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Figure 3: Biaxial failure envelopes for 0° unidirectional glass/epoxy lamina

« ML analysis of two cases of biaxial failure surfaces were *Corresponding author: fbhuiyan@uwyo.edu

under transverse normal and shear loading (022 vs. T12).
performed in this work - (i) 011 vs. 79 case and (ii) g99 VS. 719

case.



