Skip to Main Navigation. Each navigation link will open a list of sub navigation links.

Skip to Main Content

Apply to the University of Wyoming

Global Resource Navigation

Give to UW
Download UW Viewbook
Visit Campus

Faculty and Staff

Department of Chemistry

Bruce Parkinson

SER Professor of Chemistry

B.S. Iowa State University 1972
Ph.D. California Institute of Technology 1977 • 307-766-9891 • PS 415


     The need for renewable energy that emits no CO2 is perhaps society's most important and pressing problem. Solar energy is the largest potential source of this renewable energy however a method for storing the energy for night and transportation uses is needed. We have a project that involves a combinatorial search for metal oxide materials that are capable of either one or two photon photoelectrolysis of water to produce a stored fuel, hydrogen. We are ink jet printing patterns of metal oxide precursors onto conductive substrates that are then pyrolyzed to produce gradients of metal oxide compositions. We then scan a laser over the patterned substrates to measure regions of high photocurrent that indicate promising compositions. The library is then expanded about the promising compositions and the physical and structural properties of these compositions are investigated in detail.
     We are also involved in an outreach program where many undergraduate students will be enlisted to use our simple preparation and screening techniques to help prepare screen some of the millions of possible ternary and quaternary metal oxide compositions and test them for water splitting activity.
     We are studying the structure of the interface between sensitizing dyes and semiconducting oxide surfaces. The low index single crystal metal oxide surfaces are used to model the surfaces in the promising nanocrystalline anatase dye sensitized solar cell. We are using photoelectrochemical, scanning probe and ultrahigh vacuum (UHV) techniques to investigate sensitizing dyes with multiple attachments to the single crystal metal oxide surfaces. Other high surface area substrates, such as single crystal and porous GaP are also being used to study the fundamental aspects of the dye sensitization process.


New Photovoltaic Materials

     Photovoltaic solar cells can convert solar energy directly into electricity. Currently the price of energy from these solar converters is not competitive with fossil fuel derived electricity. In addition many of the promising technologies to lower the price of solar cells use materials that are not abundant (In, Te) or are toxic (Cd, Te, Se). We are investigating copper zinc tin sulfide (Cu2ZnSnS4), a potentially inexpensive thin film solar cell material that contains only earth-abundant elements, as a solar cell material. To prepare thin films of this material we use nanoparticle precursors dispersed on a substrate and then anneal them into a continuous film. Photoelectrochemical techniques are then used to measure the photovoltaic properties of the thin films.

Ultrahigh vacuum surface science

     We have been investigating the interfaces between organic molecules, of interest for applications in organic electronic devices, with metal surfaces. We look at both the structural and electronic properties of this interface. The electronic structure, or band line up, of the interface is investigated by photoemission spectroscopies where the valence band states and core levels of the surface and adsorbate are monitored as a function of coverage of the organic molecule. Temperature programmed desorption is also used to measure the strength of the interaction of the molecule with the substrate. The structure of the interface is followed with scanning tunneling microscopy (STM). A surprising number of ordered structures can be observed. Trends in the electronic and structural properties of the interface are measured by variation of the structure of the molecules and the metal substrate and we are working with theoreticians to understand these trends.

  Press releases: 


Share This Page:

1000 E. University Ave. Laramie, WY 82071
UW Operators (307) 766-1121 | Contact Us | Download Adobe Reader

Twitter Icon Youtube Icon Instagram Icon Vimeo Icon Facebook Icon

Accreditation | Emergency Preparedness | Employment at UW | Gainful Employment | Privacy Policy | Accessibility Accessibility information icon