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EXECUTIVE SUMMARY  

Texas Parks and Wildlife Department (TPWD) identified over 1,300 Species of Greatest 
Conservation Need (SGCN) in their Texas Conservation Action Plan (TCAP)1.  Understanding their 
geographic distributions is critical to efficient and effective management of these species.  
Occurrence data held in public databases (i.e., “dot maps”) provide an incomplete picture of 
distribution, as these data tend to derive from opportunistic and often spatially-biased sampling.  
Predictive species distribution models quantify the relationships between spatially-referenced 
occurrence data for a species and the underlying environmental gradients, resulting in a map of 
predicted distribution, or potential occupancy, for a species.  Such models provide a more 
comprehensive spatial representation of distribution that can be used to inform survey, 
assessment, and management of SGCNs. 

Given the time and effort that would be required to generate predictive distribution models for the 
full set of SGCN, it was necessary prioritize species for initial distribution modeling work.  To this 
end, the Texas Natural Diversity Database (TXNDD) and TPWD identified an initial set of 26 priority 
SGCN spanning a broad range of taxonomic groups on the basis of species characteristics and data 
availability.   The Wyoming Natural Diversity Database (WYNDD), in fulfillment of an agreement 
with TPWD/TXNDD, generated predictive distribution models for this subset of Texas’ SGCN.  The 
resulting distribution models provide a replicable and scientifically rigorous estimate of each 
species’ distribution within the State, and help set the stage for future modeling work to be carried 
out by TPWD/TXNDD.    

In addition to this report, the project database, and the digital files containing model input and 
output datasets, WYNDD provided: (1) a modeling guidance document comprising a review of 
literature related to species distribution modeling; and (2) 3 days of direct consultation with and 
technical training of a TXPWD GIS specialist and species modeler.  It is hoped that these initial 
models for SGCN, the supporting documentation, and the technical consultations and training will 
allow TXNDD and TPWD to continue the task of generating predictive distribution models for SGCN 
in the State of Texas. 
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INTRODUCTION  

TEXAS’  SPECIES OF GREATEST CONSERVATION NEED  

Texas Parks and Wildlife Department (TPWD) is charged with developing the State’s wildlife 
conservation plan2.    In 2009, (TPWD) and its collaborators began reviewing the 2005 
Comprehensive Wildlife Conservation Strategy2, and based on this review, produced a revised plan, 
referred to as the Texas Conservation Action Plan (TCAP)1.  In support of the TCAP, The working 
group produced a revised Species of Greatest Conservation Need (SGCN) list, based the 2005 
Species of Greatest Conservation Need list2, State and Federal protected species lists, NatureServe 
rankings 3, and other information related to species biology and life history1.  This revised SGCN list 
identified over 1,300 species warranting attention by land and resource managers.  With limited 
resources available for distribution modeling, TPWD/TXNDD developed a list of 26 target modeling 
taxa for this project based on conservation need and data availability (Table 1).   

PREDICTIVE SPECIES DISTRIBUTION MODELING  

One key to effective resource management is understanding the geographic distribution of the 
resource in question.  The Texas Natural Diversity Database maintains occurrence data 
representing observations of individuals or populations of a species.  These observation data, 
referred to variously as “observations,” “occurrences,” or “presence points,” are often precise in 
their spatial location, but typically provide an incomplete picture of a species’ distribution.  A key 
problem is that negative data (i.e., locations where a species was surveyed for but not observed) are 
rarely recorded.  Thus, it is often unclear whether the blank areas on these “dot maps” of species 
observations represent unoccupied areas, or are simply areas that were never sampled for the 
species.  Likewise, it is unclear whether clusters of observations reflect areas of high suitability for a 
species, or are merely the product of uneven or biased sampling effort. 

Distribution modeling has become a common method for filling in these blank areas with a 
prediction for occupancy by a species (i.e., present or absent).  Deductive distribution models use 
expert knowledge to create a rule set that predicts suitability for occupancy based on important 
environmental characteristics of the landscape.  For example, previous distribution modeling 
efforts at a statewide scale have generated deductive models for species by reclassifying land cover 
maps into suitable/unsuitable categories4.   

Inductive distribution models use statistical or machine learning methods to identify relationships 
between points of known presence or absence and the underlying environmental gradients, and 
model these relationships to allow the prediction of the species’ distribution across the study area5.  
Whereas standard statistical methods for predicting the probability of a binary outcome (e.g., 
logistic regression) require training data for both classes (i.e., species presence/absence), only 
presence data are typically available in species observation databases.  Specialized methods have 
thus been developed for producing species distribution models from presence-only data 6,7.  While 
these methods have proven effective in distribution modeling efforts 8,9, the resulting distribution 
models must be built, conveyed, and interpreted differently from those that might be generated 
using conventional methods such as logistic regression10. 
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Although references in the literature typically refer to “species distribution modeling,” we hereafter 
use the more general term ‘taxon’ rather than the more specific term ‘species,’ recognizing that 
several taxa on the target list are subspecies or specific populations.  We used inductive modeling 
with a commonly applied algorithm and proven methods to generate models for these 27 taxa in 
Texas.   

While all distribution models are subject to error, as with any model, they generally offer a more 
complete and useful representation of a taxon’s distribution than do dot maps of observations.  The 
resulting models can be used to guide surveys for new populations, or to assess potential overlap 
between modeled distributions and planned management activities or disturbances.  In addition to 
model input and output data and documentation of our methods, we prepared a number of 
documents and scripts to facilitate future modeling work by TXNDD staff.  Importantly, we also 
directly consulted with and trained TPWD modelers in the application of our methods over a 3-day 
period in August 2013.    

METHODS  

OVERVIEW  

Occurrence data used for training models for the target taxa were derived from downloads of 
TXNDD’s observation database.  Occurrence data for non-target taxa obtained from the same 
database were used as background, or pseudo-absence data to allow a distinction between 
gradients at presence points for a target taxon and those gradients available on the landscape.  
These training presence and background data were related to GIS layers representing a suite of 
biologically-relevant environmental gradients using Maxent, a machine-learning algorithm for 
inductive modeling of distribution based on presence-only points6.  The resulting models were 
“projected” onto the environmental gradient data to produce maps showing predicted distribution 
for the target taxa.  We chose Maxent because it has repeatedly been shown to perform well with 
relatively small sample sizes, and does not require absence data for generating useful models.  
Model training, evaluation, and assessment were carried out using methods commonly employed in 
distribution modeling. 

PRESENCE DATA COLLECTION AND PROCESSING  

TXNDD was the sole source of occurrence data used in building models, and provided 
approximately 9,000 observation records of the target taxa from their Biotics database between 
May 28 and August 1 of 2013.  The number of observation records available by taxon varied 
dramatically, from over 4,400 records for Black-tailed Prairie Dog (see Table 1 for Latin names of 
all taxa mentioned in the text), to just 21 total records for Chihuahua Balloon-vine (Table 1).   

Since taxa may substantially shift their distributions over time in response to changes in climate 
and land use patterns, relating historical records to the environmental gradients might not produce 
a model that accurately predicts current distribution.  Thus, biologists at the TXNDD provided 
record age cutoffs for select taxa (Table 1), corresponding to the timing of major distribution shifts, 
or, in some cases, shifts in data collection methods.  Observation records for a given taxa collected 
prior to these cutoffs were excluded from modeling. 
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Table 1. Occurrence data by taxa.  Total records indicates the number of records for the taxon 
provided by TXNDD.  Modeling records indicates the number of records used for model training 
after filtering for record age, precision, season (where appropriate), and clustering. 
 

Common Name Scientific Name 
Total 

Records 
Modeling 
Records 

Amphibians    

Sheep Frog Hypopachus variolosus 46 45 

Birds    

Lesser Prairie-chicken Tympanuchus pallidicinctus 323 247 

Piping Plover Charadrius melodus 748 127 

Black-capped Vireo Vireo atricapilla 664 63 

Bachman's Sparrow Aimophila aestivalis 75 31 

Mammals    

Black-tailed Prairie Dog Cynomys ludovicianus 4,425 2,958 

Texas Kangaroo Rat Dipodomys elator 262 122 

Swift Fox Vulpes velox 42 41 

Kit Fox Vulpes macrotis 36 35 

Black Bear – Western TX Ursus americanus 115 108 

Black Bear – Eastern TX Ursus americanus 45 40 

Ocelot Leopardus pardalis 42 21 

Reptiles    

Texas Tortoise Gopherus berlandieri 99 61 

Reticulate Collared Lizard Crotaphytus reticulatus 40 39 

Spot-tailed Earless Lizard Holbrookia lacerata 142 133 

Texas Horned Lizard Phrynosoma cornutum 42 40 

Texas Indigo Snake Drymarchon melanurus erebennus 67 53 

Louisiana Pine Snake Pituophis ruthveni 37 29 

Plants    

Texas Prairie Dawn Hymenoxys texana 75 40 

Threeflower Broomweed Thurovia triflora 36 29 

Zapata Bladderpod Physaria thamnophila 96 12 

Bracted Twistflower Streptanthus bracteatus 282 25 

Tobusch Fishhook Cactus 
Sclerocactus brevihamatus ssp. 

tobuschii 322 83 

Texabama Croton Croton alabamensis var. texensis 37 16 

Johnston's Frankenia Frankenia johnstonii 145 92 

Chihuahua Balloon-vine Cardiospermum dissectum 21 16 

Navasota Ladies'-tresses Spiranthes parksii 908 74 
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Additionally, observation records may be very coarsely located geographically.  For example, 
historical records from museum collections are often located only to county, or via crude spatial 
descriptions (e.g., “10 miles southwest of Austin”).  Such records may provide information about a 
taxon’s range at a very coarse scale, but generally do not provide useful information for building 
predictive distribution models.  TXNDD, like most state heritage programs, maintains a field in their 
database representing the locational uncertainty, or mapping precision, of each record.  Records 
with a locational uncertainty of greater than 8000 m were excluded from the modeling set.  This 
value was chosen to balance spatial accuracy with the number of records available by taxa. 

Two of the target species, Piping Plover and Black-capped Vireo, only occur seasonally in Texas.  
Piping Plover is a winter resident, so only observations recorded between July 15 and May 1 were 
included in modeling.  Black-capped Vireo is a summer resident; records collected between March 
15 and September 7 were used in modeling the species.  These calendar date cutoffs were used to 
avoid modeling with migratory records, which may not be representative of winter and summer 
distributions for Piping Plover and Black-capped Vireo, respectively. 
 
Lastly, occurrence points can exhibit clustering at multiple spatial scales due to sampling bias.  For 
example, a single study for a taxon may result in many points within a Public Land Survey System 
(PLSS) section, and no points in the adjacent sections, even though the taxon may occur in these 
sections as well.  At a broader scale, sampling bias may be related to accessibility, leading to more 
points near roads and cities and fewer points in remote areas with difficult access or on private 
lands.  A distribution modeling algorithm effectively interprets higher densities of observations as 
higher suitability for a taxon, when in fact the higher densities are often due to more intensive 
sampling efforts.  Thus, both of these types of sampling bias can lead to incorrect conclusions and 
models.   

We used a spatial filtering process based on occurrence point quality described by Keinath et al9 to 
address bias at the scale of an individual study.  This approach eliminates occurrence points that 
are within a user-specified, minimum separation distance of other, higher quality points for the 
taxon, preserving the best available points while simultaneously reducing the amount of local-scale 
point clustering.  Occurrence point quality can be measured in a variety of ways, but the key 
components of record accuracy are age, locational uncertainty, and reliability of taxonomic 
identification.  TXNDD is confident in the identification of the taxa in each of their observation 
records, so we developed a Point Quality Index (PQI) based on a linear combination of scored 
record age (PQI-Date) and scored locational uncertainty (PQI-Precision), to indicate the overall 
quality of a record (Table 2).   

To generate PQI-Date scores, we broke the range of acceptable dates for a taxon into four equal-
sized bins.  For taxa where biologists provided a specific record age threshold, the selected year 
was used as the oldest acceptable date, and the subsequent period was broken into four equal-sized 
bins for scoring purposes.  If no specific record age cutoff was specified by biologists for a taxon, the 
oldest record available for the taxon was used as the oldest acceptable date, and the subsequent 
period was similarly divided into scoring bins.  Records with an unknown year of observation were 
included as potential modeling records only if there was no cutoff provided by biologists for the 
taxon; these records were assigned the lowest PQI-Date score.  To generate the PQI-Precision score, 
we used a locational uncertainty of 8000 m as the threshold for usable records.  Records with a 
locational uncertainty better than this level were scored on a four-point system, similar to the PQI-
Date system (Table 3).  Occurrence data for Black-tailed Prairie Dog were based on a recent 
mapping of colonies, and were all scored equally for both PQI-Date and PQI-Precision. 
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Table 2. Classes for scoring occurrence points based on their date.  Scores ranged from 1 to 4, and 
used taxon-specific date ranges. 

Taxon 
PQI-Date Score 

Unusable 1 2 3 4 

Bachman's Sparrow NA 2005-2007 2008-2009 2010-2011 2012-2013 

Black Bear < 1995 1995-2000 2001-2004 2005-2009 2010-2013 

Black-capped Vireo < 2003 2003-2006 2007-2008 2009-2011 2012-2013 

Black-Tailed Prairie Dog NA NA NA NA All 

Bracted Twistflower < 1980 1993-1998 1999-2003 2004-2008 2009-2013 

Chihuahua Balloon-vine < 1970 1974-1984 1985-1994 1995-2003 2004-2013 

Johnston's Frankenia < 1980 1994-1999 2000-2004 2005-2008 2009-2013 

Kit Fox NA 1950-1966 1967-1982 1983-1997 1998-2013 

Lesser Prairie-chicken NA 2010 2011 2012 2013 

Louisiana Pine Snake NA 1956-1970 1971-1985 1986-1999 2000-2013 

Navasota Ladies'-tresses NA 1905-1932 1933-1959 1960-1986 1987-2013 

Ocelot < 1995 1997-2001 2002-2005 2006-2009 2010-2013 

Piping Plover NA 1988-1994 1995-2001 2002-2007 2008-2013 

Reticulate Collared Lizard NA 1933-1953 1954-1973 1974-1993 1994-2013 

Sheep Frog NA 1923-1946 1947-1968 1969-1991 1992-2013 

Spot-tailed Earless Lizard NA 1902-1930 1931-1958 1959-1985 1986-2013 

Swift Fox NA 1933-1953 1954-1973 1974-1993 1994-2013 

Texabama Croton < 1980 1990-1996 1997-2002 2003-2007 2008-2013 

Texas Horned Lizard NA 1991-1997 1998-2002 2003-2008 2009-2013 

Texas Indigo Snake NA 1967-1979 1980-1990 1991-2002 2003-2013 

Texas Kangaroo Rat < 1995 1996-2000 2001-2005 2006-2009 2010-2013 

Texas Prairie Dawn NA 1986-1993 1994-2000 2001-2006 2007-2013 

Texas Tortoise NA 1960-1973 1974-1987 1988-2000 2001-2013 

Threeflower Broomweed NA 1905-1932 1933-1959 1960-1986 1987-2013 

Tobusch Fishhook Cactus < 1980 1983-1991 1992-1998 1999-2006 2007-2013 

Zapata Bladderpod < 1990 1994-1999 2000-2004 2005-2008 2009-2013 

 

Table 3. Classes for scoring occurrence points based on their location uncertainty, in meters.  As 
with the PQI-Date score, scores for PQI-Precision ranged from 1 to 4.  All taxon were scored using 
the same ranges of locational uncertainty values. 

PQI-Precision 
Score 

Definition 

4 Location uncertainty ≤ 30 m 
3 Location uncertainty > 30 m and ≤ 100 m 
2 Location uncertainty > 100 m and ≤ 300 m 
1 Location uncertainty > 300 m and ≤ 600 m 
0 Location uncertainty > 600 m and ≤ 8000 m 

NA Record is unusable for modeling; uncertainty > 8000 m 
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An Overall PQI score for each occurrence point was generated by summing the scores for record 
age (PQI-Date) and for locational uncertainty (PQI-Precision).  We developed a script in ArcGIS to 
remove any points for the taxon that were within 800 m of another point with a higher PQI score.  
We used 800 m as the minimum separation distance as a circle with this radius is similar in size to 
the PLSS section that is a common sampling frame for wildlife surveys. 

BACKGROUND DATA COLLECTION AND PROCESSING  

With standard statistical modeling for a binary event such as presence/absence modeling for a 
taxon, both presence and absence data would be required to model its distribution.  True absence 
data for a given taxon are seldom available.  Thus, methods have been developed to use presence-
only datasets to generate distribution models, using what are often termed “background” or 
“pseudo-absence” data11.  Such methods use background data in order to distinguish between the 
environmental gradients present in areas that are “used by” versus those that are “available to” the 
target taxon.  A default method for creating a background dataset is to select a large number (e.g., 
10,000) of random points from the modeling area to represent the gradients available to a taxon12. 

Unfortunately, presence-only data contained in databases like TXNDD’s Biotics database are seldom 
the product of random or exhaustive, systematic sampling efforts.  Typically, these data derive from 
biased sampling that focuses more survey effort in areas that are easily accessible (e.g., near roads 
or populated places, on public lands, or in priority conservation areas), and less effort in areas that 
are more difficult to access due to rugged terrain, lack of roads, or private land ownership13.    

These types of broader-scale sampling biases were addressed by using a target background group 
approach14, rather than the default method of selecting random background points.   This approach 
attempts to mirror spatial sampling bias in the training occurrence data for a taxon by selecting 
background data – often occurrence locations for related taxa – that derive from surveys exhibiting 
similar spatial biases as those for the modeled taxon.  Matching the biases in the training 
occurrences for a taxon with similar biases in the background data helps to factor out sampling bias 
in modeling, resulting in a model that more accurately reflects a taxon’s distribution.  If sampling 
bias is not accounted for, a presence-only modeling approach may produce a model that predicts 
sampling effort better than it predicts a taxon’s true distribution15. When selecting target 
background data, the key consideration is ensuring that the points in the background dataset derive 
from surveys as similar as possible to those for the modeled taxon in terms of sampling effort, 
methods, and biases14.  

We evaluated data from a number of sources, including Herps of Texas16 and eBird17, to use as 
target background data for the modeled herptiles and birds, respectively.  However, upon 
examining these data it was clear that different biases were present in these two datasets than were 
present in the training data from TXNDD’s Biotics database.  As citizen-science datasets, 
observations in Herps of Texas and eBird tend to be more strongly biased toward populated areas 
than observations in the TXNDD database.   

Instead, we used a download of occurrences for non-modeled taxa from TXNDD’s Biotics database, 
as our background dataset.  This dataset comprised 8,665 occurrence locations represented as 
points, lines, and polygons, which we converted to points.  This background dataset appeared to 
exhibit similar spatial biases as the training presences for modeled taxa.  This is a reasonable 
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expectation, given occurrence records are generally incorporated into the database from similar 
data sources across all taxa.   

ENVIRONMENTAL DATA COLLECTION AND PROCESSING  

The predictor data used to build distribution models represent environmental characteristics or 
gradients assumed to be important in influencing species distributions, and are typically stored as 
raster datasets in Geographical Information Systems (GIS).  Modelers commonly include predictor 
layers describing gradients related to climate, vegetation, elevation, and soils, but for selected taxa, 
more specific predictors representing various aspects of landscape pattern, hydrology, interspecific 
interactions, or disturbance may be important in limiting distribution5. 

The linkages between a distribution and these predictor layers may be direct, as in the case of a 
tree-nesting bird species that only occurs in forested land cover types.  However, predictor layers 
used in building distribution models are often more indirectly related to distribution.  For example, 
a plant species’ distribution may be limited to areas with a particular soil moisture regime that is 
not directly represented with available GIS layers.  Instead, indirect measures of site moisture such 
as slope or aspect might prove useful in modeling the species.  Thus, a useful predictor set may 
contain attributes that are intuitively important to a taxon as well as attributes that are somewhat 
harder to interpret. 

The factors that influence a taxon’s distribution vary across differing spatial scales, from broad-
scale gradients like climate to fine-scale parameters such as soil texture18.  Accordingly, the spatial 
predictor layers used to build distribution models should represent a similar range of scales in 
order to produce the most reasonable models 19.   

We reviewed available references 3,20-31 for the modeling taxa to generate a list of potentially useful 
predictor data layers for each taxon.  Biologists from TXNDD and other cooperators provided 
comments on these lists and in some cases suggested additional predictor data layers that might be 
useful.  We added standard climatic, elevation, and vegetation predictors to the list of potential 
predictors that were initially identified. 

The full list of potential predictors included data layers related to climate, topography, land 
use/land cover, soils and substrate, and surface water.  Climatic variables were downloaded from 
the WorldClim website (http://www.worldclim.org/current) and included the 30 arc-second 
Bioclim data, representing useful seasonal and monthly means, ranges, and extremes of 
temperature and precipitation32.  Topographic variables were derived from the National Elevation 
Dataset33 using a variety of transformations to provide representations of important topographic 
attributes, including elevation, slope, aspect, ruggedness, and site moisture.  Hydrology predictors 
quantified Euclidean distance to water and prevalence of water on the landscape, based on 
hydrology layers prepared by the National GAP Program34.  Land use variables included layers 
representing agricultural lands and the level of human impact across varying scales, and were also 
based on data prepared by the National GAP Program35.  Land cover variables included vegetation 
height and percent cover for forest, shrubs, and herbaceous plants from the LANDFIRE dataset36,37, 
and distance to ecotone boundaries from the National GAP Program38.  Soils predictors described 
chemistry, texture, and moisture parameters derived from the Gridded SSURGO dataset39.  
Appendix 1 provides more detailed descriptions and references for each variable. 
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MODEL GENERATION ,  VALIDATION ,  AND DISPLAY 

We used the Geospatial Modeling Environment (GME40) to attribute the shapefiles representing 
training presences and background points with values for all predictor variables, and exported the 
associated attribute tables as comma-delimited (CSV) files.  Fields were added or deleted as needed 
to create the Samples with Data (SWD) format used by Maxent41.  Providing the SWD format to 
Maxent, rather than providing only the spatial coordinates for each taxon’s training points, 
decreases modeling time as the software does not need to sample predictor values to training and 
background data points during each iterative run. 

Multicollinearity (i.e., strong correlations between predictor variables) can increase the standard 
errors of coefficients in regression42, changing the interpretation of which predictors are most 
important in a model.  Similar problems arise even when using machine learning methods such as 
Maxent5.  Thus, we evaluated our set of predictor layers for pairwise correlations using a random 
sampling of approximately 10,000 points in using the statistical software, R43.  We identified any 
predictor pairs where the pairwise Pearson’s R was greater than 0.8, a relatively conservative 
value44. 

Bioclim variable pairs exhibited the highest degree of correlation.  All but three of these predictors 
were highly correlated with at least one other Bioclim predictor (R > 0.8).  Thus, we first generated 
a Maxent model for each taxon using only the Bioclim variables, to determine which subset of these 
predictors were the most powerful across all taxa.  The Bioclim predictors were then ranked in 
descending order based on their mean percent contribution across taxa.  Bioclim predictors that 
were highly correlated with another Bioclim predictor with a higher mean percent contribution 
were excluded from the set of potential predictors used in the initial models for each taxon. 

Three to four successive Maxent models were generated iteratively for each taxon to identify a set 
of powerful predictors with low collinearity, starting with the selected Bioclim subset plus the taxa-
specific predictors identified during the initial taxa review or in comments from TXNDD biologists.  
At each iteration, we eliminated variables that had a mean percent contribution of 0 or were highly 
correlated with another predictor that had a higher mean percent contribution.  For this iterative 
process5 in Maxent, we selected the default parameters for regularization, the “jackknife” option to 
determine the relative importance of each predictor, and the 10-fold cross-validation option to 
protect against overfitting during predictor selection.  Final models were then generated using the 
reduced variable set identified through the iterative process, writing logistic model output as a BIL-
format raster.   

Models were validated using several approaches, depending upon the number of available 
occurrences.  For all taxa, a model using 10-fold cross-validation was run using the same predictor 
variable set and parameters, and the mean area under curve (AUC) of the Receiver Operating 
Characteristic (ROC) plot was calculated based on the test set for each replicate to provide a 
measure of model accuracy45.  Taxa with greater than 100 training points also had a randomly 
selected 20% of their training points excluded during model generation to provide an independent 
test dataset.  Models were then run based on the remaining 80% of the training set, and model 
accuracy was assessed by calculating AUC for the 20% test set.   

A Maxent model produced with the above methods is essentially a relative probability surface, with 
each map cell associated with a value representing the likelihood of occurrence by a taxon.  Many 
applications of such models require that that they first be converted into binary maps of likely 
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presence versus likely absence.  Such conversion requires the selection of a cutpoint, or threshold, 
on the probability scale that distinguishes predicted presence from predicted absence.  We applied 
a threshold to create a binary (i.e., “predicted absent/predicted present”) expression of the final 
model for each taxa.  The threshold was chosen based on the “Maximum Training Sensitivity Plus 
Specificity” metric provided by Maxent41; this threshold metric minimizes the total of omission and 
commission error.  Additionally, Maxent was run using 10-fold cross-validation for each taxon to 
generate a surface representing the standard deviation of predictions across all replicates.  The 
resulting raster output provides an indication of the level of uncertainty inherent in the final model. 

RESULTS  

SUMMARY OF MODEL INPUT DATA  

The number of observation records removed from the training dataset due to record age, locational 
uncertainty, or spatial clustering varied substantially between taxa (Table 1).  The proportion of 
points removed because they were older than the threshold specified by biologists was relatively 
high for Black-capped Vireo (346/664; 52%), Texas Kangaroo Rat (70/262; 27%), and Ocelot 
(13/42; 31%).  Observation records for the plant taxa were the most spatially clustered of any 
group, with a substantial proportion of available points removed during the spatial filtering process 
for Navasota Ladies-tresses (834/908; 92%), Bracted Twistflower (254/282; 91%), Zapata 
Bladderpod (83/96; 87%), and Tobusch Fishook Cactus (224/322; 73%).  For animal taxa, only 
Piping Plover (621/748; 83%) and Black-capped Vireo (252/315; 80%) had a similar proportion of 
their available point set reduced by spatial filtering.  For taxa including Sheep Frog, Swift Fox, Kit 
Fox, Reticulate Collared Lizard, Spot-tailed Earless Lizard, and Texas Horned Lizard, nearly all 
available observation records were used as training points in modeling.  This likely results from 
less intensive and targeted sampling efforts for these species compared to those where more points 
were eliminated due to spatial clustering. 

Bird and plant taxa generally had the most recent records in their filtered modeling sets, while 
records for reptiles and the single amphibian were generally much older (Figure 1).  Similarly, 
modeling points for plants and birds generally had the highest degree of spatial precision, while 
mapping precision for records of reptiles, amphibians, and mammals were generally worse (Figure 
2).  The lack of precision in amphibian and reptile records is likely due to their age; older 
observation records tend to have been less precisely located than modern records that are often 
mapped using GPS.  The least precise records for mammals were generally for large, wary taxa for 
which locations are typically recorded from some distance away compared to less mobile or wary 
taxa like small mammals, herptiles, plants, or birds that can generally be located precisely by a 
nearby observer using GPS receivers.  These patterns of record precision and age by taxonomic 
group are generally consistent with those observed in similar, multi-taxa distribution modeling 
projects for Wyoming9 and the northwestern United States8. 
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Figure 1. Beanplots 46 showing the distribution of record ages by taxon.  Width of the gray areas 
corresponds to the density of observations around a particular year.  The vertical black lines show 
the average year of observation for a taxon, while the dashed line shows the average year of 
observation across all taxa.  Black-tailed Prairie Dog is not included in the chart as no year of 
observation was provided for the species’ records. 
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Figure 2. Beanplots showing the distribution of locational uncertainty by taxon.  Width of the gray 
areas corresponds to the density of observations around a particular locational uncertainty value.  
The vertical black lines show the average locational uncertainty for records of a given taxon, while 
the dashed line shows the average locational uncertainty for records across all taxa.  Black-tailed 
Prairie Dog is not included in the chart as no locational uncertainty was provided for the species’ 
records. 
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A subset of six Bioclim layers was selected based on Maxent model runs for all taxa and evaluation 
of pairwise correlation coefficients for the Bioclim predictor set (Table 4).  These six predictors 
appear to provide the most useful information about distributions for the modeling taxa in Texas, 
while minimizing collinearity.  These predictors were included in the initial model runs for all taxa, 
along with the taxon-specific predictors we identified. 

Table 4. Bioclim predictor evaluation.  Bolded predictors were included in the core set of six 
Bioclim predictors used in the initial models for all taxa; italicized predictors were not included in 
initial models for any taxa, as they were highly correlated with other Bioclim predictors with a 
higher mean percent contribution in the variable evaluation model runs.  Appendix 1 provides a full 
description of all predictor layers. 

Bioclim Predictor [Predictor ID] 
Mean 

Percent 
Contribution 

Strongest Correlation 
with More Powerful 

Predictor(s): 
Correlated Predictor 

(Pearson’s R) 

Min. Temperature of Coldest Month [Bio6] 12.6% - 

Precipitation Seasonality (Coefficient of 
Variation) [Bio15] 

10.8% Bio6 (-0.47) 

Mean Diurnal Range (Mean of monthly (max 
temp - min temp) [Bio2] 

6.2% Bio6 (-0.77) 

Precipitation of Warmest Quarter [Bio18] 4.8% Bio15 (-0.65) 

Mean Temperature of Warmest Quarter [Bio10] 4.4% Bio6 (0.77) 

Isothermality (BIO2/BIO7) (* 100) [Bio3] 2.7% Bio15 (0.67) 

Annual Mean Temperature [Bio1] 11.8% Bio6 (0.96) 

Precipitation of Coldest Quarter [Bio19] 8.0% Bio15 (-0.91) 

Temperature Annual Range (BIO5-BIO6) [Bio7] 6.4% Bio6 (-0.95) 

Mean Temperature of Coldest Quarter [Bio11] 6.4% Bio6 (0.98) 

Temperature Seasonality (standard deviation 
*100) [Bio4] 

5.9% Bio6 (-0.88) 

Precipitation of Driest Month [Bio14] 5.7% Bio15 (-0.93) 

Precipitation of Wettest Month [Bio13] 3.8% Bio2 (-0.88) 

Precipitation of Driest Quarter [Bio17] 3.6% Bio15 (-0.93) 

Max. Temperature of Warmest Month [Bio5] 2.8% Bio10 (0.82) 

Annual Precipitation [Bio12] 2.7% Bio15 (-0.93) 

Precipitation of Wettest Quarter [Bio16] 1.5% Bio15 (-0.87) 

Mean Temperature of Wettest Quarter [Bio8] - - 

Mean Temperature of Driest Quarter [Bio9] - - 

 

As the selected Bioclim variables were included in the initial models for all taxa, and were removed 
during iterative modeling only if their percent contribution was equal to zero, these predictors 
were present in the greatest number of final models (Table 6).  Bio6, the Minimum Temperature of 
the Coldest Month, appears in the final models for all 27 taxa, and has the greatest average percent 
contribution (27.4%) of any predictor across all taxa.  Bio10 (Mean Temperature of the Warmest 
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Quarter) and Bio15 (Precipitation Seasonality) were the next most useful predictors across the full 
set of taxa, with percent contributions of 12.1% and 16.1%, respectively.  Other predictors related 
to vegetation, soils, and topography were present in final models for fewer taxa, but in some cases 
were among the best predictors for those taxa. 

Table 6.  Predictor layers used in final models.  Average percent contribution is the mean percent 
contribution for a predictor across final models for all taxa in which the predictor was included.  
Appendix 1 provides a full description of all predictor layers. 

Predictor 

Number of 
Final Models 

Using 
Predictor 

Average 
Percent 

Contribution 

 

Predictor 

Number of 
Final 

Models 
Using 

Predictor 

Average 
Percent 

Contribution 

bio6 27 27.4%  allwatdist 3 4.2% 
bio15 27 16.1%  lfforstcc 3 5.0% 
bio18 25 6.0%  slope 3 5.5% 
bio3 24 6.0%  water3200 3 2.9% 
bio2 23 6.2%  aprime45 2 1.8% 
bio10 23 12.1%  avoid12800 2 4.3% 
nlcdcanopy 17 6.1%  ksat 2 8.1% 
percsand 13 3.3%  percsilt 2 2.7% 
lfshrubcc 12 3.5%  soilec 2 3.0% 
lfevh 11 5.9%  vrm5 2 6.5% 
dissect5 9 3.5%  aglands 1 0.6% 
percclay 8 3.9%  aprime90 1 2.5% 
dissect10 7 0.9%  avoid1600 1 0.3% 
drainclass 7 9.7%  avoid6400 1 0.3% 
lfherbcc 7 2.2%  curve5 1 7.5% 
ned 7 22.0%  d2wlsl 1 1.8% 
d2foredge 4 10.9%  hydgroup 1 7.4% 
soilph 4 12.6%  radld 1 6.1% 
vrm10 4 5.6%  water1600 1 2.8% 

       
       

SUMMARY OF MODELS  

Full model reports showing the selected predictor layers, statistics on model fit and accuracy, and a 
map of the resulting probability surface for each taxon are provided in Appendix 2.  A general 
summary of models across all taxa is provided here. 

The initial model for Black Bears appeared to show fairly poor discrimination, likely due to 
differences in habitat usage between the western and eastern populations of the species.  This is not 
surprising, given the dramatically different types of habitat available in these two portions of the 
state.  We therefore split the data for the species into eastern and western populations and 
constructed separate models based on these separate point sets. 
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Across all taxa, models fit the training data (Figure 3a) and predicted test data (Figure 3b) well.  As 
might be expected based on the input data quality (Figures 1 & 2), models for plants and birds were 
generally of higher quality than those for mammals and herptiles, though all models provided 
reasonably good accuracy on test data in cross-validation model runs.  Black-tailed Prairie Dog 
appears as an outlier in the mammal group (AUC for training and cross-validation test data of 0.861 
and 0.848, respectively).  This is due to the fact that the training set for this species has a large 
number of points (2,355) covering a large geographic area.  Since Maxent uses “fractional predicted 
area” (i.e., the percentage of the study area predicted present across varying thresholds) as a 
surrogate for the commission error typically used as the x-axis on a ROC plot, the model cannot 
achieve an AUC of 1, since an AUC of 1 would require classifying the entire study area as absent47 
while also correctly classifying all training presences.  For this species, for example, the maximum 
AUC value possible would be 0.860, rather than 1, assuming the modeled prevalence matches the 
actual prevalence of the species on the landscape.  This is true for AUC values reported for all taxa, 
though the effect is less pronounced for taxa with more narrow distributions.  For the six taxa with 
a 20% test dataset, the AUC for test data closely matches the mean cross-validation AUC values, 
suggesting that the AUC values based on cross-validation are a reliable indicator of model quality in 
the absence of true test data. 

Figure 3. Training AUC (a) and Mean Cross-Validation AUC across the modeling taxa, by taxonomic 
group.  Training AUC is a measure of model fit, or specification, whereas the Mean Cross-Validation 
AUC provides an indication of model accuracy. 

 
 

  
 

a b 
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Table 5. Summary statistics for final distribution models, by taxon.  For taxa with more than 100 
points available for training, a random 20 percent of the points were held out for validation.  
Training AUC is the area under curve for a ROC plot based on the training data, and is a measure of 
how well the model fits the training data.  Test AUC is based on a test dataset comprising the 20 
percent of the data that was excluded from modeling, and is a measure of model accuracy.  Mean 
Cross-Validation AUC gives the mean AUC value based on the test data across each of the 10 
replicates in cross-validation, and was used as a measure of model accuracy when there were 
insufficient data to create a separate test dataset. 

Taxon 
Number of 

Training 
Points 

Number 
of Test 
Points 

Training 
AUC 

Test 
AUC 

Mean Cross-
Validation AUC 

Amphibians      

Sheep Frog 43 - 0.983 - 0.974 

Birds      

Lesser Prairie-chicken 195 48 0.985 0.985 0.982 

Piping Plover 84 20 0.993 0.990 0.990 

Black-capped Vireo 63 - 0.991 - 0.977 

Bachman's Sparrow 31 - 0.973 - 0.969 

Mammals      

Black-tailed Prairie Dog 2,355 588 0.861 0.865 0.848 

Texas Kangaroo Rat 98 24 0.994 0.995 0.993 

Swift Fox 41 - 0.986 - 0.977 

Kit Fox 35 - 0.939 - 0.887 

Black Bear - Western 87 21 0.969 0.916 0.926 

Black Bear - Eastern 40 - 0.966 - 0.951 

Ocelot 21 - 0.996 - 0.992 

Reptiles      

Texas Tortoise 60 - 0.952 - 0.929 

Reticulate Collared Lizard 37 - 0.992 - 0.988 

Spot-tailed Earless Lizard 104 26 0.974 0.954 0.955 

Texas Horned Lizard 40 - 0.958 - 0.922 

Texas Indigo Snake 50 - 0.977 - 0.952 

Louisiana Pine Snake 29 - 0.979 - 0.962 

Plants      

Texas Prairie Dawn 40 - 0.996 - 0.996 

Threeflower Broomweed 28 - 0.989 - 0.982 

Zapata Bladderpod 12 - 0.991 - 0.990 

Bracted Twistflower 25 - 0.993 - 0.985 

Tobusch Fishhook Cactus 82 - 0.990 - 0.984 

Texabama Croton 16 - 0.995 - 0.982 

Johnston's Frankenia 92 - 0.993 - 0.992 

Chihuahua Balloon-vine 16 - 0.989 - 0.977 

Navasota Ladies'-tresses 73 - 0.987 - 0.981 



Andersen and Beauvais 2013 19 

Figure 4. Thumbnails of binary models for each taxon. 
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DISCUSSION  

USAGE AND LIMITATIONS OF DISTRIBUTION MODELING  

Statistician George Box is perhaps best known for his famous axiom: “…essentially, all models are 
wrong, but some are useful.”48  His point was that models are always a simplification of some more 
complex system, and that in simplifying the system, important details are necessarily left out, 
leading to an imperfect model.   

Box’s adage certainly applies to all distribution models.  In distribution modeling, there is 
uncertainty and error inherent in occurrence data, predictor layers, and the underlying mechanistic 
processes that shape actual distribution.  Observation records can be poorly located, misidentified, 
or unrepresentative of a taxon’s distribution, or they can derive from biased sampling efforts and as 
a consequence suggest an unrealistic picture of the taxon’s distribution.  Predictor layers can 
exhibit error in both position and value, leading to faulty conclusions about the relationship 
between a predictor and a taxon’s distribution.  Finally, the underlying mechanisms that influence a 
taxon’s distribution can be inordinately complex or otherwise impossible to represent accurately 
with a simplified model.  As Box’s axiom suggests, though, distribution models can be both wrong 
and still very useful.  The challenge to the modeler is twofold: 1) to interpret the model output 
correctly; and 2) to convey this interpretation to end users unfamiliar with modeling to assist them 
in using models in a way that acknowledges uncertainty and error.  
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MODEL INTERPRETATION AND USAGE 

Although the output GIS data from Maxent models are commonly thought of as logistic probability 
of occurrence by a taxon, the actual interpretation is more nuanced12.  When only presence data are 
available and incomplete information exists on sampling effort, there is no way to determine the 
prevalence of a taxon on the landscape (i.e., the proportion of the modeling area occupied by a 
taxon)10.  Thus, there is no means of determining what the true probability of occurrence is for a 
taxon in any given location based on a presence-only model.  Rather, Maxent provides what might 
be considered a relative suitability47, and individual values of probability at any given cell in a 
Maxent raster output are only meaningful in comparison to other cell values in the same model 
output.  Higher output values do indicate a higher likelihood of occurrence, but output values from 
two different models cannot be directly compared (i.e., a value of 0.5 in a model for one taxon may 
not mean the same thing as a value of 0.5 in another taxon’s model).   

Caution must also be exercised when evaluating partial plots (graphs showing likelihood of 
occurrence as a function of each variable, holding all other variables constant).  While indirect 
predictor layers such as elevation might contribute highly to the accuracy of a model, it would not 
be correct in most cases to state, for example, that elevation has a specific effect on distribution.  
Rather, elevation most likely influences temperature, precipitation, or other more direct gradients 
than more directly limit a taxon’s distribution.  Biological understanding is thus important in 
interpreting partial plots – particularly those for more indirect predictors.49 

Distribution models such as those produced in this project can help identify areas of high 
biodiversity or important habitat or potential habitat for priority taxon, at a coarse scale.  Planners 
can use such maps to identify suitable locations for ecological reserves, or to help them determine 
areas that are more suitable for development with minimal adverse impacts to biodiversity or to a 
particular taxon5.   

Distribution models can also be used to guide more efficient field surveys.  By selecting the areas 
predicted by a model to be most suitable, researchers can hone in on the most likely locations to 
find a particular taxon to make the most of limited field project budgets.  Moreover, by evaluating 
model output in the context of known occurrence locations, researchers can focus on areas a model 
deems suitable but that currently have no known records for the taxon, potentially expanding its 
known distribution. 

However, models should not be used in place of site-level, clearance surveys for taxa with special 
management designations, as the predictor layers used to create distribution models are generally 
too coarse to make an accurate prediction at this scale.  For project planning at a site-level, models 
can provide only an indication of whether the taxon is predicted to be “in the neighborhood,” in 
which case on the ground surveys are likely warranted.   

These latter two uses may require expressing a distribution model differently by applying different 
thresholding or symbology in mapping the model output.  A biologist interested in trapping an 
organism to collect DNA samples, for example, would most benefit by limiting their sampling to 
only the areas predicted to be most suitable for their target taxon.  Conversely, a biologist tasked 
with evaluating the potential impact of development for a taxon may want to err on the side of 
caution, by considering even areas of low predicted likelihood of occurrence to be potentially 
occupied and warranting field surveys.  Lastly, researchers interested in the total area occupied by 
a taxon will be best served by selecting a threshold metric, like the “Maximum training sensitivity 
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plus specificity” metric used here, that seeks to minimize total commission and omission error, 
resulting in a relatively unbiased estimate of area of occupancy. 

OCCURRENCE DATA LIMITATIONS 

While researchers have used a variety of modeling approaches to produce useful models with as 
few as ten training presences, model performance generally improves with increasing sample 
size50,51, possibly leveling off at 50 to 100 training presences11,52,53, particularly with Maxent 54.  
While most of the modeled taxa had approximately 50 or more total points in the dataset provided 
by TXNDD, fifteen of the 27 modeling taxa had fewer than 50 points after the filtering process.  Most 
of the points removed during filtering were removed due to high levels of clustering at small (<800 
m) distances.  Substantially better models may result if additional, independent observations were 
made in expanded portions of the taxa’s distributions and added to the modeling sets for these taxa.   

For some taxa, the high degree of clustering in their observation records may reflect areas of higher 
suitability rather than biased survey effort.  In such cases, spatial filtering may not be required, 
allowing more of the observation records to be used for training data.   This decision must be made 
based on an understanding of the spatial patterning and level of bias in the sampling effort that lead 
to the available training points.   

No negative (i.e., absence) records were available for the modeled taxa.  While modeling based on 
presence-only data is common, negative data can be used to provide models that discriminate more 
sharply between areas of predicted presence and absence10.  Additionally, absence data allow the 
modeler a broader suite of potential modeling algorithms, including standard statistical methods 
such as logistic regression42 (when sample sizes are large) and machine learning methods like 
Random Forest55.   

Absence data may be difficult to generate, as it requires relatively detailed knowledge survey effort 
and design, and the amount of survey effort required to confidently assign a location as an absence 
varies by taxa56.  For example, with plants, one might only need to visit a site a single time during 
the flowering period for the taxon to conclude that it is absent.  By contrast, for highly vagile taxa 
such as birds and large mammals that may occur in low numbers across large areas, many repeated 
surveys might be needed before a biologist would be willing to conclude that the taxon is absent.  
Nevertheless, given the benefits of absence data for distribution modeling, it warrants further 
consideration.   

For rare plants, absence data may be reasonably generated by selecting observations recorded for 
other plant taxa during the flowering period for the target taxa, under the assumption that if the 
target taxon had been present and flowering, it would have been noted by the surveyor.   
Structured, repeated survey protocols such as the Breeding Bird Survey57 and Christmas Bird 
Count58 may provide enough sampling over the course of many years at specific sites that a taxon 
can be considered absent if it has never been recorded at a site.  However, if an organism is 
particularly difficult to detect, as with many grassland birds outside of the breeding season, even 
multiple years of repeated surveys at a site might not constitute a reliable absence location. 
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PREDICTOR DATA LIMITATIONS 

For many plants and most fossorial animals, soil characteristics are extremely important in shaping 
distribution.  Unfortunately, though SSURGO59 provides detailed soil survey data for Texas, it can be 
impractical to create derivative layers from these data given current limitations on file sizes and 
software capabilities.  Many useful soil attributes, including measures of chemistry, texture, 
moisture, and depth, can be generated using the NRCS’ Soil Data Viewer, but at present it is not 
possible to process the entire SSURGO dataset for Texas with this tool.  By using the Gridded 
SSURGO (gSSURGO) dataset39 with custom scripts provided by NRCS staff, we were able to derive 
many useful layers (e.g., Percent Clay/Silt/Sand, soil pH, soil drainage class), but were unable to 
create other potentially useful layers.  For example, we have used a “depth to shallowest restrictive 
layer” in past modeling work to improve predictions for fossorial animals, as soil depth may limit 
distribution for some taxa, but we were unable to generate this layer using the available scripts in 
conjunction with the gSSURGO data.  As with land cover data, where a sufficient conceptual 
understanding exists, soil series data can also be assigned taxa-specific suitability scores to 
generate binary or continuous indices that could improve predictions for selected taxa. 

For at least three of the taxa modeled in this project (Black-capped Vireo25, Bachman’s Sparrow60, 
and Louisiana Pine Snake61), disturbance history and seral stage an important factor influencing 
distribution.  Fire history information has been successfully used to improve distribution models 
for birds that require early successional vegetation62, but a substantial amount of effort may be 
required to compile and maintain the necessary disturbance layers.  While some GIS data layers 
exist for disturbances like fire63 and disease64, these disturbances are highly variable in both space 
and time, so any models using disturbance layers as predictors would need to be updated 
frequently as new data become available.  One practical alternative is to maintain a more general 
distribution model for such taxa, and to use ancillary data on disturbance to guide field work or 
assist with assessing and mapping habitat quality. 

SUGGESTIONS FOR FUTURE WORK 

As with any analysis or modeling project, collecting additional training data can greatly improve 
distribution models.  Clearly, additional observation records for modeled taxa – particularly records 
some distance away from existing records – will provide additional information for modeling.  
Similarly, absence data for the modeled taxa could greatly improve models in two ways: 1)  
presence-absence models can draw a sharper distinction between occupied and unoccupied 
habitat; and 2) the availability of absence data in addition to presence data allows the use of many 
other modeling algorithms, including statistical methods like regression and machine learning 
methods like Random Forest.  Inferences drawn from presence-absence models are generally more 
straightforward than those drawn from presence-only models.  Absence data can be collected 
directly, when a taxon is surveyed for but not found, or it can be created retroactively based on 
prior survey work that found other taxa, but not the target taxon.  We suggest that TXNDD consider 
collecting or creating absence data for all tracked taxa whenever possible.   

We did not use data from online citizen science databases16,17, as we felt these records were more 
useful as an independent dataset to be used in model validation than as additional training data.  
Currently, Herps of Texas does not have enough records for a thorough validation of most of the 
reptile and amphibian taxa we modeled, and obtaining and processing eBird data was not practical 
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within the time constraints for this project.  These datasets should be investigated as time permits 
for their potential value in validating the distribution models created here. 

Likewise, collecting data for non-tracked taxa also can help improve model quality.  When data are 
originally collected during field surveys, researchers will often record locations for a large number 
of taxa in addition to their target species.  These additional records provide information about 
survey effort that can be used to gauge and factor out survey bias in records for the target taxa.  
Though many heritage programs do not collect data for taxa that they do not track, there typically is 
relatively little cost to integrating these records in the database, as they are often part of the 
datasets provided by researchers.  We suggest that TXNDD consider storing observation data for 
any taxa contained in a dataset provided to TXNDD, to allow a more robust background dataset for 
future modeling work. 

As with occurrence data, collection or generation of newer and better predictor datasets should 
continue to be a priority for modeling work.  New data layers based on remotely sensed data are 
made available on a regular basis as satellite imagery becomes more ubiquitous.  If time permits, 
developing taxa-specific layers by rescaling, scoring, or combining other datasets can greatly 
improve models.  We were unable to generate numerous soil derivative layers (Appendix 1) we 
believed might be helpful in modeling due to time constraints and difficulties in compiling and 
processing statewide soil datasets.  In comments regarding selected plant taxa, TXNDD’s botanist 
suggested that it would be useful to have layers representing deciduous versus evergreen canopy 
cover or soil parent material, for example, and that some plants appear to have particular 
associations with soil series or geology formations of a particular age.  These types of layers likely 
can be generated from existing data, but will require direct collaboration between biologists and 
modelers to ensure that the appropriate information is being represented. 

Land cover layers were not directly used in constructing the models for these 27 taxa.  Land cover 
layers no doubt contain useful information, but are problematic for inductive modeling, as variables 
with many of categories tend to be preferentially selected by modeling algorithms even when the 
relationship with the categories is spurious.65  If a conceptual understanding of a taxon’s 
distribution suggests that vegetative community strongly influences distribution, one could assign 
taxa-specific, numerical suitability ratings to each land cover type to produce a continuous index 
from these categorical data.  While somewhat subjective in their definition, indices such as these 
have proven invaluable in previous modeling efforts.9  Alternatively, land cover layers could be 
used to produce a standard deductive model that predicts distribution based on a binary suitability 
value (suitable/not suitable) for each land cover type.  This deductive model could then be 
combined with an inductive model for the same taxon using a simple multiplicative raster overlay 
to eliminate areas that are not within suitable land cover types.  This approach has also been 
successfully implemented in prior modeling work.8 

Range maps that show occupancy of a taxon within predefined units of space (e.g., watersheds, 
counties) can be integrated in distribution modeling to improve predictions.  Distribution models 
generally select more general, broad-scale predictors as study area size increases, and, conversely, 
tend to identify more direct, finer-scale predictors as the modeling area decreases.  Thus, by 
limiting the modeling area to a taxon’s range, predictions of distribution generally become sharper 
and more detailed.  While watershed-based range maps were available for some of the modeling 
taxa, it would be helpful to have range maps across all taxa so that they could be integrated in a 
consistent modeling process across taxa. 
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A critical part of this project was direct consultation between experienced WYNDD modelers and 
TXNDD personnel anticipated to continue the modeling started here.  We emphasize that such 
direct contact and training is a vital part of distribution modeling, and is at least as valuable as 
providing technical examples and written documentation.  As discussed above, there are portions of 
the modeling process (e.g., occurrence data filtering, predictor variable selection) that involve some 
degree of ‘art,’ or subjective decision-making, as the variability in input data, important 
environmental gradients, study areas, and species biology have thus far precluded the development 
of hard and fast rules for all distribution modeling.  In many cases, regionally and taxonomically-
specific modeling experience provides the best available guidance related to modeling decisions.  
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