario for both environmental protection and economic development in Wyoming and the country.

Contact Us:

Research Products Center 1000 E University Ave Laramie, WY 82071 Phone: 307-766-2520 Fax: 307-766-2530

Email: WyomingInvents@uwyo.edu

