

Problems/Concerns

Difficult to maintain yields of grass pastures and hayfields, especially in irrigated areas:

- N is number one limiting nutrient
- High price of N fertilizers
- Manures and composts are alternative sources but high rates and transportation limit the use

Interseeding legumes into pastures might be a good option!

Outline of the talk

- What is interseeding?
- □ Advantages of interseeding
- ☐ Steps to be followed
- □ Summary/Recommendation

What is Interseeding?

• Introduction of a legume or a more productive grass into an existing pasture

Advantages of Interseeding

- Increase forage production
- Increase forage quality
- Increase palatability and intake
- Decrease N Fertilizer needs
- Increase grazing capacity and animal gain
- Increase more coverage, decrease soil erosion
- Longer stand life
- Easier curing of hay

Benefits from Interseeding: grass vs. legume

Benefits from Interseeding: animal performance

Gain (lb/acre) grazed on interseeded pasture

	Calves	Yearling steers
Treatment	ND (1978-85)	SD (1977-79)
Check (no alfalfa)	33	53
Alfalfa	61	85

Source: Dodds and Manske, 1987

The questions are:

where

what

when

how

--- should this be done?

Important steps need to be followed for successful interseeding:

1. Site selection:

- most effective in low-production area (e.g. Kentucky bluegrass sod)
- smooth bromegrass and other tall grasses are not suitable unless they are very thin
- alfalfa and red clover best for tall grass sods

2. Soil test:

- Especially for lime, P and K

3. Application of lime and fertilizer:

- -pH at least 6.5 is recommended for grass, clovers, birdsfoot trefoil; 6.8-7.0 for alfalfa
- -lime can be applied (pH < 6.5) at least a year before seeding
- -optimum P and K can be top dressed ahead of interseeding
- -N usually is not required before legume or legumegrass seeding

4. Grazing or clipping:

-close grazing or clipping is recommended to reduce vegetative growth before seeding

5. Herbicide application (e.g., 2, 4-D):

Once legumes established, weeds are more difficult to control

- apply before seeding (preceding year)
- for spring renovation: apply late May or early June
- additional application in Sep or Oct if needed

6. Control of existing plants to reduce competition:

Extra growth should be reduced, especially in spring by clipping, grazing, or nonselective herbicides

- -A few inches growth is necessary for effectiveness of herbicide
- -Contact herbicide (e.g. *Gramoxone Extra (paraquat)*) for spring seedings can be applied for grass suppression:
 - -few days before seeding
 - -at the time of seeding
 - -no later than 3 days after seeding

7. Seeding rates and mixtures:

- legumes alone, if desirable grass species good
- mixture of legumes are advantageous but management is a concern
- matching of right legumes with right grass
- grass-legume mixture will be the best in situations where:
 - -grass stand is thin
 - -more desirable grass species is required
 - -change in proportion grass species is expected

7. Seeding rates and mixtures:

Minimum interseeding rates (lb/acre)

1. Alfalfa	8
2. Sweet clover	8
3. Birdsfoot trefoil	6
4. Alfalfa + Red clover	6+3
5. B. trefoil + Red clover	3+3
6. Red clover + Orchardgrass	5+3
6. Red clover + Orchardgrass7. B. trefoil + Orchardgrass	5+3 4+2
7. B. trefoil + Orchardgrass	4+2

Source: Barnhart 2004

8. Seeding with drill:

- -use of appropriate drill, designed for sod
- -calibration of drill
- -checking of seeding depth (not $> \frac{3}{4}$ inch)

9. Management of new seeding:

- -patience is necessary!
- -there may be no grazing (also grazing restriction) up to 5-6 wks
- -rotational grazing may be used
- -avoid close grazing of newly established seedlings
- -avoid grazing/clipping of warm-season, native grass seedlings
- -If necessary, 8-10 inches high clipping can be done

10. After seeding care:

- -after 2 wks, check progress and pest (insect) attack, act quickly
- -after 5 wks, grazing is possible if growth is good (3-5 inches), however care should be taken not to close graze
- -livestock removal may be necessary after a week
- -summer clipping/light grazing may be necessary depending on the growth

10. After seeding care: contd.

- -fall rest starting from early September
- -after 4-6 wks, late grazing is possible
- -leave at least 3 inches residue for winter survival
- -for late summer interseeding, grazing is not advisable for first year of establishment

Establishment Summary

- ☐ Pasture improvement depends on successful stand establishment and management
 - The #1 challenge is the establishment!
- ☐ Interseeding offers unique opportunities for improving pasture and hay productivity, quality and profitability
 - it's essential to know the key factors responsible for successful establishment
 - site selection, species & variety selection, planting method, fertilization, and weed management are among the most important factors to be considered

Managing established grass-legume stands

- Not for everyone: Requires commitment to intensive management for longevity;
- Too often legume component is short-lived;
- Two major issues:
 - Nitrogen fertilizer favors grasses;
 - Poor grazing management.

Using legumes to supplement fertility

- Symbiotic relationship with bacteria that infect roots and fix N₂ gas from soil air for conversion to organic N in plant tissue;
- N becomes available to other plants upon decomposition or animal excretion;
- 80 to 90 percent passes through livestock.

Fertilizing to maintain grass-legume stands

- >50% legume stand supplies all the N needed;
- N fertilizer favors grasses and reduces legume component;
- P fertilization important for maintaining legume component;
- Large amounts of nutrients are removed as hay and must be replaced to maintain yield and quality;
- BUT, in pastures 80-90% of nutrients grazed return to the soil as urine or manure.

Grazing management to maintain grass-legume stands

- Continuous grazing eliminates legumes;
- Rotational grazing can increase legumes;
 - Close grazing followed by removing livestock and deep irrigation;

Keep grass in vegetative stage to avoid selective grazing of

legumes.

Grazing management to maintain grass-legume stands

- Good distribution is necessary for best recycling:
 - < 600-800 feet from water;
 - May have to fence out shady areas;

• Remove livestock about September for ~30 days regrowth before killing frost; graze after killing frost if

desired;

Maintaining grass-legume stands for hay production

- Need to test soil annually to properly fertilize;
- P fertilization especially important in mixed stands;
- Low rates of N required for < 50% legume stands; high rates suppress N fixation and will eliminate legumes.

 Nutrients removed with grass hav
- Important to fertilize based on potential yield of particular site;
- Don't harvest after Sept. 1.

Tradition of the William Stabbillary					
Nutrient	Dry matter concentration	Removal per ton of hay			
Nitrogen	2.0 % N	40 lb N			
Potassium	3.0 % K ₂ O	60 lb K ₂ O			
Phosphate	0.65 % P ₂ O ₅	13 lb P ₂ O ₅			
Sulfur	0.25 % S	5 lb S			

Maintaining grass-legume stands for hay production

- N required to maintain very high yields, but will eliminate legume component;
- Better to manage to increase legumes to provide N.

	Yield potential of the site				
Stand composition	1-2 tons/acre	2-4 tons/acre	4-6 tons/acre	6-8 tons/acre	
	nitrogen recommendation (lbs/acre)				
100% grass	50	75 ¹	100-150 ¹	150-200 ¹	
75% grass, 25% legume	25	50	75-100	100-150 ¹	
50% grass, 50% legume	0	25	50	75	
25% grass, 75% legume	0	0	25	50	

Fertilizing grass-legume stands

- Nitrogen for grass hay & pasture:
 - Best: UAN applied with spoke-wheel injector;
 - Urea: must apply >= ½ inch of water from sprinkler within 3 days;
 - Ammonium sulfate: expensive, but stable dry product, problems suspected in Laramie;
- For pasture, test soil every 2-3 years;
 - If N called for, split into two or three separate applications;
 - Apply 1/3 to 1/2 in early spring, 1/3 to 1/2 in June, and the remainder in late August.
 - Schedule mid- and late-season nitrogen applications to coincide with irrigation or rainfall events.
 - For hay-pasture systems, apply 2/3 of the nitrogen in early spring and 1/3 after the hay crop is removed to stimulate regrowth for grazing.

Phosphorus

- Most often deficient, especially in high-yield management;
- Stimulates nodule production and N fixation;
- Soil test crucial; symptoms difficult to detect;
 - Sample >6 months prior to planting: takes time;
 - Test soil at least every 2 or 3 years (see UW ext pub on sampling);
- Apply P to total about 10 lbs/ac/ton of expected yield;
- We recommend annual applications, but UNeb and USU claim best results from applications every other year on calcareous soils;

Phosphorus, cont.

- Preplant applications should be banded for better root access; but broadcast just as effective on established stands: lots of near surface roots;
- On established stands apply in fall or early spring, but avoid soft soils;
 - Fall best for furrow irrigated stands;
- Source does not matter: choose by availability, ease of application, and **price per unit** P₂O₅;
 - Liquid can be easier to apply but costs more;
 - No yield difference between spraying and applying with irrigation;
- Split application beneficial only for high-yield, long growing season (not Wyoming).

Potassium

- Can be deficient on sandy soils, irrigation with clean water low in K, and long-term, high yield production;
 - If need is determined, annual applications are necessary since alfalfa and other forages will luxury consume and end up with very high K concentrations;
 - Several sources available; choose same as P.

Sulfur

- Occasionally deficient on sandy low OM soils with clean, low-S irrigation water;
 - Sulfate-sulfur soil test < 8 ppm indicate need;
 - Utah State recommends: 50 lbs SO₄-S as ammonium sulfate, potassium sulfate, or gypsum plus 100 lbs/ac of elemental S to correct deficiencies for two to three years.

Micronutrients

- Deficiencies sometimes occur: apply according to soil test recommendations;
- Liquid forms work well;
- Fe chlorosis can occur in early spring but often disappears with warmer temperatures.

Other fertilizer considerations

- Fertilize right after harvest, before regrowth, avoid fertilizer contact with wet foliage;
- Topdress after first cutting to improve regrowth; after last cutting to improve winter hardiness;
- Avoid soft soils, like in early spring, due to compaction and physical damage to root crowns;
- Split application if using > 500 lb/a to avoid salt damage;
- Base source choice on price per unit; they don't perform differently;
- Don't use foliar spray for mod-high rates of macro nutrients: causes salt damage and uptake is no better than soil application. Great for micronutrients though.

Applying manure to irrigated alfalfa & grass

- Excellent source of P, K and micronutrients if applied to avoid salt damage, but N favors grass & weeds, reduces fixation, and shortens stand life;
- Rates should not exceed 3000 to 5000 gal/ac liquid or 10 t/ac dry in any one application;
- Apply uniformly and break up large chunks;
- Three timing considerations:
 - Before Establishment: >6 months prior; avoid seed contact;
 - On established stands: ASAP after harvest, before regrowth to avoid salt damage, and on dry soil to avoid compaction and crown damage;
 - Before plow down for next crop: Recommend light application because, combined with N fixed by alfalfa, will create excess.
- Best to apply to grass stands or mixed grass-alfalfa because grass will respond dramatically; again, ASAP after harvest to avoid salt damage;
- Avoid ammonia losses by avoiding warm, windy days to apply;

