Stable Isotope Facility
Berry Center RM 214
Laramie, WY 82071
Phone: (307) 766-6373
Email: uwyosif@uwyo.edu
δ13C and δ18O ratios in carbonate minerals can be determined simultaneously by the analysis of CO2 generated by the reaction of carbonate with 100% phosphoric acid. At SIF, headspace
vials are used to process carbonate samples. A known mass of sample is placed in the
headspace vial, dried overnight and then flushed with helium. A quantity of 100% phosphoric
acid is then added. Depending on the carbonate material, the reaction is allowed to
proceed for 24-48 hours. Calcite and aragonite require 24 hours, while dolomite and
apatite require 48 hours. All of the carbon ends up in the headspace of the vial
in the form of CO2 gas, so that the δ13C of the CO2 gas is equivalent to that of the carbonate. Oxygen is partitioned both into water
and CO2 so that a calculation is required to get the isotopic composition of the carbonate
from the CO2 gas. The headspace CO2 is analyzed using the GasBench attached to an isotope ratio mass spectrometer (GC-IRMS).
Typical sample size: 100-200 μg (calcite)
At SIF, the measurement of δ18O and δ13C ratios of CO2 in atmospheric air employs a GasBench headspace autosampler attached to an IRMS.
Once atmospheric air is introduced into a headspace vial, the vial is simply placed
in the GasBench for automated sampling. No further processing is required. (GC-IRMS)
Typical sample size: not applicable
In breath, the carbon isotope value (δ13C) provides information on the diet of the animal whereas the oxygen isotope value
of breath CO2 reflects the δ18O value of body water. For humans, this closely matches drinking water. Animals
that obtain a large portion of metabolic water from food sources (vegetation, etc.)
obviously would have isotope ratios of body water that reflect this input. At SIF,
the measurement of δ18O and δ13C isotope ratios of CO2 in breath employs a GasBench headspace autosampler attached to an IRMS. Breath samples
are collected in headspace vials and simply placed in the GasBench for automated sampling.
No further processing is required (GC-IRMS).
Typical sample size: not applicable
When carbon is dissolved in water, it occurs in three different forms: CO2, HCO3, and CO3. These species are commonly referred to as dissolved inorganic carbon (DIC). To
determine the δ13C ratio of this carbon, it is necessary to quantitatively remove all the carbon from
the water sample. At SIF, the procedure used is to add an aliquot of 100% phosphoric
acid (H3PO4) to a headspace vial, which is then flushed with helium. The sample water is injected
into the vial. The acid protonates the DIC, releasing CO2 into the vial headspace. The CO2 is then analyzed using the GasBench attached to an isotope ratio mass spectrometer
(GC-IRMS).
Typical sample size: 1-5 ml
The δ18O value of water can be easily determined by equilibrating the water with CO2. When CO2 dissolves in water, oxygen atoms are exchanged through a mechanism that involves the hydration of dissolved CO2 to form carbonic acid (H2CO3). By using an excess of water compared to the amount of CO2 present, the above hydration process will allow the CO2 to take on the value of the δ18O ratio in the water (after correcting for a known liquid-gas phase equilibrium fractionation). At SIF, the headspace vial is flushed helium gas followed by an injection of the water sample. The vials are then allowed to equilibrate for 24 hours. The Finnigan GasBench is then used to automatically sample the CO2 in the headspace of the vials before the sample is analyzed in the IRMS. (GC-IRMS) Typical sample size: 1-5 ml
Stable Isotope Facility
Berry Center RM 214
Laramie, WY 82071
Phone: (307) 766-6373
Email: uwyosif@uwyo.edu